第六届小机灵杯邀请赛五年级(决赛)试题
小机灵杯五年级

第十三届“小机灵杯”数学竞赛初赛试题(五年级组)时间:60 分钟总分:120 分上海学而思教研团队俞家,焦俊,朱博,邵国栋、刘泽南、吴中亚,魏俐光老师整理,以下分析仅仅代表老师们的个人观点,不代表官方答案,欢迎大家一起讨论。
一、判断题(正确的打“√”,错误的打“×”。
每题 1 分)1.“几何学”起源于割地法或测地学。
()【答案】√几何学:简称几何,是研究空间区域关系的数学分支。
“几何学”这个词,是来自阿拉伯文,原来的意义是“测量土地技术”。
名称来源:几何这个词最早来自于阿拉伯语,指土地的测量,即测地术。
后来拉丁语化为“geometria”。
中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。
当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO 的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是 geometria 的音、意并译。
2.远在公元前春秋战国时代的“九九歌”就是我们现在使用的乘法口诀。
()【答案】√九九歌(乘法口诀):九九歌是汉族民间谚语,在汉族传统文化中,九为极数,乃最大、最多、最长久的概念。
九个九即八十一更是“最大不过”之数。
古代汉族人民认为过了冬至日的九九八十一日,春天肯定经已到来。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。
在当时的许多著作中,都有关于九九歌的记载。
最初的九九歌是从“九九八十一”到“二二如四”止,共 36 句。
因为是从“九九八十一”开始,所以取名九九歌。
大约在公元五至十世纪间,九九歌才扩充到“一一如一”。
大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”到“九九八十一”止。
九九歌就是我们现在使用的乘法口诀。
现在我国使用的乘法口诀有两种,一种是 45 句的,通常称为“小九九”;还有一种是 81 句的,通常称为“大九九”。
第八届小机灵杯五年级决赛试题

第八届“小机灵杯”小学生数学竞赛(决赛)试题(五年级)1.222222222224084074064054044034024321+--++--++--= ( )。
2.在自然数中,恰好有3个约数的两位数共有( )个。
3.20101201091111199999⨯个个的乘积中含有( )个偶数数码。
4.两个数的最大公约数是12,最小公倍数是240,这两个数的差最大是( )。
5.1,2,3,⋯⋯,99,100,这100个数中,除以7余数不为0的数的和是( )。
6.20108a b ÷= ,a 、b 均为正整数,a 有( )种不同的取值。
7.甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、99人。
现在要把这四个旅行团分别进行分组,使每组都是A 名游客,以便乘车前往参观游览。
已知甲、乙、丙三个旅行团分成每组A 人的若干组后,所剩的人数都相同,那么丁旅行团分成每组A 人的若干组后还剩( )人。
8.实验室里有一只特别的钟,一圈共有20格。
每过7分钟,指针跳一次,每跳一次就要跳9格。
今天早晨8点整,指针恰好从0跳到9,昨天晚上10点整的时候指针指着( )。
9.在400,401,402,⋯⋯,800这些数中,有( )个三个数字各不相同的偶数。
10.如图,将四边形ABCD 的四条边AB 、BC 、CD 、DA 分别延长两倍,形成一个大的四边形EFGH ,若四边形ABCD 的面积为5平方厘米,那么四边形EFGH 的面积是( )平方厘米。
B11.把一个体积为512立方厘米的正方体橡皮泥改做成棱长为整厘米数的一个长方体,表面积最多能增加( )平方厘米。
12.A 、B 、C 、D 、E 五支足球队,两两各赛一场,胜一场得3分,负一场得0分,平一场两队各得1分。
十场球赛完后,五个队的得分互不相同。
A 队未败一场,且打败了B 队,可是B 队得了冠军,C 队也未败一场,名次却在D 队之后。
那么E 队得了( )分。
小机灵杯 五年级 练习册 第四套

综合练习(4)1.如图,加油站A 和商店B 在马路MN 的同一侧,AB=7米,行人P 在马路MN 上行走。
当P 到A 的距离与P 到B 的距离之差最大时,这个差是 米。
答案:72,如图,想沿着土地周围以等距离打桩,并且在拐角处一定要打上木桩。
请问在尽可能少打木桩的情况下,总共需要 根木桩才够。
(单位:米)答案:603.将长为15的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则得到不同的三角形的个数为 。
A .8 B.7 C.6 D.5答案:B4.如右图:算式中,乘积的千位数是 。
A.0B.1C.3D.7答案:B5.一个实心立方体的每个面如右图分成四部分,从顶点P 出发,可找出沿图中相连的线段一步步到达顶点Q 额各种路径。
若要求每步沿路径的运动都更加靠近Q ,则从P 到Q 的这种路径的数目为 种 条。
答案:18 546.把1993分成若干个自然数的和,且使这些自然数的乘积最大,该乘积是 。
答案:266223⨯7.如图,边长为8的正方形每条边上的三个点(端点除外)都是这条边的四等分点,则阴影部分的面积是 。
答案:248.如图,用火柴棍摆放2⨯2的4宫格,用12根火柴;摆放3⨯3的9宫格,用24根火柴。
小明用1300根火柴,摆放了m m ⨯得2m 宫格,m 等于 。
答案:259.有一个袋子里装着许多玻璃球。
这些玻璃球或者是黑色的,或是白色的。
假设:有人从袋中取球,每次取两只球。
如果取出的两只是同色的,那么,他就往袋里放回一只白球;如果取出的两只球是异色的,那么他就往袋里放回一只黑球。
他这样取了若干次后,最后袋子里只剩下一只黑球。
那么,原来在这个袋子里有黑球个。
(填奇数或偶数)答案:奇数10.右图中11个方队(正方形实心方阵)中的每一个都是由数量相同的士兵组成,如果算上将军,就可以组成一个大的攻击方队。
原来的方队里最少要有士兵人。
答案:911.有红黄蓝绿四种颜色小旗各一面,取其中一面小旗或多面小旗,由上而下挂在旗杆下作为信号(挂多面旗时,不同顺序表示不同信号,如:挂出红黄颜色小旗时,顺序为红黄与顺序为黄红表示不同的信号)。
小机灵杯1-9届真题

第一届小机灵杯邀请赛 (2)第二届小机灵杯邀请赛 (4)第三届小机灵杯邀请赛 (6)第四届小机灵杯邀请赛 (7)第五届小机灵杯邀请赛复赛 (8)第六届小机灵杯邀请赛复赛 (10)第七届小机灵杯邀请赛复赛 (13)第八届小机灵杯邀请赛复赛 (15)第九届小机灵杯邀请赛复赛 (17)第一届小机灵杯邀请赛1、按规律填数:901 812 723 634 545 ( ) ( )2、在一个减法算式中,把被减数,减数,差这三个数相加,所得的和除以被减数(不等于0),商等于( ).3、右式中,不同的字母表示不同的数字,那么ABC表示的三位数是( ).4、如果2只白兔2天吃白菜2千克,照这样计算,那么8只白兔8天吃白菜( )千克.5、右面算式中的被除数是( )6、甲,乙两人今年的年龄和是33岁,4年后,甲比乙大3岁,问甲今年( )岁.7、把边长分别为10厘米,9厘米,8厘米和7厘米的4个正方形按照从大到小的顺序排成一行(如图)排成的图形的周长是( )厘米.8、有一堆围棋子,白子的个数是黑子个数的2倍,拿走96个白子后,黑子的个数是白子个数的2倍,原来黑子有( )个.9、有1张伍元币,4张贰元币,8张壹元币.要拿出8元钱可以有( )种不同的方法.10、亮亮和聪聪玩“石头、剪刀、布”的游戏,两人用同样多的石子做记录,输一次就给对方一颗石子,结果亮亮胜了3次,聪聪比原来多了9颗石子,他们共做了( )次游戏.11、任取自然数2,3,4,5,6,7中的三个数(不能重复)组成一个和,那么不相同的和共有( )个.12、新华小学的电表显示的用电量是61111,要使电表显示的用电量的五位数中有四个数码相同,学校至少再用( )度.13、黑、白两种颜色的珠子,一层黑,一层白,排成正三角形的形状(如图),当白珠子比黑珠子多10颗时,共用了( )颗白珠子.14、公园里有一排彩旗,按3面黄旗,2面红旗,4面绿旗的顺序排列,小明看到这排彩旗的尽头是一面绿旗,已知这排彩旗不超过200面,这排旗子最多有( )面.15、将写有数码的纸片倒过来看,0、1、8三个数字不变,6倒过来是9,9倒过来是6,而其余的数字倒过来则没有意义,某种游戏卡片是从001,002,003,004,……,998,999共有999张,那么,所有的卡片倒过来看,与原卡片数值保持不变的共有( )张.第二届小机灵杯邀请赛1.在右面竖式的各个方框中填上适当的数字,使竖式成立.2.推算是24,是28,那么是( )3.按下面的规律摆五角星,第82个五角星是( )色的.在这种颜色的五角星中,它是第( )个.★★★☆☆★☆★★★☆☆★☆★★4.学校有60人要参加“金孔雀”舞蹈比赛,比赛时要求每排人数即不能少于4人,也不能多于16人,问共有( )中排法.5.根据前面三个算式的启发,括号里面应当填上( )6.一个电影院的第一排有15个座位,以后每一排都比前一排多2个座位,最后一排有73个座位,这个电影院一共有( )个座位.7.下图中不含“★”的三角形比含“★”的三角形多( )个.8.把21分拆成两个自然数之和,且使这两个自然数的乘积最大,这个最大的乘积是().9.如图,在长方形ABCD 中,EFGH 是正方形.如果AF=11厘米,HC=14厘米,那么长方形ABCD 的周长是()厘米.10.将不大于12且互不相同八个自然数天使右图八个放个中,使九宫格图中的每一行,每一列以及对角线上的三个数的和都等于21.11.在一道减法算式里,被减数、减数与差的和是360,而差比减数的4倍还多20.被减数是 (),减数是(),差是().12.有两个完全一样的长方形,拼成两种长方形,一种长方形的周长是100厘米,另一种长方形的周长是140厘米,原来长方形的长是()厘米,宽是()厘米.13.某商场里面花布的米数是白布的3倍,如果每天卖20米白布和45米花布.()天以后,白布全部卖完,而花布还剩下180米,原来有花布()米.14.1996年爸爸的年龄是姐姐和妹妹年龄和的4倍,2004年爸爸的年龄是姐姐和妹妹年龄和的2倍,爸爸是()年出生的.15.书架上、下两层摆放着若干本书.如果从上层拿10本放到下层,则下层的本数是上层的2倍,如果从下层拿到10本放到上层,则上层的本数是下层的3倍,上层原来有图书()本,下层原来有图书()本.第三届小机灵杯邀请赛1、用简便方法计算下面的题目:100+99989796959465432-+-+-+-+-+-2、不同的余数有多少个?24?①余数共有()个;②不同的余数共有()个.3、用40米的铁丝围成一个长和宽不相等的而且是整米的长方形,一共有( )种不同的围法.4、时钟现在是整点,再过112小时,钟面上恰好是1点整.请你判断,现在是()整.5、把一张正方形的纸对折,再对折,这样连续几次,写出对折了4次时长方形的块数是()块.6、在下面一列数中,第12个数是:()123654789121110131415 ,,,,,7、右图中有()几个长方形8、小华和小强的体重是84千克,小华和小玲的体重是80千克,小强和小玲的体重是82千克小华比小玲重()千克.9、如图,在长方形ABCD 中,EFGH 是正方形.如果16AF =厘米,21HC =厘米,那么长方形ABCD 的周长是()厘米.10、从小到大的连续10个自然数,如果最小的数与最大的数之和是99,那么最小的数是().11、有四种不同面值的硬币如下图所示,假若你恰好有着四种硬币各一枚.一共能组成()种不同的钱数.请你用加法算式一个一个的列举出来.12、如下图,李明从A 走到B 再到C 再到D,走了38米.玛丽从B 到C 再到D 再到A,走了31米.这个长方形池ABCD 的周长是()米.第四届小机灵杯邀请赛1、699999+69999+6999+699+69=().2、一列数15791317 ,,,,,,从第二项起,后项减去它的前一项的差都相等,从左向右数起, 第()个数是197.3、观察下面三角形中的各数的规律,并按照这个规律求m 的值.m =().4、在一条直线上有四个点,,,A B C D ,点B 不在,,A C 之间,点D 是AC 的中点,从B 到D 的距离是20cm ,从B 到C 的距离是12cm ,从A 到B 的距离是多少?5、将一张正方形纸片对折成长方形后,在此长方形纸上画两条直线,然后沿着两条直线各剪一刀,最多能将这张正方形纸分成()块.6、一个长方形的长是40cm ,宽是25cm ,如果将此长方形剪两刀,得到3个或4个长方形,那么被剪两道后得到的那些长方形的周长之和最多是()cm .7、2个男孩和2个女孩参加歌咏比赛,他们一个接一个地唱,假定两女孩不能连着唱,必须隔开,能排成()种不同的顺序.8、假如20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换()只兔子.9、哥哥给了弟弟84分之后,弟弟反而比哥哥多36分,哥哥原来比弟弟多()分.10、用一只茶杯将水倒入一只空水瓶里,如果2杯水倒入这个水瓶里,这个水瓶的和水的重量是540克,如果5杯水倒入这个水瓶里,这个水瓶的和水的重量是600克,空水瓶的重量是( ). 11、在某一个月中,有三个星期日的日期刚好是偶数号,那么这一个月的8号是星期().12、小平和小丽到新华书店去买书,她们选中了同一本书,可是她们带的钱不够,小平差15元,小丽差2元,只好先合买一本,还多1元.每本书()元.13、一本字典共有199也,在这本字典的页码上,数字1共出现了()次.14、口袋里装有红、黄、蓝、绿4种颜色的球各5个.小华闭着眼睛从口袋里往外摸球,每次摸出1个球.他至少要摸出()个球才能保证摸出的球中每种颜色的球都有.15、10名乒乓球运动员分成三队,每队若干个队员进行单打比赛.规定同队的运动员彼此之间不用比赛,不同队的运动员两两比赛一场,那么比赛的总场数最少是( )场,最多是( )场.第五届小机灵杯邀请赛复赛1、199+298+397+496+595+20=().2、9937+4599+83=创( ).3、小明去同学家玩.走进了弄堂,但记不起门牌号码了.怎么办呢?他忽然想起,这个门牌号码挺有意思,曾经研究过一次.它是一个三位数,个位数字比百位数字大4,是位数字比个位也大 4.根据这点记忆,你能帮助小明找到同学家吗?如果想到了,就写在下面.门牌号码是().4、企鹅出版社出版了一套《天才智慧》丛书,出版社为这套丛书设计了一个漂亮的书盒,这套丛书连同书盒售价280元,书店允许顾客只买书而不买书盒.如果书价比书盒贵230元,那么书盒价为()元.5、波特有6只狗,如果他每次遛2只狗,那么狗的搭配情况总共有()种.6、请把图中①~⑨号小正方形的标号填入右图中九个小方格 中,使这九块小正方形刚好拼成中间的图形.7、一批图书,本数在50~60之间,平均分给9名同学,结果余下的书和每人分到的书的本数相同,那么这批图书共有多().8、园林工人在一条马路的一边栽树(包括端点),,每2棵树之间的距离是4米,一共栽树86棵,这条马路长()米.9、下图是用17根火柴棒摆成的,图中共有8个正方形.从图中至少拿掉()根火柴棒,才能将这8个正方形全部破坏(构不成正方形),请在图中表示出来.10、图10,线段10,8,3,a cm b cm c cm ===图形的周长是()cm .11、一位妇人,人到中年,很不愿提起自己的年龄,但她又不愿说谎.一天,有人问及她的年龄,她只好实话实说:“我4年后的年龄的6倍减去我3年前的年龄的6倍,就是我现在的年龄.”这位妇人今年( )岁.12、有5个袋子.A袋和B袋的重量之和是120千克,B袋和C袋的重量之和是135千克,C袋和D袋的重量之和是115千克,D袋和E袋重量之和是80千克,A袋、C袋、E袋子的重量之和是160千克.A袋的重量是( )千克,B袋的重量是( )千克,C袋的重量是( )千克,D袋的重量是( )千克,E袋的重量是( )千克.c g h k u,背面分别写着1,2,3,4,5,但是顺序不同.把13、有5张扑克牌,表面分别写着字母,,,,c k u,第二次出现了如下情况这些扑克牌随意散放,第一次出现了如下情况25k c g,那么字母u背面的数字是( ).2414、数一数下面图形共有( )个正方形.15、把27米长的一根绳子分成三段,使后一段比前一段多三米.那么这三段绳子分别长()米,( )米,( )米.第六届小机灵杯邀请赛复赛A 卷1、()()1+4+7+10++4047101337-+++++= .2、左式中,不同的符号表示不同的数字,那么○+△+◇=.3、下面的一列数是按一定的规律排列的,那么括号中的数是.1,4,10,22,46,(),190,4、在图中,从甲点出发沿逆时针方向绕五边形走,到乙点拐第一个弯,拐第101个弯在点.5、一本故事书的页码共用了192个数字,这本书一共有页.6、5位选手进行象棋比赛,每两个人之间都要进行比赛一盘,规定选手胜一盘得2分,平均一盘各得一分,输一盘不得分.已知比赛后,其中4位选手总共得16分,则第5位选手得了分.7、某年的三月份正好有4个星期二和星期五,那么这年的3月1日是星期.8、有十个连续自然数,前五个数的和为60,后五个数的和是?9、有一桶水,一只小鸭可饮用25天,如果和一只小鸡同饮,那么可以饮用20天,如果给一只小鸡饮用,可以饮用天?10、一个正方形队列,如果减少一横行和一竖行,要减少21人,问原正方形队列有人?11、如图所示的病房区共有五间单人病房,住着,,,A B C D 四位病人,根据不同的病情要求让A 与D 交换病房,C 与B 交换病房,每一次交换只能将一位病人搬入另一间无人的病房,那么需要完成交换,至少要为病人搬次家?54321DC B A D走廊走廊12、解放军某部赶往受灾地区志愿抗洪,原计划每辆汽车乘30人,还多3人任意分乘到各辆车上,但是由于有另外的紧急任务调走了一辆车,这时只好改为每辆汽车乘34人,还多5人任意分乘到各辆车上.原来准备辆车,共派出人去抗洪.1、()()6+8+10+12++368101214+34 -++++= .2、左式中,不同的符号表示不同的数字,那么○+△+◇=. 3、下面的一列数是按一定的规律排列的,那么括号中的数是. 1,3,7,15,31,(),127,4、把1到500号卡片依次发给甲、乙、丙、丁四个小朋友,1234567891011121314151617那么,119号卡片发给5、一本故事书共有185页,那么编这一本书的页码一共要个数字.6、右图共有个长方形.7、某月内有三个星期六是偶数,这个月的18日是星期.8、用3,4,5,6四个数字卡片排两位数乘两位数的竖式,乘积最大与乘积最小的两个积的差是?9、市里举行足球比赛,有15个区各派出1个代表队,每个队都要与其他各队比赛一场,这些比赛分别在15个区的区体育场进行,平均每个体育场要举行场比赛?10、用5张长2分米、宽1分米的长方形不干胶,贴在一块长5分米、宽2分米的木板上,将其盖住.你能设计出种不同方案.(通过旋转或翻转后形成相同图案的算一种)11、经纬小学有10名同学参加区数学比赛,平均分为90分,其中2名同学分别获得第一名和第二名,他们的得分都是整数,另外有五个人都得了92分,有3人都得了84分.获得第二名的同学得分.12、小军用一张正方形的纸片做剪纸练习,先把它从中间剪开得到两个长方形,再把其中一个长方形从中间剪开得到两个正方形,再把其中一个正方形从中间剪开得到两个长方形……那么这样剪了21次,一共剪成 长方形, 正方形.1、()()7+9+11+13++379111315+35 -++++= .2、左式中,不同的符号表示不同的数字,那么○+△+◇=. 3、下面的一列数是按一定的规律排列的,那么括号中的数是. 2,3,5,9,17,33,(),129,4、在图中,从A 点出发沿顺时针方向绕五角星走,到B 点拐第一个弯,拐第95个弯在点.5、小刚从一本书的54页阅读到67页,苏明从95页阅读到135页,小强从180页阅读到237页,他们总共阅读了页. 6、右图共有个长方形.7、希望小学的操场上有150名学生在跳绳和打球.其中女生54名,如果有63名学生在跳绳,有42名男生在打球,那么有名女生在跳绳.8、用2,3,4,5四个数字卡片排两位数乘两位数的竖式,乘积最大与乘积最小的两个积的和是?9、有15只甲A 足球队,进行双循环比赛(每两支队赛两场),共要举行场比赛?10、有很多张长2分米、宽1分米的长方形不干胶,和边长为1分米的正方形不干胶,用这些不干胶贴在一块长3分米、宽2分米的木板上,将其盖住.你能设计出种不同方案.(通过旋转或翻转后形成相同图案的算一种)11、继红小学有10名学生参加小机灵杯数学比赛,平均分为90分,平均分和每个同学的得分都是正整数,前9名的分数各不相同,其中一名同学得满分,第十名同学得分的最低分是分.12、小军用一张正方形的纸片做剪纸练习,先把它从中间剪开得到两个长方形,再把其中一个长方形从中间剪开得到两个正方形,再把其中一个正方形从中间剪开得到两个长方形……那么这样剪了36次,一共剪成长方形,正方形.第七届小机灵杯邀请赛复赛1、如果*a b a ba b =?-,例如4*3434313=?-=,那么13*8=2、用0~9十个数字填写下面的竖式,已经用了三个数字,剩下的七个数字,每个只能用一次,要使算式成立,减数是3、一个长方形队列,如果增加一横行和一竖行,就要增加13人,这个长方形的队列原来最少有人4、桌上有8张扑克牌,点数分别是2,3,5,6,7,8,9,10.甲、乙、丙三人各取两张牌,两张牌的点数分别是:甲是9,乙是15,丙是17,那么甲取出的两张点数是5、甲校原来比乙校多48人,为了方便就近入学甲校有若干人转入乙校,这是甲校反而比乙校少12人.甲校有人转入乙校6、将1,4,7,10,13,16,19,22,25这9个数分别填入下图中的9个圆圈中,使三条边上的四个数字和都想等,每条边上四个数字的和最大是7、如果三本书的价钱等于四本笔记本的价钱,而买四本书要比三本笔记本多花5角6分,那么买一本书和一本笔记本共需元8、下面两种那个途中,周长较大的是.(在横线上填写表示图名的字母)9、某三位数是7的倍数,且在400到500之间,它的百位数字与个位数字的和是9,那么这个三位数是10、下图中有10个编好号码的房间,你可以从小号码的房间周到相邻的大号码的房间,但是不能从大号码的房间走到小号码的房间,从1号房间走到10号房间共有种不同的走法11、有若干根长度相等的火柴棒,把这些火柴棒摆成如下面的图形,照这样摆下去,到第10行为止,一共用了根火柴棒12、在一块长5米,宽4米的长方形地上铺80块边长为5分米的小正方形地砖,现在把每相邻的两个小正方形的边界用细玻璃条隔开,并在长方形地的边界上用细金属条围上.如果嵌1米长的细玻璃条需3元,围1米长的细金属条需5元,那么共需元(接缝处长度忽略不计)第八届小机灵杯邀请赛复赛1、666666666666666+-锤=( )2、如果10987654320-+⨯÷+-+-⨯=,那么□=( ).3、观察表中各数的排列规律,A是( ).4、一个正方形,如果边长增加5厘米,这个正方形的周长增加( )厘米.5、两个正整数的和是18,其中一个数是另一个数的5倍.这两个数分别是( )和( ).6、如图,网格中的小正方形的面积都是1平方厘米,那么,阴影部分的面积是( )平方厘米.7、从1-10这10个正整数中,每次取出两个不同的数,使它们的和是4的倍数.共有( )种不同的取法.8、3只橘子的价格与4只苹果和1只梨的价格相同,4只梨的价格与6只橘子的价格相同.( )只苹果的价格与1只梨的价格相同.9、在6和26之间插入三个数,使它们每相邻的两个数的差相等,这些数的和是( ).10、64位同学都面向主席台,排成8行8列的方阵.小胖在方阵中,它的正左方有3位同学,正前方有2位同学.若整个方阵的同学向右转,则小胖的正左方有( )位同学,正前方有( )位同学.11、一个三位数除以37,商和余数相同,这个数最小是( ).12、在方框中添加适当的运算符号(不能添加括号),使算式成立.17□3□4□9□7□6□4=2013、用数字1,2,3,4组成各位数字都不相同的两位数,并按从小到大的顺序排列,第10个数比第7个数多( ).14、学生问数学老师的年龄.老师说:“由三个相同数字组成的三位数除以这三个数字的和,所得的结果就是我的年龄”,老师的年龄是( )岁.15、在图中的每个方格中各放1枚围棋(黑子或白子),有( )种放法.16、1881515188151518……共210个数字,其中1有( )个,8有( )个,5有( )个;这些数字的和是( ).17、王强、李刚是哥哥,小丽、小红是妹妹,四人的年龄和为90,哥哥都比妹妹大4岁,小红比王强小5岁.小红( )岁.18、给定三种重量的砝码5g,13g,19g,(每种砝码的数量足够的多),将它们组合凑成100g,(每种砝码至少用一个)有( )中不同的方法.19、有两个正整数,把这两个正整数相乘,再加上这两个正整数的和,结果正好等于34,这两个正整数中较大的数是( ).20、写出所有数字的和为13,积为24,这样的四位数的偶数是( ).第九届小机灵杯邀请赛复赛下面每题6分1、计算2102092082072062052047654321+-+-+-++-+-+-+= .2、如右图所示,从上往下,每个方框中的数都等于它下方两个方框中所填的数的和.最上层方框中两个数的和是.3、如右图所示,,,,,,,,,,a b c d e f g h i j 表示10个各不相同的数.表中的数为所在行与列对应字母的差,例如“6b h -=”.图中“九宫格”中就个数的和是.4、小胖比他的表姐小12岁,再过4年小胖的年龄是他表姐年龄的一般,他俩今年的年龄总和是岁.5、如下图所示,从A 点走到B 点,沿线段走最短路线,共有种不同的走法.6、五位打工者一天的辛苦劳动后共获得330元工资.由于工种不同,获得最高工资者比其他四位分别多的12,14,21和28元,获得最低工资者的工资是元.7、右边图形的周长是厘米.8、在数20468204682046820468中划去10个数字(不能改变原来数字的顺序),得到一个最小的十位数,这个最小的十位数是 .AB下面每题9分9、下边的乘法算式中,只知道一个数字“8”.请补全.那么这个算式的最小值是.⨯810、在1,2,3,4,5,6六个数中,选三个数,使它们的和能被3整除.那么,不同的选法共有种.11、有四袋糖,每袋糖的块数都不相同,任意三袋糖的块数总和都不少于60快.那么,这四袋糖的块数总和至少有块.12、3根火柴可以摆成一个小三角形.用很多根火柴摆成了如右图那样的一个大三角形.如果大三角形外沿的每条边都增加10根火柴,那么摆成这样形状的大三角形共需要根火柴. 下面每题12分13、一次测验中,小胖答错了6道题,小亚答错了7道题,小丁丁答对的题目的数量等于小胖和小亚答对题数量的总和,小丁丁大队了17道题,这次测验共有道题.+++=,小于2000的四位数中,数字和等于26的四位数共有14、1997的数字和是199726个.15、小刚在一个长方形中任取三条边相加,所得的和是78厘米,小亚在同一个长方形中任取三条边相加,所得的和是66厘米.这个长方形的周长是厘米.。
小机灵杯1-14届试题及详解

2003年2004年2005年2006年2007年2008年2009年2010年2,4593,2284,35,306,43157,328,169,6610,11 11,10 12,2660 13,60 14,792 15,116,49/4 17,G18,44 19,12 20,1536,72012年2013年第十一届小机灵杯五年级初赛试题1、5.5×6.6+6.6×7.7+7.7×8.8+8.8×9.92、五(1)班男生的平均身高是149cm,女生的平均身高是144cm,全班的平均身高是147cm。
那么,五(1)班的男生人数是女生人数的多少倍?3、甲、乙分别持有7张卡片,卡片上分别写有1、2、3、4、5、6、7七个数字。
如果两人各摸出一张卡片,那么两张卡片上数字和为8的可能性是多少?4、有一个圆形跑道,甲用40秒跑完一圈,乙跑的方向与甲相反,每15秒遇到甲一次。
乙跑完一圈需要几秒?5、50个各不相同的正整数,它们的和为2012,那么这些数里奇数最多有几个?6、把正整数排成下列数阵:1 2 5 10 …4 3 6 11 …9 8 7 12 …16 15 14 13 ………………第21行第21列的数是多少?7、有一叠卡片共200张,从上到下依次编号为1到200,从最上面的一张开始按如下次序进行操作:把最上面的第一张卡片拿掉,把下一张卡片放在这一叠卡片的最下面;再把最上面的第一张(原来的第三张)卡片拿掉,把下一张卡片放在这一叠卡片的最下面……依次重复这样做。
那么剩下的这张卡片是原来200张卡片里的第几张?8、某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。
可以肯定至少有多少人四项运动都会?9、把既不是平方数也不是立方数的正整数(0除外)按从小到大的顺序排列,得到2,3,5,6,7,10,……,其中第1000个数是多少?10、如图所示,ABCD是梯形,三角形ADE的面积是1,三角形ABF的面积是9,三角形BCF的面积是27,那么三角形ACE的面积是多少?11、某学生漏看了写在两个三位数之间的乘号,将它们当成了一个六位数,而该六位数恰好是原来乘积的7倍,这两个三位数之和是多少?12、从1到900中选6个正整数,使这6个连续正整数的积的尾数恰好为4个0,有多少种选法?第十一届"小机灵"杯数学竞赛决赛五年级试题第一项,每题4分。
第六届小机灵杯邀请赛五年级(决赛)试题

第六届“聪明小机灵”小学数学邀请赛(决赛)试题五年级1、计算:0.02+0.04+0.06+……+20.04+20.06+20.08=()。
2、已知N=95+195+1995+…+19999999995,那么,N的各位数字的和是()。
3、有9个数,每次任意抽去一个数,计算剩下8个数的平均数,得到如下9个不同的平均数:101、102、103、104、105、106、107、108、109,这9个数的平均数是()。
4、前2008个既能被2整除又能被3整除的正整数的和,除以9的余数是()。
5、一本字典共有2008页,在这本字典的页码上,数字8共出现了()次。
6、在右图中,有两条线段BG和EF把一个边长15分米的正方形分成两个高相等A F DEGC B(AF=FD)的直角梯形与一个直角三角形,已知两个梯形面积的差是18平方分米,图中线段CG的长是()分米。
7、文具店存有一批练习本,原定每本定价是20分。
现在决定把全部练习本按同一价格降价处理,但每本价格不能低于11分(降价后的价钱是整分数)。
如果把这批练习本全部卖出后可收得39.10元。
这批练习本一共有()本,每本价钱比原定降价了()元。
8、一个棱长都是正整数的长方体表面积是210平方厘米,已知它的六个面中有两个面积大于1平方厘米的正方形,则它的体积最大是()立方厘米。
9、一次测验共有5道题,做对一题得1分,已知26人的平均分不少于4.8分,其中最低分得3分,并且至少有3人得4分,那么得5分的共有()人。
10、M÷N÷P=6,M÷N-P=30,M-N=105,M=()。
11、给参加学校科技竞赛获奖的同学顺次编号为:1,2,3,4,…,如果所有编号的和不超过1050,那么,参加学校科技竞赛获奖的同学最多有( )人。
12、 甲、乙两人从相距600米的两地同时出发相向而行,不停地往返于两地之间跑步。
如果甲每分钟跑72米,乙每分钟跑96米,当两人第一次同时回到各自的出发地时,甲走了( )米。
五年级数学培优:基本行程问题(含解析)

五年级数学培优:基本行程问题(含解析)知识概述一、相遇问题:1.相遇问题基本量:① 路程和:我们把同时出发时刻两人(或物体)间的距离称为路程和;② 相遇时间:从同时出发到两人(物体)相遇所用的时间称为相遇时间.2.相遇问题基本数量关系:相遇时间=路程和÷速度和二、追及问题:1.追及问题基本量:① 路程差:我们把同时移动时刻前后两人(或物体)间的距离称为路程差;② 追及时间:从开始追的时刻到追上前者所用的时间称为追及时间.2.追及问题基本数量关系:追及时间=路程差÷速度差三、火车过桥问题:3.火车通过大桥是指从车头上桥到车尾离桥.即当火车通过桥时,火车实际运动的路程就是火车的运动总路程,即车长与桥长的和.四、流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推力或阻力,在这种情况下计算船只的航行速度、时间和所行的路程,称为流水问题.流水问题还有两个特殊的速度,即顺水速度=船速+水速逆水速度=船速-水速这里船速指的是船本身的速度,就是在静水中的速度.水速是指水流的速度.顺水速和逆水速分别指船在顺水航行时和逆水航行时的速度.历届杯赛考试中,行程问题是最大的难点之一,一般情况下每次比赛都会出现多次.行程问题首先考察学生对于题目的理解以及分析能力,其次考察学生转化题意变成数学语言的能力.并且行程问题的形式非常多样化,对于这类题目需要针对不同题型,具体问题具体分析.名师点题例1(第四届希望杯一试试题)甲乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇.如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后________秒相遇.【解析】原速度和:1500÷10=150(米/分)相遇时间:1500÷【150×(1+20%)】×60=500(秒)例2(第五届小机灵杯邀请赛试题)在同一高速公路上,乙车在甲车前面若干千米同向行驶,如果甲车的速度是65千米/时,它5小时可追上乙车;如果甲车的速度是75千米/时,它3小时可追上乙车.乙车的速度是()千米/时.【解析】解:设乙车的速度是x千米/时,依题意得5(65-x)=3(75-x)2x=100x=50答:乙车的速度是50千米/时.例3一列火车通过小明身边用了10秒钟,通过一座长486米的铁桥用了37秒,问这列火车多长?【解析】通过小明身边,可以看成火车通过它自己的身长所用的时间;过桥的时候,可以看成火车通过自己车长和桥一并所用的时间.486÷(37-10)=18(米/秒)18×10=180(米)答:这列火车长180米.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.【解析】顺水速:208÷8=26(千米/时)逆水速:208÷13=16(千米/时)静水速:(26+16)÷2=21(千米/时)水流速度:(26-16)÷2=5(千米/时)答:船在静水中的速度是21千米/时,水流速度是5千米/时.【巩固拓展】1.甲、乙两人分别从A、B 两地同时出发,相向而行.如果两人都按照原定速度行进,3小时可以相遇.现在甲比原计划每小时少走1千米,乙比原计划每小时少走0.5千米,结果两人用了4小时相遇. AB两地相距()千米.【解析】3×(1+0.5)÷(4-3)=4.5(千米/时)4.5×4=18(千米)答:AB两地相距18千米.2.早晨,小王骑车从甲地出发去乙地.中午12点,小李开车也从甲地出发前往乙地.下午1点30分时两人之间的距离是18千米,下午2点30分时两人之间的距离又是18千米.下午4点时小李到达乙地,晚上6点时小王到达乙地.小王是早晨()点出发的.【解析】速度差:(18+18)÷1=36(千米)小王速度:(36×1.5+36)÷(6-4)=45(千米/时)(18+36×1.5)÷45=1.6(小时)小王比小李提前出发1.6小时,所以小王是10点24分出发的.答:小王是早晨10点24分出发的.例43.一列火车通过一座长456米的巧需要80秒,用同样的速度通过一条长399米的隧道需要77秒.求这列火车的速度和长度.【解析】(456-399)÷(80-77)=19(米/秒)19×80-456=1064(米)答:火车的速度是每秒19米,火车的长度是1064米.4.甲、乙两港相距360千米,一轮船往返两港共需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?【解析】逆流时间:(35+5)÷2=20(小时)顺流时间:(35-5)÷2=15(小时)顺水速度:360÷15=24(千米/时)逆水速度:360÷20=18(千米/时)水速:(24-18)÷2=3(千米/时)往返时间:360÷(12+3)+360÷(12-3)=64(小时)答:这机帆船往返两港要64小时.例1(第六届小机灵杯邀请赛试题)甲乙两人的步行速度之比是5:3,两人分别从A、B两地同时出发,如果相向而行,1小时后相遇;如果分别从A、B两地同向而行,甲需要()小时才能追上乙.【解析】设甲车的速度是5a,乙车的速度是3a,则AB距离是(5a+3a)×1=8a,追及时间是,8a÷(5a-3a)=4(小时)例2(第四届希望杯二试试题)甲、乙两人同时从A地出发前往B地,甲每分钟走80米,乙每分钟走60米.甲到达B地后,休息了半个小时,然后返回A地,甲离开B地15分钟后与正向B地行走的乙相遇.A、B两地相距______米.【解析】甲乙相遇时,甲比乙行驶的时间少了30分钟,但行驶的路程多80×15×2=2400(千米).如果甲行驶的时间和乙一样多,则甲比乙多行驶:2400+80×30=4800(千米).乙行驶时间是:4800÷(80-60)=240(分钟)A、B两地距离是:80×(240-15-30)=15600(米)【巩固拓展】(第六届希望杯一试试题)北京、天津相距140千米,客车和货车同时从北京出发驶向天津.客车每小时行70干米,货车每小时行50千米,客车到达天津后停留15分钟,又以原速度返回北京.则两车首次相遇的地点距离北京______千米.(结果保留整数)【解析】首次相遇时,两车一共行驶了2×140=280千米,货车比客车多行驶了15分钟,货车行驶的时间是:(280+70×0.25)÷(50+70)货车行驶的路程是:(280+70×0.25)÷(50+70)×50≈124(千米)即两车首次相遇的地点距离北京124千米.(第九届中环杯初赛试题)A 、B 两地相距27 千米.甲、丙两人从A 地向B 地行走,乙从B 地向A 地行走.甲每小时行4 千米,乙每小时行3千米,丙每小时行2 千米.三人同时出发,问几小时后甲刚好走到乙、丙两人距离的中点?【解析】解:设x小时后甲刚好走到乙、丙两人距离的中点,依题意得4x+3x+(4x-2x)=279x=27x=3答:3小时后甲刚好走到乙、丙两人距离的中点.例3【巩固拓展】(第十届中环杯初赛试题)A、B两地相距1600米,甲、乙两人分别以每分钟140米和120米的速度同时从A地出发,前往B地.同时,丙以每分钟160米的速度从B地出发,前往A地.()分钟后,甲恰好位于乙丙两人的中间.【解析】解:设x小时后甲刚好走到乙、丙两人距离的中点,依题意得140x+160x+(140x-120x)=1600320x=1600x=5答:5分钟后,甲恰好位于乙丙两人的中间.(第六届中环杯复赛试题)一列客车以每小时90千米的速度从南往北行驶,车上一位乘客以每秒钟1米的速度向车尾行走.一列长156米的货车从北往南行驶,4秒钟后从乘客身边驶过.货车每小时行驶()千米.【解析】90千米/时=25米/秒156÷4-(25-1)=15(米/秒)15米/秒=54千米/时【巩固拓展】(第五届中环杯复赛试题)铁路与公路平行,公路上有一个人在行走,速度是每小时4千米.一列火车追上并超过这个人用了6秒;公路上还有一辆汽车行驶,速度是每小时67千米,火车追上并超过这辆汽车用了48秒,则火车速度是每小时多少千米?火车的长度为多少米?例4【解析】火车追上并超过人的过程中,火车6秒行驶了“火车长+人6秒行驶的路程”,火车追上并超过汽车的过程中,火车48秒行驶了“火车长+汽车48秒行驶的路程”,所以火车42秒行驶的路程是:汽车48秒行驶的路程减去人6秒行驶的路程.火车速度:(67÷3600×48-4÷3600×6)÷(48-6)×3600=76(千米/时)火车长度:76×1000÷3600×6-4×1000÷3600×6=120(米)答:火车速度是每小时76千米,火车的长度为120米.(第六届中环杯复赛试题)一艘客船在两个码头之间航行,顺水5小时行完全程,逆水7小时行完全程.水速每小时5千米,两个码头之间的距离是()千米.【解析】解:设客船静水的速度是x千米/时,依题意得5(x+5)=7(x-5)2x=60x=30(30+5)×5=175(千米)答:两个码头之间的距离是175千米.【巩固拓展】(第八届希望杯一试试题)一艘客轮在静水中的航行速度是26千米/时,往返于A、B两港之间,河水的流速是6千米/时.如果客轮在河中往返4趟共用13小时,那么A、B两港之间相距______千米.(客轮掉头时间不计)【解析】解:客轮往返一趟时间是13÷4=3.25(小时)设客轮顺水行完AB全程需要x小时,依题意得(26+6)x=(26-6)(3.25-x)52x=65x=1.25例51.25×(26+6)=40(千米)答:A、B两港之间相距40千米.例1(第五届希望杯一试试题)李经理的司机每天早上7点30分到达李经理家接他去公司.有一天李经理7点从家里出发步行去公司,路上遇到从公司按时接他的车,再乘车去公司,结果比平常早到5分钟.则李经理乘车的速度是步行速度的______倍.(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)【解析】早到的5分钟路程就是李经理家到相遇点路程的2倍,,所以相遇点到李经理家的路程开车只要2.5分,所以相遇时间为7点27分30秒开车2.5分的路程李经理走了27.5分,所以车速是步行速度的27.5÷2.5=11倍.例2(第九届中环杯初赛试题)甲、乙两人从A 、B 两地同时出发相向而行,甲每分钟行70 米,乙每分钟行50 米.出发一段时间后,两人在距中点100米处相遇.如果甲出发后在途中某地停留了一会儿,两人还将在距中点250米处相遇.那么甲在途中停留了_________分钟.【解析】第1次相遇:相遇时甲比乙多行了100×2=200(米)相遇时间:200÷(70-50)=10(分钟)A、B距离:(70+50)×10=1200(米)第2次相遇:相遇时乙比多甲行了250×2=500(米)乙和甲一共行了1200米,乙行的路程:(1200+500)÷2=850(米)甲行的路程:1200-850=350(米)850÷50-350÷70=12(分钟)答:甲在途中停留了12分钟.(第五届希望杯一试试题)A、B两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分.如果甲、乙从A地,丙从B地同时出发相向而行,那么,在______分钟或______分钟后,丙与乙的距离是丙与甲的距离的2倍.【解析】第一种情况:丙处于甲乙之间,如下图:设x分钟后,丙与乙的距离是丙与甲的距离的2倍,依题意得2(203-4x-5x)=6x+5x-20329x=609x=2121分钟后,丙与乙的距离是丙与甲的距离的2倍.第二种情况:丙处于甲的左侧,如下图:设x分钟后,丙与乙的距离是丙与甲的距离的2倍,依题意得2(4x+5x-203)=6x+5x-2037x=203x=2929分钟后,丙与乙的距离是丙与甲的距离的2倍.综上所述,在21分钟或29分钟后,丙与乙的距离是丙与甲的距离的2倍.例3一艘游艇装满油,能够航行180个小时,已知游艇在静水中的速度为每小时24千米,水速为每小时4千米,现在要求这艘游艇开出之后沿原路回港,而且途中没有油料补给,请问:这艘游艇最多能够开出多远?【解析】解:设这艘游艇能够开出最远的距离,顺水航行需要x小时,依题意得(24+4)x=(24-4)×(180-x)48x=3600x=75(24+4)×75=2100(千米)答:艘游艇最多能够开出2100千米.一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;顺流航行60千米,逆流航行120千米,也用了15小时.求水流的速度.【解析】第一次:顺流140千米,逆流80千米,15小时;第二次:顺流60千米,逆流120千米,15小时;等量代换,可知顺流80千米时间=逆流40千米时间.即顺流速度是逆流速度的2倍.由第1次,顺流140千米,逆流80千米,15小时可知,若全顺流可行140+80×2=300(千米),由此顺流速度:300÷15=20(千米/时),逆流速度:20÷2=10(千米/时)水流的速度:(20-10)÷2=5(千米/时)【练习1】甲乙两地方相距14850米,自行车队8点整从甲地出发到乙地去,前一半时间的平均速度是每分钟250米,后一半时间的平均速度是每分钟200米.那么,自行车队到达乙地的时间是()点()分.【解析】解:14850÷(250+200)×2=66(分)到达时间是9点6分.【练习2】甲乙两车同时同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米.途中甲车停车3小时,结果甲车比乙车迟到1小时到达目的地.那么,两地的距离是()千米.【解析】解:设乙行完全程要x小时,甲行完全程要(x-3+1)小时,根据题意列方程,得:40(x-3+1)=35x5x=80x=16两地距离:35×16=560(千米)【练习3】一艘轮船从A地出发去B地为顺流,需10小时.从B地返回A地为逆流,需15小时.水流速度为每小时10千米.那么A、B两地间的航程有()千米.【解析】逆水速:(10×2)×10÷(15-10)=40(千米/时)40×15=600(千米)答:A、B两地间的航程有600千米.【练习4】沿江有两个城市,相距600千米,甲船往返两城市需要35小时,其中顺水比逆水少用5小时,乙船的速度为每小时15千米,那么乙船往返两城市需要___________小时.【解析】甲顺水时间:(35+5)÷2=20(小时)甲逆水时间:35-20=15(小时)水速:(600÷15-600÷20)÷2=5(千米/时)乙顺水速:15+5=20(千米/时),乙逆水速:15-5=10(千米/时)600÷20+600÷10=90(小时)答:乙船往返两城市需要90小时.【练习5】小明站在一条直行的铁道旁,从远处向小明驶来的火车拉响汽笛,过了一会儿,小明听见了汽笛声,再过27秒,火车行驶到他面前.已知火车的速度是34米/秒,音速是340米/秒,那么火车拉响汽笛时距离小明多少米远?【解析】行驶同样多的路程——火车拉响汽笛时和小明的距离,火车需要的时间比声音需要的时间多27秒.声音需要的时间:34×27÷(340-34)=3(秒)3×340=1020(米)(本题亦可用方程求解,设火车拉响汽笛到小明听到汽笛需要x秒.)答:火车拉响汽笛时距离小明1020米远.【练习6】某船第一天顺流航行21千米,逆流航行4千米.第二天在同一河流中顺流航行12千米;逆流航行7千米.两次所用的时间相等.假设船本身速度及水流速度保持不变,顺水船速是逆水船速的()倍.【解析】顺流航行21-12=9千米的时间和逆流航行7-4=3千米的时间相同,9÷3=3顺水船速是逆水船速的3倍.【练习7】A、B两地相距27千米.甲、丙两人从A地向B地行走,乙从B向A地行走.甲每小时行4千米,乙每小时行3.5千米,丙每小时行2.5千米.三人同时出发,问几小时后甲刚好走到乙、丙两人距离的中点?【解析】解:设甲用x小时走到乙丙两人相距的中点,依题意得:4x+3.5x+(4x-2.5x)=279x=27x=3答:3小时后甲刚好走到乙、丙两人距离的中点.【练习8】一架飞机所带的燃料最多可以用9小时,飞机顺风,每小时可以飞1500千米,飞回时逆风,每小时可以飞1200千米,这架飞机最多飞出_________千米,就需往回飞?【解析】解:设这架飞机最多飞出的距离,顺风航行需要x小时,依题意得1500x=1200×(9-x)2700x=10800x=41500×4=6000(千米)答:这架飞机最多飞出6000千米,就需往回飞.。
从两端出发的直线型多次相遇问题

多次相遇问题从两端出发的直线型多次相遇问题同一出发点的直线型多次相遇问题例1(第九届“中环杯”四年级初赛)如图,A、B是一条道路的两端点,亮亮在A点,明明在B点,两人同时出发,相向而行。
他们在离A点100米的C点第一次相遇。
亮亮到达B点后返回A点,明明到达A点后返回B点,两人在离B点80米的D点第二次相遇。
整个过程中,两人各自的速度都保持不变。
求A、B 间的距离。
要求写出关键的推理过程。
例2(第六届“聪明小机灵”小学数学邀请赛(复赛)试题四年级)两辆汽车同时从甲乙两站出发相向而行,第一次在距甲站80千米处相遇。
第一次相遇后两车仍以原速度继续行使,并在到达对方车站后立即按原速度返回,返回途中两车又在距乙站100千米处第二次相遇,两辆汽车第一次相遇的地方与第二次相遇的地方相距_____千米。
例3甲、乙两辆汽车同时分别从A、B两地相对开出,甲车每小时行42千米,乙车每小时行45千米。
甲、乙两车第一次相遇后继续前进,甲、乙两车各自到达B、A两地后,立即按原路原速返回。
两车从开始到第二次相遇共用6小时。
求A、B两地的距离?例4一辆汽车和一辆摩托车同时从甲乙两地相对开出,摩托车每小时行54千米。
汽车每小时行48千米。
两车相遇后又以原来的速度继续前进,摩托车到乙地立即返回。
汽车到甲地立即返回。
两车在距离中点108千米的地方再次相遇,那么甲乙两地的路程是多少千米?例5如图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向而行。
它们第一次相遇在离A点8厘米处的B点,第二次相遇在离C点处6厘米的D点,问,这个圆周的长是多少?例6甲、乙两同学在400米环形跑道上的某一点背向出发,分别以每秒3米和每秒5米的速度跑步。
第一次相遇时甲掉头,第二次相遇时乙掉头,第三次相遇时甲掉头,第四次相遇时乙掉头……甲乙第10次相遇时,甲跑了多少米?(不管是迎面,还是追上,只要甲乙同时在同一地点则视为相遇)例7甲、乙两人在一条长90米的直路上来回跑步,甲的速度是3米/秒,乙的速度是1米/秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六届“聪明小机灵”小学数学邀请赛(决赛)试题
五年级
1、计算:0.02+0.04+0.06+……+20.04+20.06+20.08=()。
2、已知N=95+195+1995+…+19999999995,那么,N的各位数字的和是()。
3、有9个数,每次任意抽去一个数,计算剩下8个数的平均数,得到如下9个不同的平均数:101、102、103、10
4、10
5、10
6、10
7、10
8、109,这9个数的平均数是()。
4、前2008个既能被2整除又能被3整除的正整数的和,除以9的余数是()。
5、一本字典共有2008页,在这本字典的页
码上,数字8共出现了()次。
6、在右图中,有两条线段BG和EF把一个边长15分米的正方形分成两个高相等A F D
E
G
C B
(AF=FD)的直角梯形与一个直角三角形,已知两个梯形面积的差是18平方分米,图中线段CG的长是()分米。
7、文具店存有一批练习本,原定每本定价是20分。
现在决定把全部练习本按同一价格降价处理,但每本价格不能低于11分(降价后的价钱是整分数)。
如果把这批练习本全部卖出后可收得39.10元。
这批练习本一共有()本,每本价钱比原定降价了()元。
8、一个棱长都是正整数的长方体表面积是210平方厘米,已知它的六个面中有两个面积大于1平方厘米的正方形,则它的体积最大是()立方厘米。
9、一次测验共有5道题,做对一题得1分,已知26人的平均分不少于4.8分,其中最低分得3分,并且至少有3人得4分,那么得5分的共有()人。
10、M÷N÷P=6,M÷N-P=30,M-N=105,M=()。
11、给参加学校科技竞赛获奖的同学顺次编号为:1,2,3,
4,…,如果所有编号的和不超过1050,那么,参加学校科技竞赛获奖的同学最多有( )人。
12、 甲、乙两人从相距600米的两地同时出发相向而行,不停地往返于两地之间跑步。
如果甲每分钟跑72米,乙每分钟跑96米,当两人第一次同时回到各自的出发地时,甲走了( )
米。
13、 一个时钟的时针和分针各自正指着分钟的刻度,分针在时针的前面,且它们之间的角度是108°,钟面上所示的时间是( )。
14、 俱乐部有5个活动小组,文学小组每隔1天活动一次,计算机小组每隔2天活动一次,外语小组每隔3天活动一次,书画小组每隔4天活动一次,文娱小组每隔5天活动一次。
四月一日晚上五个小组同时在俱乐部活动,以后则按上述规定进行,从不间断。
四月,五月,六月这三个月中有(
)个晚上一个小组
都没有活动。
15、 甲、乙、丙三人在圆形跑道上跑步,以
右图中所示的地点与方向同时出发以相等速
度跑步。
他们每人跑完一圈都用14分钟。
并
且规定当两人相遇时立即各自反向以原速跑步。
开始时,甲、乙、丙分别在圆形跑道直径的两个端点处,那么,他们第一次全部都回到各自出发点需用( )分钟。
丙 甲 乙。