压力传感器的分类及应用原理

合集下载

压力传感器原理及应用

压力传感器原理及应用

压力传感器原理及应用压力传感器原理及应用压力传感器是一种能够将压力信号转化为可测量电信号的传感器。

它主要通过测量工作物体所受到的压力大小,将压力转化为与之对应的电信号输出,从而实现对压力的测量和控制。

压力传感器的工作原理主要分为压阻型、电容型、电感式和压电效应几种。

其中压阻型传感器是应用最广泛的一种类型。

下面我将对各种传感器的工作原理及应用进行详细介绍。

1. 压阻型传感器:压阻型传感器是通过介质变形引起的电阻值的变化来实现对压力的测量。

静电感应式、应变电阻式是常见的压阻型传感器。

其中,静电感应式传感器通过测量电容的变化来实现对压力的测量,应变电阻式传感器则是通过材料应变引起电阻值的变化来实现对压力的测量。

压阻型传感器的应用范围非常广泛,既可用于液体的压力测量,也可用于气体的压力测量。

例如,在汽车领域中,压阻型传感器可以用于测量发动机油压、轮胎气压等;在化工行业中,压力传感器可用于测量管道压力、储罐液位等。

2. 电容型传感器:电容型传感器是利用电容变化来测量压力的一种传感器。

当外界施加压力时,感应电极之间的电容值会发生变化。

通过测量电容的变化,可以实现对压力的测量。

电容型传感器的应用相对较少,主要用于高精度的测量场合,如科研实验室中的压力测量、航天器上的压力测量等。

3. 电感式传感器:电感式传感器是通过测量感应线圈中的电感值的变化来实现对压力的测量。

当外界施加压力时,感应线圈中的线圈电感值会发生变化。

通过测量电感值的变化,可以实现对压力的测量。

电感式传感器在压力测量领域的应用较为有限,主要用于特殊场合的压力测量,如高温环境下的压力测量、高精度的压力测量等。

4. 压电效应传感器:压电效应传感器是利用压电材料产生的电荷量的变化来测量压力的一种传感器。

当外界施加压力时,压电材料会产生电荷量的变化,通过测量电荷量的变化,可以实现对压力的测量。

压电效应传感器在一些特殊场合有广泛的应用,如声波传感器、超声波传感器等。

压力传感器的原理及作用

压力传感器的原理及作用

压力传感器的原理及作用
压力传感器(Pressure Sensor)是一种测量介质压力变化的设备,属于传感器的一种。

压力传感器的原理是利用压力对某种特定材料产生形变的性质,通过测量形变程度来推断介质压力的大小。

常用的压力传感器有多种工作原理,包括应变片式、电容式、电阻式、振动式、压电式等。

应变片式压力传感器的工作原理是利用在测量接口上的应变片,在受到外力(即介质压力)作用时,产生形变,通过测量应变片上的形变来间接测量压力。

电容式压力传感器的工作原理是利用介质的压力将电容器的电容值改变,通过测量电容值的变化来间接测量压力。

电阻式压力传感器的工作原理是利用压力改变电阻的特性,通过测量电阻值的变化来间接测量压力。

振动式压力传感器的工作原理是利用压力改变振动的频率或振幅,通过测量振动的变化来间接测量压力。

压电式压力传感器的工作原理是利用压力引起压电材料产生电荷,通过测量产生的电荷量的变化来间接测量压力。

压力传感器在工业、物流、医疗、汽车等领域有广泛的应用。

它可以用于测量气体或液体的压力,监测和控制系统中的压力变化,用于安全预警、质量控制、工艺调整等。

压力传感器还可以用于科学研究、环境监测、航空航天等领域。

压力传感器的分类与原理介绍

压力传感器的分类与原理介绍

压力传感器的分类与原理介绍压力传感器是一种测量物体受力并将其转化为电信号的设备。

它被广泛应用于工业、汽车、航空航天等领域中,用于测量压力变化并实时反馈给控制系统。

压力传感器根据其工作原理和结构特点可以分为多种类型,下面将对几种常见的压力传感器进行分类与原理介绍。

1. 压阻式传感器压阻式传感器是一种基于电阻变化原理的压力传感器。

它通常由两个平行的金属片组成,两片金属片之间有一层敏感膜,当外力作用于敏感膜时,金属片的电阻值会发生变化。

这种变化可以通过电路进行检测和测量。

压阻式传感器的优点是结构简单、价格低廉,但是其精度较低,易受温度和湿度的影响。

2. 容积式传感器容积式传感器是一种基于压力变化引起的容积变化原理的压力传感器。

它通常由一个弹性元件和一个容器组成。

当压力作用于容器时,容器内的气体容积会发生变化,从而引起弹性元件的形变。

这种形变可以通过传感器内的压力变化转化为电信号进行测量。

容积式传感器的优点是精度较高、抗干扰能力强,但是其结构复杂,成本较高。

3. 电容式传感器电容式传感器是一种基于电容变化原理的压力传感器。

它通常由两个电极和一个电介质组成,当压力作用于电介质时,电容的值会发生变化。

这种变化可以通过电路进行检测和测量。

电容式传感器的优点是精度高、响应速度快,但是其受温度和湿度的影响较大,且易受外界电场干扰。

4. 压电式传感器压电式传感器是一种基于压电效应原理的压力传感器。

它通常由压电材料和电极组成,当外力作用于压电材料时,压电材料会产生电荷,从而生成电压信号。

这种电压信号可以通过电路进行检测和测量。

压电式传感器的优点是响应速度快、精度高、抗干扰能力强,但是其价格较高,使用时需要注意防止过载和过压。

5. 磁敏式传感器磁敏式传感器是一种基于磁阻效应原理的压力传感器。

它通常由一个磁敏材料和一个磁场组成,当压力作用于磁敏材料时,磁敏材料的磁阻值会发生变化。

这种变化可以通过电路进行检测和测量。

磁敏式传感器的优点是精度高、稳定性好,但是其价格较高,且易受外界磁场干扰。

压力传感器的原理与应用

压力传感器的原理与应用

压力传感器的原理与应用1. 压力传感器的概述压力传感器是一种能够测量外部压力并将其转化为电信号的设备。

它可以广泛应用于各个领域,如工业自动化、汽车制造、航空航天等。

本文将介绍压力传感器的原理及其在不同应用中的具体用途。

2. 压力传感器的工作原理压力传感器的工作原理基于压力对传感器内部敏感元件的影响。

常见的压力传感器有四种工作原理:2.1 压阻式压力传感器压阻式压力传感器使用一种敏感膜片或弹簧作为敏感元件,并将其连接到一个电阻电路中。

当外部压力施加在敏感元件上时,敏感元件的形变会改变电阻的值,从而测量压力大小。

2.2 容积式压力传感器容积式压力传感器由一个封闭的容器和一个弹性元件构成。

当外部压力施加在容器上时,容器内的体积会发生变化,从而导致弹性元件变形。

通过测量弹性元件的变形程度,可以确定外部压力的大小。

2.3 表面贴片式压力传感器表面贴片式压力传感器内置了微机械系统(MEMS),通过测量由外部压力引起的微小变形来确定压力大小。

它具有体积小、响应快、精度高等优点,广泛应用于便携式设备和医疗器械等领域。

2.4 磁电式压力传感器磁电式压力传感器利用磁敏材料和霍尔元件来测量外部压力。

当外部压力施加在磁敏材料上时,材料的磁性会发生变化,从而改变霍尔元件的输出电压。

通过测量输出电压的变化,可以确定压力大小。

3. 压力传感器的应用压力传感器具有广泛的应用领域,下面将介绍它在几个典型领域的具体应用。

3.1 工业自动化在工业自动化领域,压力传感器用于监测液体或气体的压力情况,以确保设备的正常运行。

例如,在液压系统中,压力传感器可以用于监测油管的压力,以及控制液体的流量和压力。

3.2 汽车制造在汽车制造中,压力传感器被广泛应用于发动机和制动系统等关键部件的监测和控制。

通过测量发动机内部的压力,可以确保发动机的运行状态并及时进行调整。

而制动系统中的压力传感器可以检测制动踏板的踩下力度,从而实现精确的制动控制。

3.3 航空航天在航空航天领域,压力传感器用于监测飞机的气压和气流情况。

压力传感器的分类与原理介绍

压力传感器的分类与原理介绍

压力传感器的分类与原理介绍什么是压力传感器?压力传感器是一种用于测量压力的装置,它将压力转化为电信号输出,以便进行测量和监测。

压力传感器广泛应用于各个领域,包括工业控制、环境监测、医疗设备和汽车工业等。

压力传感器的分类压力传感器按照原理和工作方式的不同,可分为多种类型。

以下将介绍几种常见的压力传感器及其原理。

1. 压阻传感器(Resistive Pressure Sensors)压阻传感器基于传导材料的电阻与其受到的压力成反比的原理工作。

内部含有传导材料的薄膜在受到压力时会发生形变,导致电阻值发生改变。

这种传感器的性能受到温度和湿度等环境因素的影响较大。

2. 压电传感器(Piezoelectric Pressure Sensors)压电传感器利用由压电材料产生的电荷或电压信号测量压力。

当受到压力时,压电材料会产生电荷分布的变化,从而产生电压信号。

这种传感器具有高灵敏度、宽工作频率范围和较小的尺寸等优点,广泛应用于汽车、航空航天和医疗设备等领域。

3. 电容传感器(Capacitive Pressure Sensors)电容传感器是利用微小的电容变化来测量压力。

传感器中的两个电极之间会形成一个微小的电容,当受到压力时,电容值会发生微小的变化。

通过测量电容的改变,可以推导出压力的大小。

这种传感器具有较高的精确度和可靠性。

4. 音圈热导传感器(Strain Gauge Pressure Sensors)音圈热导传感器通过测量压力对弹性体的形变来获得压力值。

传感器中包含一个或多个应变片(Strain Gauge),当受到压力时,弹性体会产生形变,进而导致应变片的电阻值发生改变。

测量这种电阻值的变化可以反推出压力的大小。

压力传感器的工作原理无论是哪种类型的压力传感器,它们的工作原理都是基于压力力学和电信号转换原理。

以下将分别介绍几种常见压力传感器的工作原理。

- 压阻传感器的工作原理:传感器内部的弹性体会因受到外力而发生形变,导致传导材料的电阻发生变化。

一文读懂压力传感器的原理和分类

一文读懂压力传感器的原理和分类

一文读懂压力传感器的原理和分类压力传感器是一种测量物体压力的装置,它能将物体受到的压力转化成电信号输出。

在各个行业中广泛应用,包括工业生产、医疗设备、汽车工程等领域。

压力传感器可根据工作原理和结构分类,下面将详细介绍压力传感器的原理和分类。

压力传感器的工作原理:压力传感器的工作原理基于普通移位传感器,并且通过应变传感器来测量温度、压差、流量和液位等物理量。

应变传感器的工作原理基于物体在受到力的作用下发生应变。

应变传感器通常采用金属材料制成,当外加力使其发生变形时,导电材料的电阻值也会发生变化。

通过测量电阻的改变,可以精确测量物体受到的压力。

压力传感器的分类:1.电阻式压力传感器:电阻式压力传感器是最常见的一种类型,其原理是通过电阻传感器测量物体受到的压力。

它的特点是结构简单、价格低廉,并且在工业控制和汽车工程中得到广泛应用。

2.脱膜式压力传感器:脱膜式压力传感器是一种通过断面改变而产生压力变化的传感器。

当压力传感器受到外部压力时,膜片会发生形变,从而改变其电阻值。

脱膜式压力传感器在一些需要快速响应和高精度测量的应用中广泛使用。

3.爆破膜片压力传感器:爆破膜片压力传感器是一种常用于测量高压和爆炸性环境的传感器。

它的结构特点是在传感器内部设置了一片薄膜,当膜片受到高压力时会破裂,从而释放压力。

爆破膜片压力传感器具有高精度和可靠性的特点,在石油化工、军事装备和航空航天等领域得到广泛应用。

4.变容式压力传感器:变容式压力传感器是一种通过测量电容变化来测量压力的传感器。

它的原理是通过改变传感器内部两个电极之间的电容值来测量压力。

变容式压力传感器在医疗设备、液位控制和航空航天等领域有着广泛的应用。

综上所述,压力传感器的工作原理是通过应变传感器来测量物体受到的压力,通过测量电阻、电容或电压等信号来输出压力值。

根据工作原理和结构的不同,压力传感器可以分为电阻式、脱膜式、爆破膜片和变容式等多种类型。

每一种类型的压力传感器都有着自己的适用领域和特点,可以根据具体应用需求选择合适的传感器。

压力传感器的原理和应用

压力传感器的原理和应用

压力传感器的原理和应用压力传感器是一种用于检测和测量压力变化的装置,广泛应用于各个领域。

本文将介绍压力传感器的原理以及其在不同领域的应用。

一、压力传感器的原理压力传感器的基本原理是根据弹性元件的形变来测量外界压力的变化。

弹性元件可以是金属薄膜、金属绞线、气体或液体等,在外界压力的作用下发生形变,通过检测这种形变来测量压力的大小。

1. 金属薄膜压力传感器原理金属薄膜压力传感器是最常见的一种类型。

它由金属薄膜贴附在载体上构成。

当外界压力作用于金属薄膜时,金属薄膜发生形变,形变后的电阻值发生变化,利用电桥测量这种变化可以得出压力的数值。

2. 压阻式压力传感器原理压阻式压力传感器将电阻与弹性元件相结合。

当外界压力作用于弹性元件时,导致电阻值的变化,通过测量电阻值的变化来计算压力大小。

3. 容性式压力传感器原理容性式压力传感器利用弹性体的变形引起的电容量的变化来测量压力。

当外界压力作用于弹性体时,弹性体形变,使电容量发生变化,通过测量电容量的变化来判断压力的大小。

二、压力传感器的应用领域压力传感器在许多领域中都有广泛的应用,下面将介绍其中几个常见的应用领域。

1. 工业自动化领域在工业自动化领域,压力传感器用于监测和控制各种工艺中的气体或液体的压力变化。

例如,在制造业中,通过监测设备中的气压来确保生产过程的稳定性和安全性。

2. 汽车领域压力传感器在汽车领域中扮演着至关重要的角色。

它们用于监测发动机中的油压、冷却系统中的压力以及制动系统中的液压压力。

这些信息可以用来确保发动机的正常运行和提供安全的制动性能。

3. 医疗领域在医疗领域,压力传感器用于监测患者体内的生理参数,如血压、呼吸压力等。

它们还被应用于手术设备和人工呼吸机等医疗设备中,以监测和调节压力。

4. 环境监测领域压力传感器在环境监测领域中的应用越来越广泛。

它们被用于监测气候变化、水位高度、大气压力等参数。

这些数据对于环境保护和天气预测等方面具有重要意义。

压力传感器的原理和应用

压力传感器的原理和应用

压力传感器的原理和应用压力传感器是一种专门用于测量压力的装置,可以将压力信号转化为与之对应的电信号输出。

它主要由感应元件、信号处理电路和输出设备组成。

压力传感器的原理基于一系列物理效应,如电阻效应、压电效应、电容效应等,通过感应元件对压力进行感应和转化。

一、压力传感器的原理压力传感器的原理有多种,包括电阻式、压电式、电容式等。

1. 电阻式压力传感器:这种传感器的原理基于电阻的改变。

当压力作用于感应元件时,感应元件的电阻会随之改变,通过测量感应元件上的电阻变化,可以确定压力的大小。

电阻式压力传感器的优点是精度高、响应速度快,但缺点是较为复杂,体积较大。

2. 压电式压力传感器:这种传感器的原理基于压电效应。

压电材料在受到机械力作用时,会产生电荷,通过感应元件将机械能转化为电能。

压电式压力传感器具有高灵敏度和稳定性好的特点,广泛应用于工业控制领域。

3. 电容式压力传感器:这种传感器的原理基于电容效应。

压力导致感应元件结构的微小变形,从而改变感应元件的平行板之间的电容量。

通过测量电容的变化,可以获得压力的信息。

电容式压力传感器的优点是结构简单、精度较高,但对环境的适应性较差。

二、压力传感器的应用压力传感器在许多领域都有广泛的应用,以下是其中几个主要的应用领域:1. 工业控制:压力传感器可以用于测量和监测工业过程中的压力变化。

比如,在冶金行业中,压力传感器常用于测量高炉中的压力变化,以控制冶炼过程;在石油化工行业中,压力传感器常用于监测管道中的压力,确保安全运行。

2. 汽车工业:压力传感器在汽车工业中有多种应用,常见的如汽车发动机的油压检测、轮胎胎压监测等。

这些应用可以提高汽车的性能和安全性。

3. 医疗领域:压力传感器在医疗领域中扮演着重要的角色,用于监测患者的生理参数。

例如,血压计就是一种常见的压力传感器,它可以测量人体血管中的压力值,帮助诊断和治疗疾病。

4. 家用电器:压力传感器也广泛应用于家用电器中,如洗衣机、空调等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压力传感器的分类及应用原理教程来源:网络作者:未知点击:28 更新时间:2009-2-16 10:11:30压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用1、应变片压力传感器原理与应用力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。

但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。

下面我们主要介绍这类传感器。

在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。

电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。

它是压阻式应变传感器的主要组成部分之一。

电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。

金属电阻应变片又有丝状应变片和金属箔状应变片两种。

通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。

这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。

根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。

而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。

一般均为几十欧至几十千欧左右。

电阻应变片的工作原理金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。

金属导体的电阻值可用下式表示:式中:ρ——金属导体的电阻率(Ω·cm2/m)S——导体的截面积(cm2)L——导体的长度(m)我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。

当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。

只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情2、陶瓷压力传感器原理及应用抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。

通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。

陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。

陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。

电气绝缘程度>2kV,输出信号强,长期稳定性好。

高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。

3、扩散硅压力传感器原理及应用工作原理被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。

4、蓝宝石压力传感器原理与应用利用应变电阻式工作原理,采用硅-蓝宝石作为半导体敏感元件,具有无与伦比的计量特性。

蓝宝石系由单晶体绝缘体元素组成,不会发生滞后、疲劳和蠕变现象;蓝宝石比硅要坚固,硬度更高,不怕形变;蓝宝石有着非常好的弹性和绝缘特性(1000 OC以内),因此,利用硅-蓝宝石制造的半导体敏感元件,对温度变化不敏感,即使在高温条件下,也有着很好的工作特性;蓝宝石的抗辐射特性极强;另外,硅-蓝宝石半导体敏感元件,无p-n漂移,因此,从根本上简化了制造工艺,提高了重复性,确保了高成品率。

用硅-蓝宝石半导体敏感元件制造的压力传感器和变送器,可在最恶劣的工作条件下正常工作,并且可靠性高、精度好、温度误差极小、性价比高。

表压压力传感器和变送器由双膜片构成:钛合金测量膜片和钛合金接收膜片。

印刷有异质外延性应变灵敏电桥电路的蓝宝石薄片,被焊接在钛合金测量膜片上。

被测压力传送到接收膜片上(接收膜片与测量膜片之间用拉杆坚固的连接在一起)。

在压力的作用下,钛合金接收膜片产生形变,该形变被硅-蓝宝石敏感元件感知后,其电桥输出会发生变化,变化的幅度与被测压力成正比。

传感器的电路能够保证应变电桥电路的供电,并将应变电桥的失衡信号转换为统一的电信号输出(0-5,4-20mA或0-5V)。

在绝压压力传感器和变送器中,蓝宝石薄片,与陶瓷基极玻璃焊料连接在一起,起到了弹性元件的作用,将被测压力转换为应变片形变,从而达到压力测量的目的。

5、压电压力传感器原理与应用压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。

其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。

由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。

而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。

磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。

现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。

压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。

实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。

压电传感器主要应用在加速度、压力和力等的测量中。

压电式加速度传感器是一种常用的加速度计。

它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。

压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和孙航领域中更有它的特殊地位。

压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。

也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。

它既可以用来测量大的压力,也可以用来测量微小的压力。

压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

传感器前景看好新兴应用众多领域教程来源:工控作者:未知点击:141 更新时间:2009-1-7 8:04:42在科学发展观的指导下以及我国走新型工业化迫切要求下,工业信息化、自动化前进的步伐进一步加快。

新兴控制技术和传感器技术更是为我国工业的改革、转型增添了一对腾飞的翅膀。

在微处理器和传感器变得越来越便宜的今天,全自动或半自动(通过人工指令进行高层次操作,自动处理低层次操作)系统可以包含更多智能性功能,能从其环境中获得并处理更多不同的参数。

尤其是MEMS(微型机电系统)技术,它使数字传感器的体积非常微小并且能耗与成本也很低。

以纳米碳管或其它纳米材料制成的纳米传感器同样具有巨大的潜力。

市场分析机构NanoMarketsLC 估计在2008年,纳米传感器在全球的市场将达到二百八十万美金,到2012年会增至一千七百二十万美金。

“灵敏传感器”(smartsensor)或“数字传感器”(digitalsensor)指的是高级传感器,它包括调节和处理信号的电路及一个网络通讯的界面。

它们通常以模块(modules)形式制成,包含一个传感器、DSP(数字信号处理器)、一个DSC(数字信号控制器)或一个ASIC(特定用途集成电路);另外也有以系统封装(SysteminPackage)或系统芯片(SystemonChip)的方式制成。

在微处理器和传感器变得越来越便宜的今天,全自动或半自动(通过人工指令进行高层次操作,自动处理低层次操作)系统可以包含更多智能性功能,能从其环境中获得并处理更多不同的参数。

尤其是MEMS(微型机电系统)技术,它使数字传感器的体积非常微小并且能耗与成本也很低。

以纳米碳管或其它纳米材料制成的纳米传感器同样具有巨大的潜力。

市场分析机构NanoMarketsLC估计在2008年,纳米传感器在全球的市场将达到二百八十万美金,到2012年会增至一千七百二十万美金。

即使在萌芽阶段,人们仍然认为在不久的将来数字传感器对电子市场具有重要的推动作用。

制作数字传感器的接口以及支持用于数字传感器网络的形式多样的通讯协议都是对技术工艺的巨大挑战。

传感器的非均质特性和其操作条件的多样化也对技术工艺提出了巨大的挑战。

目前在全世界有超过3000家传感器制造商正在运作,Intechno咨询公司估计它们在2008年的总销售额将会超过500亿美金。

数字传感器不仅能够感知所测量的物理参数,诸如位置、温度、照度、压力、电压或电流等;它们还能处理接收到的信号并将其发送到网络中去。

因此一个传感器节点除了传感器本身,还包括信号获取、处理、通讯及能耗管理等等的一整套电路系统。

现在系统设计所包含的传感器和处理器越来越多。

随着传感器和处理器价格的不断降低,取代机械控制结构的阈值也在不断变化。

在系统中选择正确的传感器组合和处理算法可以显著地降低原材料及能耗的费用并提高系统的总体性能。

目前,不断提高操作的简化程度和延长能源的使用寿命变得越来越重要,尤其是如今越来越多的传感器网络动辄就配置1000或更多的传感器节点。

传感器越来越多地被应用到许多领域,包括军事、汽车、工业、医药、家居的安全与警戒、环境监测等等,甚至被应用到消费领域。

在大型家用电器尤其是洗衣机和冰箱中,集成传感器的使用显著增长。

传感器技术在现代汽车的重大改进中起到了主要作用。

抗磁性(拒磁)传感器(Magnetoresistive?sensors)在汽车中用于决定机械系统的角度、速度或位置,汽车的防滑系统以及发动机和变速箱的控制需要这些数据。

相关文档
最新文档