人教版九年级数学上册第22章二次函数专题训练题(一)

合集下载

人教版九年级上册数学第22章《二次函数》选择题专题训练(含答案)

人教版九年级上册数学第22章《二次函数》选择题专题训练(含答案)

人教版九年级上册数学第22章《二次函数》选择题专题训练(含答案)一.选择题(共38小题)1.(2020春•雨花区校级期末)关于二次函数y=﹣(x﹣2)2的图象,下列说法正确的是()A.开口向上B.最高点是(2,0)C.对称轴是直线x=﹣2D.当x>0时,y随x的增大而减小2.(2020春•雨花区校级期末)如图,抛物线y=ax2+bx+c经过点(﹣1,0),与y轴交于(0,2),抛物线的对称轴为直线x=1,则下列结论中:①a+c=b;①方程ax2+bx+c=0的解为﹣1和3;①2a+b=0;①abc<0,其中正确的结论有()A.1个B.2个C.3个D.4个3.(2020春•雨花区校级期末)抛物线y=3(x﹣2)2+1的顶点坐标是()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,2)4.(2020春•岳麓区校级期末)点P1(﹣2,y1),P2(2,y2),P3(4,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y2>y1=y3C.y1=y3>y2D.y1=y2>y35.(2020春•开福区校级期末)如图所示为抛物线y=ax2+bx+c(a≠0)在坐标系中的位置,以下六个结论:①a>0;①b>0;①c>0;①b2﹣4ac>0;①a+b+c<0;①2a+b>0.其中正确的个数是()A.3B.4C.5D.66.(2020春•雨花区期末)抛物线y=5(x﹣2)2﹣3的顶点坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,3)D.(﹣2,﹣3)7.(2020春•雨花区校级期末)对于二次函数y=﹣2(x+3)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=﹣3C.顶点坐标为(﹣3,0)D.当x<﹣3 时,y随x的增大而减小8.(2020春•岳麓区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;①若m为任意实数,则a+b≥am2+bm;①a﹣b+c>0;①3a+c<0;①若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的个数为()A.2B.3C.4D.59.(2020春•天心区期末)已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C,则:①a +c =0;①无论a 取何值,此二次函数图象与x 轴必有两个交点,函数图象截x 轴所得的线段长度必大于2;①当函数在x >1时,y 随x 的增大而增大;①若a =1,则OA •OB =OC 2.以上说法正确的有( )A .1个B .2个C .3个D .4个10.(2020春•雨花区校级期末)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),抛物线与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a +b +c >0;①对于任意实数m ,a +b ≥am 2+bm 总成立; ①关于x 的方程ax 2+bx +c =n 有两个相等的实数根;①﹣1≤a ≤−23,其中结论正确个数为( ) A .1 个 B .2 个 C .3 个 D .4 个11.(2020春•岳麓区校级期末)将抛物线y =x 2﹣4x ﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为( )A .y =(x +1)2﹣13B .y =(x ﹣5)2﹣5C .y =(x ﹣5)2﹣13D .y =(x +1)2﹣512.(2019秋•岳麓区校级期末)对于抛物线y =−13(y −5)2+3,下列说法错误的是( ) A .对称轴是直线x =5B .函数的最大值是3C .开口向下,顶点坐标(5,3)D .当x >5时,y 随x 的增大而增大13.(2020春•天心区期末)抛物线y =﹣(x ﹣1)2﹣3是由抛物线y =﹣x 2经过怎样的平移得到的( )A .先向右平移1个单位,再向上平移3个单位B .先向左平移1个单位,再向下平移3个单位C .先向右平移1个单位,再向下平移3个单位D .先向左平移1个单位,再向上平移3个单位14.(2020春•雨花区校级期末)在同一坐标系内,函数y =kx 2和y =kx +2(k ≠0)的图象大致如图( )A .B .C .D .15.(2019秋•雨花区校级期末)设抛物线y =ax 2+bx +c (ab ≠0)的顶点为M ,与y 轴交于N 点,连接直线MN ,直线MN 与坐标轴所围三角形的面积记为S .下面哪个选项的抛物线满足S =1.( )A .y =﹣3(x ﹣1)2+1B .y =2(x ﹣0.5)(x +1.5)C .y =13y 2−43x +1D .y =(a 2+1)x 2﹣4x +2(a 为任意常数)16.(2019秋•浏阳市期末)抛物线y =﹣2(x +1)2﹣3的对称轴是( )A .直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣317.(2019秋•永定区期末)对于二次函数y =2(x ﹣1)2+2的图象,下列说法正确的是( )A .开口向下B .对称轴是直线x =﹣1C .顶点坐标是(﹣1,2)D .与x 轴没有交点18.(2019秋•常德期末)二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的是( )①abc <0①b 2﹣4ac >0①2a >b①a+c>b①若点(−52,y1)、(﹣1,y2)在图象上,则y1<y2A.1个B.2个C.3个D.4个19.(2019秋•新化县期末)在平面直角坐标系中,对于二次函数y=(x﹣2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.当x<2时,y的值随x值的增大而减小,当x≥2时,y的值随x值的增大而增大20.(2019秋•赫山区期末)对于二次函数y=14x2的图象,下列结论错误的是()A.顶点为原点B.开口向上C.除顶点外图象都在x轴上方D.当x=0时,y有最大值21.(2019秋•娄星区期末)抛物线y=3(x+2)2﹣5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)22.(2019秋•醴陵市期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)ac>0;(2)方程ax2+bx+c=0的两根之积小于0;(3)a+b+c<0;(4)ac+b+1<0,其中正确的个数()A.1个B.2个C.3个D.4个23.(2019秋•澧县期末)已知抛物线y=﹣x2+4x+3,则该抛物线的顶点坐标为()A.(﹣2,7)B.(2,7)C.(2,﹣9)D.(﹣2,﹣9)24.(2019秋•涟源市期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1D.x<﹣1或x>225.(2019秋•娄星区期末)二次函数y=x2﹣6x+8的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣826.(2019秋•涟源市期末)若函数y=(3﹣m)x y2−7−x+1是二次函数,则m的值为()A.3B.﹣3C.±3D.927.(2019秋•浏阳市期末)如图,一次函数y=ax+a和二次函数y=ax2的大致图象在同一直角坐标系中的可能是()A.B.C.D.28.(2019秋•岳麓区校级期末)抛物线y=x2﹣2x+1与坐标轴交点个数为()A.无交点B.1个C.2个D.3个29.(2020春•天心区期末)把抛物线y=x2向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为()A.y=(x+3)2+1B.y=(x+3)2﹣1C.y=(x﹣1)2+3D.y=(x+1)2+330.(2019秋•醴陵市期末)已知原点是抛物线y=(m+1)x2的最高点,则m的范围是()A.m<﹣1B.m<1C.m>﹣1D.m>﹣231.(2018秋•凤凰县期末)对于二次函数y=(x﹣1)2+3的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,3)D.与x轴有两个交点32.(2018秋•江华县期末)若关于x的一元二次方程x2+ax+b=0的两个实数根是﹣1和3,那么对二次函数y=a (x﹣1)2+4的图象和性质的描述错误的是()A.顶点坐标为(1,4)B.函数有最大值4C.对称轴为直线x=1D.开口向上33.(2018秋•炎陵县期末)对于二次函数y=x2﹣2x﹣8,下列描述错误的是()A.其图象的对称轴是直线x=1B.其图象的顶点坐标是(1,﹣9)C.当x=1时,有y最小值﹣8D.当x>1时,y随x的增大而增大34.(2018秋•炎陵县期末)如图是二次函数y=ax2+bx+c图象的一部分,直线x=﹣1是对称轴,有以下判断:①2a ﹣b=0;①b2﹣4ac>0;①方程ax2+bx+c=0的两根是2和﹣4;①若(﹣3,y1),(﹣2,y2)是抛物线上两点,则y1>y2;其中正确的个数有()A.1B.2C.3D.435.(2018秋•古丈县期末)若抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣1,0)和(2,0),则此抛物线的对称轴是直线()A.x=﹣1B.x=−12C.x=12D.x=136.(2019春•天心区校级期末)如图,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,则下列说法错误的是()A.AB=4B.∠OCB=45°C.当x>3 时,y>0D.当x>0 时,y随x的增大而减小37.(2019春•雨花区校级期末)要由抛物线y=2x2得到抛物线y=2(x+1)2﹣3,则抛物线y=2x2必须()A.向左平移1个单位,再向下平移3个单位B.向右平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向上平移3个单位38.(2018秋•武陵区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的个数有()①abc<0;①2a+b=0;①b2﹣4ac<0;①9a+3b+c<0;①3a+b<0A.2个B.3个C.4个D.5个参考答案与试题解析一.选择题(共38小题)1.【解答】解:∵二次函数y =﹣(x ﹣2)2的图象开口向下,∴对称轴是x =2,顶点坐标是(2,0),∴函数有最高点(2,0),当x >2时,y 随x 的增大而减小.说法正确的是B ,故选:B .2.【解答】解:由函数图象得,a <0,函数图象经过点(﹣1,0),(0,2),且对称轴为直线x =1,∴代入可得°{y −y +y =0−y 2y =1y =2, 解得,{ y =−23y =43y =2, ∴y =−23y 2+43y +2,①y +y =−23+2=43=y ,故①正确;①令y =0,则−23y 2+43y +2=0,解得,x 1=﹣1,x 2=3,故①正确;①∵−y 2y =1, ∴b =﹣2a ,即b +2a =0,故①正确;①∵a <0,b >0,c >0,∴abc <0,故①正确;正确的一共有4个.故选:D .3.【解答】解:∵y =3(x ﹣2)2+1,∴抛物线顶点坐标为(2,1),故选:A .4.【解答】解:∵y =﹣x 2+2x +c =﹣(x ﹣1)2+1+c ,∴图象的开口向下,对称轴是直线x =1,A (﹣2,y 1)关于对称轴的对称点为(4,y 1),∵2<4,∴y 2>y 1=y 3,故选:B .5.【解答】解:①由抛物线的开口方向向上可推出a >0,正确;①因为对称轴在y 轴右侧,对称轴为x =−y 2y >0,又因为a >0,∴b <0,错误;①由抛物线与y 轴的交点在y 轴的负半轴上,∴c >0,正确;①抛物线与x 轴有两个交点,∴b 2﹣4ac >0,正确;①由图象可知:当x =1时,y >0,∴a +b +c >0,错误;①由图象可知:对称轴x =−y 2y >0且对称轴x =−y 2y <1, ∴2a +b >0,正确;故选:B .6.【解答】解:∵抛物线y =5(x ﹣2)2﹣3,∴顶点坐标为:(2,﹣3).故选:A .7.【解答】解:二次函数y =﹣2(x +3)2的图象开口向下,顶点坐标为(﹣3,0),对称轴为直线x =﹣3,当x <﹣3时,y 随 x 的增大而增大,故A 、B 、C 正确,D 不正确,故选:D .8.【解答】解:∵抛物线开口向下,∴a <0,∵抛物线对称轴为直线x =−y 2y =1,∴b =﹣2a >0,即2a +b =0,所以①正确;∵抛物线对称轴为直线x =1,∴函数的最大值为a +b +c ,∴a +b +c ≥am 2+bm +c ,即a +b ≥am 2+bm ,所以①正确;∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(﹣1,0)的右侧,∴当x =﹣1时,y <0,∴a ﹣b +c <0,所以①错误;∵b =﹣2a ,a ﹣b +c <0,∴a +2a +c <0,即3a +c <0,所以①正确;∵ax 12+bx 1=ax 22+bx 2,∴ax 12+bx 1﹣ax 22﹣bx 2=0,∴a (x 1+x 2)(x 1﹣x 2)+b (x 1﹣x 2)=0,∴(x 1﹣x 2)[a (x 1+x 2)+b ]=0,而x 1≠x 2,∴a (x 1+x 2)+b =0,即x 1+x 2=−y y,∵b =﹣2a , ∴x 1+x 2=2,所以①正确.综上所述,正确的有①①①①共4个.故选:C .9.【解答】解:∵二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),∴{y −y +y =2①y +y +y =−2y ,①+①得:b =﹣2,a +c =0;故①正确;∵a =﹣c∴b 2﹣4ac >0,∴无论a 取何值,此二次函数图象与x 轴必有两个交点,∵|x 1﹣x 2|=√(y 1+y 2)2−4y 1y 2=√(−y y )2−4×y y ,y y =−1,∴√(−y y )2−4×y y >2,故①正确;∵b =﹣2,∴二次函数y =ax 2+bx +c (a >0)的对称轴x =−y 2y =1y ,∴当a >0时不能判定1y ≤1,∴不能判定x >1时,y 随x 的增大而增大;故①错误;∵a =1,a +c =0,∴c =﹣1,∴OC =1,∴OC 2=1,∵二次函数为y =x 2+bx ﹣1,∴x 1•x 2=﹣1,∵|x 1•x 2|=OA •OB ,∴OA •OB =1,∴OA •OB =OC 2,故①正确.故选:C .10.【解答】解:由图象可知,当x =1时,y >0,∴a +b +c >0,所以①正确;∵抛物线的顶点坐标(1,n ),∴x =1时,二次函数值有最大值n ,∴a +b +c ≥am 2+bm +c ,即a +b ≥am 2+bm ,所以①正确;∵抛物线的顶点坐标(1,n ),∴抛物线y =ax 2+bx +c 与直线y =n 有一个交点,∴关于x 的方程ax 2+bx +c =n 有两个相等的实数根,所以①正确;∵抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),∴a ﹣b +c =0,∵b =﹣2a ,∴a +2a +c =0,∴c =﹣3a ,∵2≤c ≤3,∴2≤﹣3a ≤3,∴﹣1≤a ≤−23,所以①正确; 故选:D .11.【解答】解:∵y =x 2﹣4x ﹣4=(x ﹣2)2﹣8,∴将抛物线y =x 2﹣4x ﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为y =(x ﹣2+3)2﹣8+3,即y =(x +1)2﹣5.故选:D .12.【解答】解:∵抛物线y =−13(y −5)2+3, ∴该抛物线的对称轴是直线x =5,故选项A 正确;函数有最大值,最大值y =3,故选项B 正确;开口向下,顶点坐标为(5,3),故选项C 正确;当x >5时,y 随x 的增大而减小,故选项D 错误;故选:D .13.【解答】解:原抛物线的顶点为(0,0),新抛物线的顶点为(1,﹣3),∴是抛物线y =﹣x 2向右平移1个单位,向下平移3个单位得到,故选:C .14.【解答】解:由一次函数解析式为:y =kx +2可知,图象应该与y 轴交在正半轴上,故A 、B 、C 错误; D 符合题意;故选:D .15.【解答】解:对于y =﹣3(x ﹣1)2+1,M (1,1),N (0,﹣2),直线MN 的解析式为y =3x ﹣2,直线MN 与x 轴的交点坐标为(23,0),此时S =12×2×23=23; 对于y =2(x ﹣0.5)(x +1.5),则y =2(x +12)2﹣2,M (−12,﹣2),N (0,−32),直线MN 的解析式为y =x −32,直线MN 与x 轴的交点坐标为(32,0),此时S =12×(−32)×32=98; 对于y =13x 2−43x +1,则y =13(x ﹣2)2−13,M (2,−13),N (0,1),直线MN 的解析式为y =−23x +1,直线MN 与x 轴的交点坐标为(32,0),此时S =12×1×32=34; 故选:D .16.【解答】解:∵抛物线y =﹣2(x +1)2﹣3,∴该抛物线的对称轴为直线x =﹣1,故选:B .17.【解答】解:二次函数y =2(x ﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x =1,抛物线与x 轴没有公共点.故选:D .18.【解答】解:A 、∵图象开口向下,∴a <0,∵与y 轴交于正半轴,∴c >0,∵对称轴在y 轴左侧,−y 2y <0,∴b <0,∴abc >0,故①错误;∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,故①正确;、∵抛物线的对称轴为直线x =−y 2y >−1,又a <0, ∴2a <b ,故①错误;∵当x =﹣1时,对应的函数值y >0,即a ﹣b +c >0,∴a +c >b ,故本①正确;∵抛物线的对称轴x =−y 2y>−1,又a <0, ∴在对称轴左侧部分,y 随x 的增大而增大, ∵−52<−1, ∴y 1<y 2,故①正确.综上所述,正确的有①①①共3个.故选:C .19.【解答】解:二次函数y =(x ﹣2)2+1,a =1>0,∴该函数的图象开口向上,对称轴为直线x =2,顶点为(2,1),当x =2时,y 有最小值1,当x ≥2时,y 的值随x 值的增大而增大,当x <2时,y 的值随x 值的增大而减小;故选项A 、B 、D 的说法正确,C 的说法错误;故选:C .20.【解答】解:根据二次函数的性质,可得:二次函数y =14x 2的图象顶点为原点,开口向上,选项A 、B 不符合题意;故除顶点外图象都在x 轴上方,选项C 不符合题意;而当x =0时,y 有最小值0,故选项D 符合题意.故选:D .21.【解答】解:由y =3(x +2)2﹣5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,﹣5).故选:B .22.【解答】解:由函数图象知,抛物线的开口向下,与y 轴的交点在(0,1),∴a <0,c >1,则ac <0,故(1)错误;由函数图象知抛物线与x 轴的两个交点一个在y 轴的左侧、另一个在0~1之间,∴方程ax 2+bx +c =0的两根之积小于0,故(2)正确;在抛物线上,当x =1时,y =a +b +c <0,故(3)正确;∵c >1,∴ac +b +1<a +b +c <0,故(4)正确;综上,正确的结论有(2)、(3)、(4),故选:C .23.【解答】解:∵抛物线y =﹣x 2+4x +3=﹣(x ﹣2)2+7,∴该抛物线的顶点坐标是(2,7),故选:B .24.【解答】解:由图象可知,当y >0时,x 的取值范围是x <﹣1或x >2,故选:D .25.【解答】解:{y =y 2−6y +8y =2y +y , x 2﹣6x +8=2x +b ,整理得:x 2﹣8x +8﹣b =0,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .26.【解答】解:∵函数y =(3﹣m )x y 2−7−x +1是二次函数,∴m 2﹣7=2,且3﹣m ≠0,解得:m =﹣3.故选:B .27.【解答】解:①当a >0时,二次函数y =ax 2的开口向上,一次函数y =ax +a 的图象经过第一、二、三象限,排除A ;①当a <0时,二次函数y =ax 2的开口向下,一次函数y =ax +a 的图象经过第二、三、四象限,排除C 、D . 故选:B .28.【解答】解:当x =0时,y =1,则与y 轴的交点坐标为(0,1),当y =0时,x 2﹣2x +1=0,△=(﹣2)2﹣4×1×1=0,所以,该方程有两个相等的解,即抛物线y =x 2﹣2x +1与x 轴有1个交点.综上所述,抛物线y =x 2﹣2x +1与坐标轴的交点个数是2个.故选:C .29.【解答】解:由“上加下减”的原则可知,把抛物线y =x 2向上平移3个单位所得抛物线的解析式为:y =x 2+3; 由“左加右减”的原则可知,把抛物线y =x 2+3向右平移1个单位所得抛物线的解析式为:y =(x ﹣1)2+3. 故选:C .30.【解答】解:∵原点是抛物线y =(m +1)x 2的最高点,∴m +1<0,即m <﹣1.故选:A .31.【解答】解:∵y =(x ﹣1)2+3,∴抛物线开口向上,对称轴为x =1,顶点坐标为(1,3),故A 、B 均不正确,C 正确; 令y =0可得(x ﹣1)2+3=0,可知该方程无实数根,故抛物线与x 轴没有交点,故D 不正确; 故选:C .32.【解答】解:∵关于x 的一元二次方程x 2+ax +b =0的两个实数根是﹣1和3, ∴﹣a =﹣1+3=2,∴a =﹣2<0,∴二次函数y =a (x ﹣1)2+4的开口向下,对称轴为直线x =1,顶点坐标为(1,4),当x =1时,函数有最大值4,故A 、B 、C 叙述正确,D 错误,故选:D .33.【解答】解:∵二次函数y =x 2﹣2x ﹣8=(x ﹣1)2﹣9,∴其图象的对称轴是直线x =1,故选项A 正确;其图象的顶点坐标是(1,﹣9),故选项B 正确;当x =1时,y 取得最小值,此时y =﹣9,故选项C 错误;当x >1时,y 随x 的增大而增大,故选项D 正确;故选:C .34.【解答】解:∵抛物线的对称轴为直线x =﹣1,∴−y 2y =−1,即b =2a , ∴2a ﹣b =0,所以①正确;∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,所以①正确;∵抛物线与x 轴的一个交点坐标为(2,0),对称轴为直线x =﹣1,∴抛物线与x 轴的另一个交点坐标为(﹣4,0),∴方程ax 2+bx +c =0的两根是2和﹣4,所以①正确;∵x <﹣1时,y 随x 的增大而增大,∴y 1<y 2,所以①错误.故选:C .35.【解答】解:∵抛物线y =ax 2+bx +c 与x 轴的两个交点坐标是(﹣1,0)和(2,0), ∴抛物线的对称轴为直线x =12. 故选:C .36.【解答】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∴AB =3﹣(﹣1)=4,当x <﹣1或x >3时,y >0,∵抛物线的对称轴为直线x =1,∴当 x <1时,y 随 x 的增大而减小;当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),∵OB=OC=3,∴△OCB为等腰直角三角形,∴∠OCB=45°.故选:D.37.【解答】解:抛物线y=2x2必须向左平移1个单位,再向下平移3个单位才得到y=2(x+1)2﹣3.故选:A.38.【解答】解:①图象开口向下,与y轴交于正半轴,对称轴在y轴右侧,能得到:a<0,b>0,c>0,∴abc<0,故①正确;①∵对称轴y=−y2y=1,∴2a+b=0,故①正确;①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,①错误;①∵抛物线与x轴的一个交点的横坐标在(﹣1,0)之间,对称轴x=1,∴抛物线与x轴的另一个交点的横坐标小于3,∴9a+3b+c<0,①正确;①∵2a+b=0,∴3a+b=2a+b+a=0+a<0,①正确.故选:C.。

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

人教新版九年级数学上学期 第22章 二次函数 单元训练 ( 含答案)

人教新版九年级数学上学期 第22章 二次函数 单元训练 ( 含答案)

第22章二次函数(hánshù)一.选择题(共14小题)1.下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3;②y=4﹣3x+7x2;③y=﹣3x+5;④y=(2x﹣3)(3x﹣2);⑤y=ax+bx+c;⑥y=(n2+1)x2﹣2x﹣3;⑦y=m2x2+4x﹣3.A.1个B.2个C.3个D.4个2.对于抛物线y=﹣2(x+5)2+4,下列说法正确的是()A.开口向下,顶点坐标(5,4)B.开口向上,顶点坐标(5,4)C.开口向下,顶点坐标(﹣5,4)D.开口向上,顶点坐标(﹣5,4)3.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x…0100400…y…2﹣22…则方程ax2+bx+4=0的根是()A.x1=x2=200 B.x1=0,x2=400C.x1=100,x2=300 D.x1=100,x2=5004.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确5.已知函数y=,当y=5时,x的值是()A.6 B.﹣C.﹣或6 D.±或66.二次函数(hánshù)y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.7.已知抛物线y=x2+bx+c的顶点坐标为(1,﹣3),则抛物线对应的函数解析式为()A.y=x2﹣2x+2 B.y=x2﹣2x﹣2 C.y=﹣x2﹣2x+1 D.y=x2﹣2x+1 8.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是()x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04 A.﹣0.01<x<0.02 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.209.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=﹣3.4,则方程的另一个近似根(精确到0.1)为()A.4.4 B.3.4 C.2.4 D.1.410.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是()(1)对任意实数k,函数与x轴有两个交点(2)当x≥﹣k时,函数(hánshù)y的值都随x的增大而增大(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点A.1 B.2 C.3 D.411.已知抛物线y=ax2+bx+c(a<0)过A(﹣2,0)、B(0,0)、C(﹣3,y)、D(2,y2)四点,则y1与y2的大小关系是()1A.y1<y2B.y1=y2C.y1>y2D.不能确定12.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a 13.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个14.如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=3x2B.y=4x2C.y=8x2D.y=9x2二.填空题(共6小题(xiǎo tí))15.二次函数y=a(x+1)(x﹣4)的对称轴是.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m =.17.已知直线y=x﹣3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,那么这个二次函数的解析式是.18.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.19.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.20.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P 的纵坐标为1.则关于x的方程ax2+bx+=0的解为.三.解答题(共4小题)21.已知二次函数y=﹣x2+x+(1)将y=﹣x2+x+成y=a(x﹣h)2+k的形式:(2)在坐标系中利用(lìyòng)描点法画出此抛物线x……y……(3)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.(4)将该抛物线在x上方的部分(不包含与x的交点)记为G,若直线y=x+b与G只有一个公共点,则b的取值范围是.22.如图,抛物线y=a(x﹣1)(x+3)交x轴于A、B两点,交y轴于点C,∠BAC=45°.(1)求a的值;(2)点D为第三象限内抛物线上的一点,当△DAC的面积为3时,求D点的坐标.23.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y 元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证(bǎozhèng)每天盈利不少于1200元,那么衬衫的单价应降多少元?24.在平面直角坐标系中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点,(1)试求抛物线的解析式.(2)记抛物线顶点为D,求△BCD的面积;(3)将直线y=﹣x向上平移b个单位,所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,请求出b的取值范围.参考答案一.选择题(共14小题(xiǎo tí))1.解:①y2=2x2﹣4x+3,不符合二次函数的定义,不是二次函数;②y=4﹣3x+7x2,是二次函数;③y=﹣3x+5,分母中含有自变量,不是二次函数;④y=(2x﹣3)(3x﹣2)=6x2﹣13x+6,是二次函数;⑤y=ax2+bx+c,含有四个自变量,不是二次函数;⑥y=(n2+1)x2﹣2x﹣3,含有两个自变量,不是二次函数;⑦y=m2x2+4x﹣3,含有两个自变量,不一定是二次函数.∴只有②④一定是二次函数.故选:B.2.解:∵抛物线y=﹣2(x+5)2+4,∴抛物线的开口方向向下,顶点坐标为(﹣5,4).故选:C.3.解:由抛物线经过点(0,2)得到c=2,因为抛物线经过点(0,2)、(400,2),所以抛物线的对称轴为直线x=200,而抛物线经过点(100,﹣2),所以抛物线经过点(300,﹣2),所以二次函数解析式为y=ax2+bx+2,方程ax2+bx+4=0变形为ax2+bx+2=﹣2,所以方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.故选:C.4.解:∵抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点∴①如图1,抛物线与直线相切,联立解析(jiě xī)式得x2﹣2x+2﹣c=0△=(﹣2)2﹣4(2﹣c)=0解得:c=1,当c=1时,相切时只有一个交点,和题目相符所以不用舍去;②如图2,抛物线与直线不相切,但在0≤x≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c的最小值=2,但取不到,c的最大值=5,能取到∴2<c≤5又∵c为整数∴c=3,4,5综上,c=1,3,4,5,所以甲乙合在一起也不正确,故选:D.5.解:∵函数y=,∴当x≤2时,x2﹣1=5,得x1=﹣,x2=(舍去),当x>2时,x﹣1=5,得x=6,故当y=5时,x的值是或6,故选:C.6.解:由一次函数y=ax+a可知(kě zhī),一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.7.解:A、y=x2﹣2x+2=(x﹣1)2+1,顶点坐标为(1,1),不合题意;B、y=x2﹣2x﹣2=(x﹣1)2﹣3,顶点坐标为(1,﹣3),符合题意;C、y=﹣x2﹣2x+2=﹣(x+1)2+3,顶点坐标为(﹣1,3),不合题意;D、y=x2﹣2x+1=(x﹣1)2,顶点坐标为(1,0),不合题意.故选:B.8.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.9.解:∵抛物线与x轴的一个交点为(﹣3.4,0),又抛物线的对称轴为:x =﹣1,∴另一个交点坐标为:(1.4,0),则方程的另一个近似根为1.4,故选:D.10.解:(1)△=b2﹣4ac=4k2﹣4k+4=(2k﹣1)2+3>0,故对任意实数k,函数与x轴有两个交点,符合题意;(2)函数的对称轴为:x=﹣=﹣k,a>1,故当x≥﹣k时,函数y的值都随x的增大而增大,符合题意;(3)函数的对称轴为:x=﹣k,则顶点坐标为:(﹣k,﹣k2+k﹣1),故顶点在抛物线:y=﹣x2﹣x﹣1上,k取不同的值时,二次函数y的顶点始终在同一条抛物线上,符合题意;(4)y=x2+2kx+k﹣1=x2+k(2x+1)﹣1,当x=﹣时,y=﹣,故对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点,符合题意;故选:D.11.解:抛物线y=ax2+bx+c(a<0)过A(﹣2,0)、B(0,0),则函数(hánshù)的对称轴为:x=﹣1,x=﹣3比x=2离对称轴近,故y>y2,1故选:C.12.解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:A.13.解:(1)当x=﹣2时,y=4a﹣2b+c<0,故①符合题意;(2)函数的对称轴为:x=﹣>﹣1,故b>2a,故②符合题意;(3)ab同号,c>0,故③不符合题意;(4)顶点纵坐标大于2,故>2,故④符合题意;故选:C.14.解:设正方形的边长为2a,∴BC=2a,BE=a,∵E、F分别是AB、CD的中点,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∴AF∥CE,∵EG⊥AF,FH⊥CE,∴四边形EHFG是矩形,∵∠AEG+∠BEC=∠BCE+∠BEC=90°,∴∠AEG=∠BCE,∴tan∠AEG=tan∠BCE,∴=,∴EG=2x,∴由勾股定理可知:AE=x,∴AB=BC=2x,∴CE=5x,易证:△AEG≌△CFH,∴AG=CH,∴EH=EC﹣CH=4x,∴y=EG•EH=8x2,故选:C.二.填空题(共6小题(xiǎo tí))15.解:令y=a(x+1)(x﹣4)=0,解得:x=﹣1或x=4,∴y=a(x+1)(x﹣4)与x轴交与点(﹣1,0),(4,0)∴对称轴为:x==.故答案为:x=.16.解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.17.解:直线y=x﹣3中,令y=0,求得x=3;令x=0,则y=﹣3,∴A(3,0),B(0,﹣3),设二次函数(hánshù)的解析式为y=ax2+bx+c,∵二次函数的图象经过A、B两点,且对称轴方程为x=1,∴,解得,∴这个二次函数的解析式是y=x2﹣2x﹣3,故答案为y=x2﹣2x﹣3.18.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)219.解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,∴y最小值=5.即MN的最小值为5;故答案为:5.20.解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案(dáàn)为:x=﹣3.三.解答题(共4小题)21.解:(1)y=﹣x2+x+=(x2﹣2x)+=(x2﹣2x+1﹣1)+=(x﹣1)2+=(x﹣1)2+2(2)列表得:用描点画图象得:(3)x=﹣3时,y=﹣5,x=3时,y=0当﹣3<x<1时,y随x的增大而增大,且x=1时,y=2故答案为:﹣5<y≤2(4)整理得:x2=3﹣2b当方程只有一个解时,即对应的两函数图象只有一个交点∴3﹣2b=0,解得:b=把x=﹣1,y=0代入y=x+b,得b=1把x=3,y=0代入y=x+b,得b=﹣3∴b≤﹣3时,直线(zhíxiàn)y=x+b与G没有交点;﹣3<b<1时,直线y=x+b与G有一个交点;1≤b<时,直线y=x+b与G有两个交点;b=时,直线y=x+b与G有一个交点,b>,直线y=x+b与G无交点.故答案为:﹣3<b<1或b=22.解:(1)当y=0时,a(x﹣1)(x+3)=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∵∠BAC=45°,∴△OAC为等腰直角三角形,∴OC=OA=3,∴C(0,﹣3),把C(0,﹣3)代入y=a(x﹣1)(x+3)得﹣3=a(0﹣1)(0+3),解得a=1,∴抛物线解析式为y=(x﹣1)(x+3),即y=x2+2x﹣3;(2)在y轴取点E使S△ACE=3,过点E作AC的平行线交第三象限的抛物线于点D,如图,设E(0,t),∵×(﹣3﹣t)×3=3,解得t=﹣5,∴E(0,﹣5),易得直线AC的解析式为y=﹣x﹣3,∴直线DE的解析式为y=﹣x﹣5,解方程组得或,∴D点坐标为(﹣1,﹣4),(﹣2,﹣3).23.解:(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大(zēnɡ dà)而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降不少于10元且不超过20元;24.解:(1)把B(﹣2,6),C(2,2)两点坐标代入得:,解这个方程组,得,∴抛物线的解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴顶点D(1,),∴△BCD的面积=4×﹣×3×﹣×1×﹣×4×4=3.(3)由消去y得到(dé dào)x2+x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=5,当直线y=﹣x+b经过点B时,b=3,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.内容总结(1)第22章二次函数一.选择题(共14小题)1.下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3(2)(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元。

人教版九年级上册数学 第22章 二次函数 最值问题专题训练

人教版九年级上册数学   第22章   二次函数    最值问题专题训练

人教版九年级上册数学第22章二次函数最值问题专题训练一.选择题(共10小题)1.当a,b为实数,二次函数y=a(x﹣1)2+b的最小值为﹣1时有()A.a<b B.a=b C.a>b D.a≥b2.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值 B.当x=﹣2时,函数有最小值C.当x=2时,函数有最小值D.当x=﹣1时,函数有最大值3.已知二次函数y=x2+4x+3,当t≤x≤t+1时函数的最小值为0,则t的值为()A.﹣1、﹣4 B.﹣2、﹣3C.﹣1、﹣2、﹣3 D.﹣1、﹣2、﹣3、﹣44.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.5.已知二次函数y=﹣(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为()A.3﹣或1+B.3﹣或3+C.3+或1﹣D.1﹣或1+6.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或﹣C.2或﹣D.2或﹣或﹣7.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.3或5 B.﹣1或1 C.﹣1或5 D.3或18.下列关于函数y=x2﹣4x+6的四个命题:①当x=0时,y有最小值6;②若n为实数,且n>1,则x =2+n时的函数值大于x=n时的函数值;③若n>2,且n是整数,当n≤x≤n+1时,y的整数值有(2n ﹣2)个;④若函数图象过点(a,y0),(b,y0+1),则a<b,其中真命题的序号是()A.①②B.②③C.③④D.②④9.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.910.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值 2,无最小值 B.有最大值 2,有最小值 1.5C.有最大值 1.5,有最小值﹣2.5 D.有最大值 2,有最小值﹣2.5二.填空题(共5小题)11.在平面直角坐标系xOy中,设点P的坐标为(n﹣1,3n+2),点Q是抛物线y=﹣x2+x+1上一点,则P,Q两点间距离的最小值为.12.二次函数y=(x﹣1)2﹣5的最小值是.13.已知:点A(m,n)在函数y=(x﹣k)2+k(k≠0)的图象上,也在函数y=(x+k)2﹣k的图象上,则m+n的最小整数值是.14.若定义一种新运算:a⊗b=,例如:4⊗1=4×1=4;5⊗4=10﹣4﹣2=4.则函数y =(﹣x+3)⊗(x+1)的最大值是.15.如图,矩形ABCD中,AB=2cm,AD=5cm,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s).连接PC,以PC为一边作正方形PCEF,连接DE、DF,则△DEF面积最小值为.三.解答题(共5小题)16.我们知道,三条边都相等的三角形叫等边三角形.类似地,我们把弧长等于半径的扇形称为“等边扇形”.琪琪准备将一根长为120cm的铁丝剪成两段,并把每一段铁丝围成一个“等边扇形”.(1)琪琪想使这两个“等边扇形”的面积之和等于625cm2,他该怎么剪?(2)这两个“等边扇形”的面积之和能否取得最小值?若能,请求出这个最小值;若不能,请说明理由.17.如图,Rt△ABC中,∠C=90°,AC=BC=8,DE=2,线段DE在AC边上运动(端点D从点A开始),速度为每秒1个单位,当端点E到达点C时运动停止.F为DE中点,MF⊥DE交AB于点M,MN∥AC交BC 于点N,连接DM、ME、EN.(1)求证:四边形MFCN是矩形;(2)设运动时间为t(s),四边形DENM的面积为S,求S关于t的函数解析式;当S取最大值时,求t 的值.18.如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;(2)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C 重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.19.如图,在平面直角坐标系中,直线y=﹣x﹣3与抛物线y=x2+mx+n相交于A、B两个不同的点,其中点A在x轴上.(1)n=(用含m的代数式表示);(2)若点B为该抛物线的顶点,求m、n的值;(3)①设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;②若﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m的值.20.如图,在矩形ABCD中,AB=9,AD=3,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,设CP的长度为x,△PQR与矩形ABCD重叠部分的面积为y.(1)求∠CPQ的度数;(2)当x取何值时,点R落在矩形ABCD的AB边上?(3)求y与x之间的函数关系式;(4)①当x取何值时,重叠部分的面积最大,并求出这个最大值;②当x取何值时,重叠部分的面积等于矩形面积的?。

人教版九年级数学上册第22章二次函数训练题(一)(含答案)

人教版九年级数学上册第22章二次函数训练题(一)(含答案)

人教版九年级数学上册第22章二次函数训练题(一)(含答案)一.选择题1.下列函数中属于二次函数的是()A.y=x B.y=2x2﹣1C.y=D.y=x2++12.关于二次函数y=﹣2(x+1)2+5,下列说法正确的是()A.最小值为5B.最大值为1C.最大值为﹣1D.最大值为53.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是()A.m≤0B.0<m≤1C.m≤1D.m≥14.二次函数y=ax2+bx+c的图象如右图所示,若M=5a+4c,N=a+b+c,则()A.M>0,N>0B.M>0,N<0C.M<0,N>0D.M<,N<05.如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c <0;③5a+4c<0;④4ac﹣b2>0;⑤若P(﹣5,y1),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其中正确结论的个数是()A.1B.2C.3D.46.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.67.函数y=ax2﹣a与y=ax﹣a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.8.对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②其图象与直线y =x﹣1有且只有一个公共点;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中正确结论的个数是()A.1B.2C.3D.49.已知抛物线y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为A(﹣1,y1),B(2,y2),C(4,y3),则y1,y2,y3的大小关系为()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y110.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此变换进行下去,若点P(21,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.3二.填空题11.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(x1,0),(x2,0),则x1+x2=.12.二次函数y=x2﹣3x+2的图象与x轴的交点坐标是.13.如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有.14.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是m.15.二次函数y=ax2+bx+1(a≠0)的图象与x轴有两个交点A,B,顶点为C.若△ABC恰好是等边三角形,则代数式b2﹣2(2a﹣5)=.三.解答题16.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标为P(h,k),h≠0.(1)若该函数图象过点(2,1),(5,7),h=3.①求该函数解析式;②t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,则t的值为;(2)若点P在函数y=x2﹣3x+c的图象上,且≤a≤2,求h的最大值.17.已知二次函数的解析式是y=x2﹣2x﹣3.(1)把它变形为y=a(x﹣h)2+k的形式:;(2)它的顶点坐标是;当x时,y随x的增大而减小.(3)在坐标系中利用描点法画出此抛物线;x……y……(4)结合图象回答:当﹣2<x<2时,函数值y的取值范围是.18.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价是多少元?(2)若该型号自行车的进价不变,按标价出售,该店平均每月可售出60辆;若每辆自行车每降价50元,每月可多售出10辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?19.阅读以下材料:对于三个数a、b、c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}==;min{﹣1,2,3}=﹣1,…解决下列问题:(1)填空:如果min{2,2x+2,4﹣2x}=2,则x的取值范围为;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论:如果M{a,b,c}=min{a,b,c},那么(填a、b、c的大小关系),证明你发现的结论.③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,+2x﹣y},则x+y(3)在同一直角坐标系中作出函数y=x+1,y=(x﹣1)2,y=2﹣x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x﹣1)2,2﹣x}的最大值为.20.在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.参考答案一.选择题1.解:A、y=x是正比例函数,故本选项不符合题意;B、y=2x2﹣1是二次函数,故本选项符合题意;C、y=不是二次函数,故本选项不符合题意;D、y=x2++1不是二次函数,故本选项不符合题意.故选:B.2.解:∵二次函数y=﹣2(x+1)2+5,可得函数开口向下,∴函数有最大值,∴当x=﹣1时,函数有最大值5,故选:D.3.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.4.解:∵当x=2.5时,y=a+b+c>0,∴25a+10b+4c>0,∵﹣=1,∴b=﹣2a,∴25a﹣20a+4c>0,即5a+4c>0,∴M>0,∵当x=1时,y=a+b+c>0,∴N>0,故选:A.5.解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,当x=时,y<0,即a+b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C.6.解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.7.解:①当a>0时,二次函数y=ax2﹣a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y=ax ﹣a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y=ax2﹣a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.8.解:①当y=0,ax2﹣(2a﹣1)x+a﹣1=0,解得x1=1,x2=,则二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故①正确,符合题意;②由题意得:ax2﹣(2a﹣1)x+a﹣1=x﹣1,化简得:x2﹣2x+1=0,△=22﹣4=0,故抛物线图象与直线y=x﹣1有且只有一个公共点,故②正确,符合题意;③该抛物线对称轴为x=1﹣,顶点的纵坐标为y=,则y=(1﹣)﹣,即无论a取何值,抛物线的顶点始终在直线y=x﹣上,所以③正确,符合题意;④由①知,二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故无论a取何值,函数图象都经过同一个点(1,0),故④正确,符合题意.故选:D.9.解:y=ax2﹣2ax+b(a>0),对称轴是直线x=﹣=1,即二次函数的开口向上,对称轴是直线x=1,即在对称轴的右侧y随x的增大而增大,A点关于直线x=1的对称点是D(3,y1),∵2<3<4,∴y3>y1>y2,故选:A.10.解:∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4,∴OA1=A1A2=A2A3=A3A4=4,∵点P(21,m)在这种连续变换的图象上,∴x=21和x=1时的函数值互为相反数,∴﹣m=﹣1×(1﹣4)=3,∴m=﹣3,故选:C.二.填空题(共5小题)11.解:由韦达定理得:x1+x2=﹣=2,故答案为2.12.解:当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,所以二次函数y=x2﹣3x+2x的图象与x轴的交点坐标是(1,0),(2,0).故答案为(1,0)、(2,0).13.解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a>0,﹣>0,c<0,∴b<0,∴ab<0,说法①正确;②二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,∴方程ax2+bx+c=0的根为x1=﹣1,x2=3,说法②正确;③∵当x=2时,函数y<0,∴4a+2b+c<0,说法③正确;④∵抛物线与x轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x=1,∵图象开口向上,∴当x>1时,y随x值的增大而增大,说法④正确;⑤∵抛物线与x轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y<0时,﹣1<x<3,说法⑤错误;⑥∵当x=﹣1时,y=0,∴a﹣b+c=0,∴抛物线的对称轴为直线x=1=﹣,∴b=﹣2a,∴3a+c=0,∵c<0,∴3a+2c<0,说法⑥正确.故答案为⑤.14.解:地面,墙面所在直线为x轴,y轴建立平面直角坐标系,设抛物线解析式:y=a(x﹣1)2+,把点A(0,5)代入抛物线解析式得:a=﹣,∴抛物线解析式:y=﹣(x﹣1)2+.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3(m).故答案为3.15.解:如图,过C作CE⊥AB于E.当△ABC等边三角形时,CE=AC•sin60°=AC=AB,令y=ax2+bx+1=0,解得x=,则AB==,而CE=﹣,即==×,∵b2﹣4a>0,故b2﹣4a=12.则b2﹣2(2a﹣5)=b2﹣4a+10=22,故答案是22.三.解答题(共5小题)16.解:(1)①设解析式为y=a(x﹣h)2+k,将(2,1),(5,7),h=3代入,得解得a=2,k=﹣1,所以,解析式为y=2(x﹣3)2﹣1,即y=2x2﹣12x+17,②把y=1代入y=2x2﹣12x+17求得x=2或4,把y=﹣1代入y=2x2﹣12x+17求得x=3,∵t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,∴t=1或t=4,故答案为t=1或t=4.(2)设解析式为y=a(x﹣h)2+k,由y=ax2+bx+c(a≠0)知图象过(0,c),∴c=ah2+k.∵点P在函数y=x2﹣3x+c的图象上,∴k=h2﹣3h+c,∴h2﹣3h+ah2=0,∵h≠0,∴,∵,h随a的增大而减小,∴当时,h的值最大,h的最大值为2.17.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故答案为y=(x﹣1)2﹣4;(2)抛物线的顶点坐标为(1,﹣4),当x<1时,y随x的增大而减小.故答案为(1,﹣4),<1;(3)列表:x…﹣10123…y…0﹣3﹣4﹣30…描点,连线画出函数图象如图:(3)当﹣2<x<2时,函数值y的取值范围是﹣4≤y<5,故答案为﹣4≤y<5.18.解:(1)设进价为x元,则由题意得:(1500×0.9﹣x)×8=(1500﹣100﹣x)×7,解得:x=1000,∴改型号自行车进价1000元;(2)设自行车降价x元,获利为y元,则:==,∴对称轴:x=100,∵,∴当x=100时,=32000,答:降价100元时每月利润最大,最大利润为32000元.19.解:(1)由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1,故答案为:0≤x≤1;(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴,解得:,∴x=1;②证明:由M{a,b,c}=min{a,b,c},可令=a,即b+c=2a;又∵,解之得:a+c≤2b,a+b≤2c;把b+c=2a代入a+c≤2b可得c≤b;把b+c=2a代入a+b≤2c可得b≤c;∴b=c;将b=c代入b+c=2a得c=a;∴a=b=c,故答案为:a=b=c;③据②可得,解之得y=﹣1,x=﹣3,∴x+y=﹣4,故答案为:=﹣4;(3)作出图象,由图可知min{x+1,(x﹣1)2,2﹣x}的最大值为1,故答案为:1.20.解:(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)当a>0时,∵A(0,﹣4)和B(2,0),∴对称轴x=﹣=﹣=1﹣≤0,∴0<a≤1;当a<0时,对称轴x=1﹣≥2,∴﹣1≤a<0;综上所述:﹣1≤a≤1且a≠0;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=1﹣=﹣1,∴a=;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p)=,∴a=1.。

人教版九年级数学上册《第二十二章二次函数 》测试卷-带参考答案

人教版九年级数学上册《第二十二章二次函数 》测试卷-带参考答案

人教版九年级数学上册《第二十二章二次函数》测试卷-带参考答案一、单选题1.将二次函数化为顶点式正确的是()A.B.C.D.2.若将抛物线先向右平移1个单位长度,再向下平移3个单位长度,则所得抛物线的表达式为()A.B.C.D.3.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.B.C.D.4.如图,小强在某次投篮中,球的运动路线是抛物线的一部分,若命中篮圈中心,则他与篮筐底的距离l是()A.3m B.3.5m C.4m D.4.5m5.函数,当时,此函数的最小值为,最大值为1,则m的取值范围是()A.B.C.D.6.二次函数与x轴的两个交点的横坐标分别为m和n,且,则下列结论正确的是()A.B.C.D.7.如图,抛物线与轴交于点,点的坐标为,在第四象限抛物线上有一点,若是以为底边的等腰三角形,则点的横坐标为()A.B.C.D.或8.已知二次函数的部分图象如图所示,图象经过点,其对称轴为直线.下列结论:①;②若点,均在二次函数图象上,则;③关于x的一元二次方程有两个相等的实数根;④满足的x的取值范围为.其中正确结论的个数为().A.1个B.2个C.3个D.4个二、填空题9.抛物线的顶点在轴上,则.10.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,如果水面下降0.5m,那么水面宽度增加m.11.函数是描述现实世界中变化规律的数学模型,运用函数知识可以解决实际问题,如飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式形,则飞机着陆后滑行的最大距离是m.12.已知点、和都在函数的图象上,则、和的大小关系为(用“”连接).13.如图,抛物线与x轴相交于点、点,与y轴相交于点C,点D 在抛物线上,当轴时,.三、解答题14.如图,一辆宽为米的货车要通过跨度为米,拱高为米的单行抛物线隧道从正中通过,抛物线满足表达式保证安全,车顶离隧道的顶部至少要有米的距离,求货车的限高应是多少.15.电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中,且x为整数).当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?16.教科书中例1:有一个窗户形状如图①所示,上部是一个半圆,下部是一个矩形.如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这道例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形(如图②),材料总长仍为6 m,利用图②,解答下列问题:(1)若AB为1m,求此时窗户的透光面积.(2)与教科书中例1比较,改变窗户形状后,窗户的透光面积的最大值有没有变大?请通过计算说明.17.某杂技团进行杂技表演,演员从跷跷板的右端处弹跳起经过最高点后下落到右端的椅子处,其身体看成一点运动的路线是一条抛物线的一部分,如图,已知,演员起跳点的高度,演员离开地面的最大高度是,此时,演员到起跳点的水平距离为.(1)求该抛物线的解析式;(2)已知人梯高,为了成功完成此次表演,那么人梯到起跳点的水平距离应为多少18.如图,抛物线与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)若点P是抛物线段上的一点,当的面积最大时求出点P的坐标,并求出面积的最大值.(3)点F是抛物线上的动点,作交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案:1.B2.A3.A4.D5.C6.C7.A8.B9.2510.2 ﹣411.60012.13.414.解:当时米.答:货车的限高应是米.15.(1)解:设y与x之间的函数关系式为由已知得解得因此y与x之间的函数关系式为(其中,且x为整数);(2)解:设每周销售这款玩具所获的利润为W由题意得W关于x的二次函数图象开口向上,且x为整数当时,W取最大值,最大值为1800即当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.16.(1)解:由已知可得:AD==则S=1×=;(2)解:设AB= xm,则AD=(3-x)m,AF=(3-x)m∵AB>0,AD>0,AF>0∴0<x<设窗户的面积为S由已知可得:S= AB×AD= x(3-x)=-x2+3x=-(x-)2+当x=时,S有最大值,为∵>1.05∴现在窗户透光的最大值变大.17.(1)解:根据题意可知,抛物线的顶点坐标为设抛物线的解析式为把代入得:解得:抛物线的解析式为(2)解:当时解得:不符合题意,舍去答:人梯到起跳点的水平距离应为.18.(1),和(2)解:如图,连接设点当时,即点P的坐标为时,有最大值;(3)解:存在.①如图,当四边形为时抛物线对称轴为直线的坐标为②如图,当四边形为时,作于点G和和综上所述,点F的坐标为或或。

人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)

人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)

人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)人教版九年级上册数学第二十二章二次函数综合训练题一、单选题1.在下列表达式中,x是自变量,是二次函数的是()A.B.C.D.2.下列二次函数的图象与x轴没有交点的是()A.B.C.D.3.对于二次函数,当时,y随x的增大而增大,则满足条件的m的取值范围是()A.B.C.D.4.已知二次函数的图像上有三点,则的大小关系为()A.B.C.D.5.将抛物线向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.B.C.D.6.抛物线的部分图象如图所示,则一元二次方程的根为()A.B.,C.,D.,7.根据下列表格的对应值,判断方程(,、、为常数)一个解的范围是()A.B.C.D.8.如图,抛物线的对称轴为直线,与x轴的一个交点坐标为,如图所示,下列结论:①;②方程的两个根是;③;④当时,x的取值范围是;⑤当时,y随x增大而增大,其中结论正确的个数是()A.1个B.2个C.3个D.4个二、填空题9.抛物线与y轴的交点坐标为.10.已知二次函数的图象经过点,且顶点坐标为,则二次函数的解析式为.11.抛物线向上平移1个单位长度,再向左平移3个单位长度后,得到的抛物线顶点坐标是.12.抛物线的二次项系数是;一次项系数是.13.已知函数的图象过原点,则a的值为14.若抛物线的图象与坐标轴只有两个公共点,则m的值为.15.一名学生推铅球,铅球行进高度(单位:)与水平距离(单位:)之间的关系是,则该学生推铅球的水平距离为.16.如图,抛物线与x轴交于两点,与y轴交于C点,在该抛物线的对称轴上存在点Q使得的周长最小,则的周长的最小值为.三、解答题17.抛物线经过点.(1)求这个二次函数的关系式;(2)为何值时,的值随着的增大而增大?18.抛物线的对称轴是直线,且过点.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.19.如图,抛物线与x轴交于A、B两点,与y轴交于C点.(1)求A点和点B的坐标;(2)判断的形状,证明你的结论;(3)直接写出当时,自变量x的取值范围.20.如图,抛物线与x轴交于,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上运动到什么位置时,满足,并求出此时P点的坐标;(3)点Q是直线下方抛物线上一点,当Q运动到什么位置,的面积最大,求出面积的最大值和此时点Q的坐标.21.二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:… 0 1 2 …… 0 5 …(1)直接写出表格当中的m值:_________;(2)直接写出这个二次函数的表达式_________;(3)在图中画出这个二次函数的图象.(4)直接写出当时,y的取值范围是_________.(5)直接写出当时,x的取值范围是_________.22.有一长为的篱笆,一面利用墙(墙的最大可用长度a为),围成中间隔着一道篱笆的长方形花圃,花圃的宽为,面积为.(1)求S关于x的函数解析式;(2)如果要围成面积为的花圃,的长是多少m?(3)能围成面积比更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.23.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?24.如图是二次函数的图象,其顶点坐标为.(1)求出图象与x轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由.(3)在y轴上存在一点Q,使得周长最小,求此时构成的的面积.参考答案:1.D2.B3.D4.B5.D6.D7.C8.D9.10.11.12. 1 413.214.15.16./17.(1)(2)18.(1);(2);19.(1)A、B的坐标分别为:,,(2)是直角三角形,(3)有图像可得:时,或.20.(1)(2)或(3)当轴时,的面积最大,最大值为1,此时点Q的坐标为21.(1)0(2)(4)(5)22.(1)(2)花圃的长为(3)能;围法:花圃的长为,宽为,这时有最大面积23.(1)(2)当售价为65元时,每月销售该商品的利润最大,最大利润为6250元.24.(1),(2)存在,或(3)3。

人教版九年级上册数学第二十二章 二次函数 复习与检测(一)

人教版九年级上册数学第二十二章 二次函数 复习与检测(一)

第二十二章 二次函数 复习与检测(一)一.选择题 1.如果函数是二次函数,则m 的取值范围是( )A .m =±2B .m =2C .m =﹣2D .m 为全体实数2.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣13.已知点A (﹣2,y 1),B (1,y 2)在二次函数y =x 2+2x ﹣m 的图象上,则下列有关y 1和y 2的大小关系的结论中正确的是( )A .y 1=y 2B .y 1<y 2C .y 1>y 2D .与m 的值有关4.已知函数y =ax 和y =a (x +m )2+n ,且a >0,m <0,n <0,则这两个函数图象在同一坐标系内的大致图象是( )A .B .C .D .5.根据下表中关于二次函数y =ax 2+bx +c 的自变量x 与函数y 的对应值,可判断二次函数的图象与x 轴( )x … ﹣1 0 1 2 … y…﹣1﹣2…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D.无交点6.当0≤x≤3,函数y=﹣x2+4x+5的最大值与最小值分别是()A.9,5 B.8,5 C.9,8 D.8,47.在下列﹣2,﹣1,0,1,2,3这6个数中任取一个数记作a,放回去,再从这六个数中任意取一个数记作b,则使得分式方程有整数解,且使得函数y=﹣ax2+bx 的图象经过第一三四象限的所有a+b的值有()A.2个B.4个C.5个D.8个8.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3 9.已知抛物线y=ax2+bx+c过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设M=4a+2b+c,则M的取值范围是()A.﹣9<M<0 B.﹣18<M<0 C.0<M<9 D.﹣9<M<9 10.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正确的结论是()A.①③B.①③④C.①②③D.①②③④二.填空题11.已知二次函数y=x2﹣2x+m的图象顶点在x轴下方,则m的取值范围是.12.用一段长为24m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长8m,则这个养鸡场最大面积为m2.13.直角坐标系中,点A(﹣3,0)、B(0,﹣3).若函数y=ax2+(2a﹣1)x﹣3与△AOB 的边恰有三个交点,则a的取值范围是.,0)和(1,0),与y轴交于正半轴,且﹣2 14.函数y=ax2+bx+c的图象与x轴交于(x1<﹣1,则下列结论:①b>0;②b<a;③﹣a<c<﹣2a;④对于任意正整数x均有<x1ax2﹣a+bx+b<0,其中正确的有.15.如图,二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于点C,若AC⊥BC,则a的值为.三.解答题16.已知二次函数y=x2+(2m﹣4)x+m2﹣4m﹣5(m是常数,﹣1<m<5)的图象与x轴交于A,B两点(点A在点B的左边),与y轴负半轴交于点C.(1)求二次函数的图象顶点Q的坐标;(2)求△ABC的面积的最大值;(3)当﹣3≤x≤2时,函数的最大值为7,求m的值.17.如图,抛物线y=﹣x2+bx+2与x轴交于A,B两点,与y轴交于C点,且点A的坐标为(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.18.在平面直角坐标系xOy中,抛物线y=ax2﹣5a2x+3交y轴于点A,交直线x=6于点B.(1)填空:抛物线的对称轴为x=,点B的纵坐标为(用含a的代数式表示);(2)若直线AB与x轴负方向所夹的角为45°时,抛物线在x轴上方,求a的值;(3)记抛物线在A、B之间的部分为图象G(包含A、B两点),若对于图象G上任意一点P(x p,y p),总有y p≤3,求a的取值范围.19.已知函数y=﹣x2+(m﹣3)x+2m(m为常数).(1)试判断该函数的图象与x轴的公共点的个数;(2)求证:不论m为何值,该函数的图象的顶点都在函数y=x2+4x+6的图象上;(3)若直线y=x与二次函数图象交于A、B两点,当﹣4≤m≤2时,求线段AB的最大值和最小值.20.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,设每千克降价x元每天销量为y千克.(1)求y与x的函数关系式;(2)如何定价,才能使每天获得的利润为200元,且使每天的销量较大?21.已知函数y1=x,y2=x2+bx+c,α,β为方程y1﹣y2=0的两个根,点M(t,T)在函数y2的图象上.(1)若α=,β=,求函数y2的解析式;(2)在(1)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为时,求t的值.22.如图,在△AOB中,∠O=90°,AO=18cm,BO=30cm,动点M从点A开始沿边AO以1cm/s 的速度向终点O移动,动点N从点O开始沿边OB以2cm/s的速度向终点B移动,一个点到达终点时,另一个点也停止运动.如果M、N两点分别从A、O两点同时出发,设运动时间为ts时四边形ABNM的面积为Scm2.(1)求S关于t的函数关系式,并直接写出t的取值范围;(2)判断S有最大值还是有最小值,用配方法求出这个值.23.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C 两点的直线的表达式为y=﹣x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?(3)在坐标平面内是否存在点Q,将△OAC绕点Q逆时针旋转90°,使得旋转后的三角形恰好有两个顶点落在抛物线上.若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.参考答案一.选择题1.解:由题意得:m﹣2≠0,m2﹣2=2,解得m≠2,且m=±2,∴m=﹣2.故选:C.2.解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与x轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.3.解:y=x2+2x﹣m=(x+1)2﹣1﹣m,∵点A(﹣2,y1)是二次函数y=(x+1)2﹣1﹣m图象上的点,∴y1=(﹣2+1)2﹣1﹣m=1﹣1﹣m=﹣m;∵点B(1,y2)是二次函数y=(x+1)2﹣1﹣m图象上的点,∴y2=(1+1)2﹣1﹣m=4﹣1﹣m=3﹣m.∴y1<y2.故选:B.4.解:由解析式y=a(x+m)2+n可知,a>0,图象开口向上,其顶点坐标为(﹣m,n),又因为m<0,n<0;所以顶点坐标在第四象限,排除A、D;C中,由二次函数图象可知a<0,而由一次函数的图象可知a>0,两者相矛盾,排除C;选项B正确.故选:B.5.解:根据表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可以发现当x=0,x=2时,y的值都等于﹣<0,又根据二次函数的图象对称性可得:x=1是二次函数y=ax2+bx+c的对称轴,此时y有最小值﹣2,再根据表中的数据,可以判断出y=0时,x<﹣1或x>2,因此判断该二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.故选:B.6.解:y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴当x=2时,最大值是9,∵0≤x≤3,∴x=0时,最小值是5,故选:A.7.解:∵方程有整数解,∴x=﹣,∵x是整数,∴a﹣2=±1,±2,±4,±8;∴a=﹣6,﹣2,0,1,3,4,6,10,∵分式方程有意义,∴x=﹣≠2,∴a≠﹣2,∴a=﹣6,0,1,3,4,6,10,∵﹣2,﹣1,0,1,2,3这6个数中任取一个数记作a,∴a=0,1,3,∵函数y=﹣ax2+bx的图象经过第一、三、四象限,∴﹣a<0,a、b同号,∴a>0,b>0,∴a=1,3,b=1,2,3,∴符合条件的a+b的值:①1+1=2,②1+2=3,③1+3=4,④3+1=3,⑤3+2=5,⑥3+3=6,有5个值,故选:C.8.解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14故选:A.9.解:将(﹣1,0)与(0,﹣3)代入y=ax2+bx+c,∴0=a﹣b+c,c=﹣3,∴b=a﹣3,∵抛物线顶点在第四象限,∴﹣>0,a>0,∴b<0,∴a<3,∴0<a<3,∴M=4a+2(a﹣3)﹣3=6a﹣9,∴﹣9<M<9,故选:D.10.解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①正确;②当x=时,y=0,即a+b+c=0,∴a+2b+4c=0,∴a+4c=﹣2b,∴a﹣2b+4c=﹣4b>0,所以②正确;③因为对称轴x=﹣1,抛物线与x轴的交点(,0),所以与x轴的另一个交点为(﹣,0),当x=﹣时,a﹣b+c=0,∴25a﹣10b+4c=0.所以③正确;④当x=时,a+2b+4c=0,又对称轴:﹣=﹣1,∴b=2a,a=b,b+2b+4c=0,∴b=﹣c.∴3b+2c=﹣c+2c=﹣c<0,∴3b+2c<0.所以④错误.故选:C.二.填空题(共5小题)11.解:因为抛物线图象顶点在x轴下方,且抛物线开口向上,则抛物线与x轴有两个交点,所以(﹣2)2﹣4×1×m>0,解得m<1.故答案为m<1.12.解:设养鸡场长为x米,则宽为(24﹣x),养鸡场面积S=x•(24﹣x)=﹣x2+12x,(0<x≤8),函数对称轴x=12,考虑到0<x≤8,当x=8时,函数取得最大值为64.故答案是64.13.解:∵函数y=ax2+(2a﹣1)x﹣3与△AOB的边恰有三个交点∴必经过(0,﹣3),且a≠0∴要使与△AOB恰好有三个交点∴函数的对称轴为:,①当a>0时,开口向上,对称轴解得a>,则当x=﹣3时,函数y=ax2+(2a﹣1)x﹣3>0,解得a>0②当a<0时,开口向下,要使恰好有三个交点,则有当x=﹣3,y=ax2+(2a﹣1)x﹣3=0,解得a=0,不符合,舍去;当x=,y=ax2+(2a﹣1)x﹣3=0时,即△=b2﹣4ac=0,解得a=,∵函数的对称轴为:,∴a=,综上所述,a>或a=,故答案为:a>或a=,,0),与y轴交于正14.解:∵二次函数y=ax2+bx+c的图象与x轴交于(1,0)和(x1半轴上一点,∴抛物线的开口向下,即a<0,∵﹣2<x<﹣1,1∴﹣<﹣<0,∴a<b,所以②错误;∴b<0,所以①错误;∵x=1时,y=0,∴a+b+c=0,即a+c=﹣b>0,∴c>﹣a,∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴4a+2a+2c+c<0,∴c<﹣2a,∴﹣a<c<﹣2a,所以③正确;设x=m与x=﹣1是对称点,∵﹣<﹣<0,且a<0,∴﹣<0,∴0<m<1,当x=﹣1时,y=a﹣b+c,∴对于任意正整数x均有y=ax2+bx+c,当x>m时,有ax2+bx+c<a﹣b+c,即ax2﹣a+bx+b<0,故④错误;∴其中正确的有③.故答案为:③.15.解:∵∠ACB=90°,CO⊥AB,根据射影定理可得CO2=AO×BO.根据抛物线的解析式可知OC=2,设A(m,0),B(n,0),则m和n是方程ax2+bx+2=0的两个根,所以mn=.∴22=﹣mn=﹣,解得a=﹣.故答案为﹣三.解答题(共8小题)16.解:(1)y=x2+(2m﹣4)x+m2﹣4m﹣5,=x2+2(m﹣2)x+m2﹣4m+4﹣9,=(x+m﹣2)2﹣9,∴Q(2﹣m,﹣9);(2)当x=0时,y=m2﹣4m﹣5=(m﹣2)2﹣9,∴C(0,m2﹣4m﹣5),∵﹣1<m<5,∴m2﹣4m﹣5<0,当y=0时,x2+(2m﹣4)x+m2﹣4m﹣5=0,x 1=﹣m﹣1,x2=5﹣m,∵5﹣m﹣(﹣m﹣1)=6,∴A(﹣m﹣1,0),B(5﹣m,0),且AB=6,∴S△ABC=AB•|y C|==﹣3m2+12m+15=﹣3(m﹣2)2+27,∵﹣3<0,∴当m=2时,△ABC的面积最大为27;(3)∵y=x2+(2m﹣4)x+m2﹣4m﹣5=(x+m﹣2)2﹣9,∴抛物线的对称轴为x=2﹣m,∵=﹣0.5,①当2﹣m≤﹣0.5,即m≥2.5时,根据二次函数的对称性及增减性,当x=2时,函数最大值为7,∴(2+m﹣2)2﹣9=7,解得:m=4或m=﹣4(舍去);②当2﹣m>﹣0.5,即m<2.5时,根据二次函数的对称性及增减性,当x=﹣3时,函数最大值为7,∴(﹣3+m﹣2)2﹣9=7,解得:m=1或m=9(舍去).综上所述,m=4或m=1.17.解:(1)∵点A(1,0)在抛物线y=﹣x2+bx+2上,∴﹣+b+2=0,解得,b=﹣,抛物线的解析式为y=﹣x2﹣x+2,y=﹣x2﹣x+2=﹣(x+)2+,则顶点D的坐标为(﹣,);(2)△ABC是直角三角形,证明:点C的坐标为(0,2),即OC=2,﹣x2﹣x+2=0,解得,x1=﹣4,x2=1,则点B的坐标为(﹣4,0),即OB=4,OA=1,OB=4,∴AB=5,由勾股定理得,AC=,BC=2,AC2+BC2=25=AB2,∴△ABC是直角三角形;(3)由抛物线的性质可知,点A与点B关于对称轴对称,连接BC交对称轴于M,此时△ACM的周长最小,设直线BC的解析式为:y=kx+b,由题意得,,解得,,则直线BC的解析式为:y=x+2,当x=﹣时,y=,∴当M的坐标为(﹣,).18.解:(1)抛物线的对称轴是:x=﹣=a,当x=6时,y=﹣30a2+36a+3,即点B的纵坐标为﹣30a2+36a+3…………………………(4分)故答案为:a,﹣30a2+36a+3;(2)如图,∵∠ACO=45°,∴△ACO是等腰直角三角形,∴OC=OA=3,∴C(﹣3,0),设AC:y=kx+b,则,解得:,∴AC:y=x+3,当x=6时,y=6+3=9,∴B(6,9),把B(6,9)代入y=ax2﹣5a2x+3得:5a2﹣6a+1=0,a 1=1,a2=,当a=1时,抛物线解析式:y=x2﹣5x+3=(x﹣)2﹣,∵﹣<0,且直线AB与x轴正方向所夹的角为45°时,抛物线在x轴上方,∴a=1不符合题意,舍去,∴a=…………………………………………(8分)(3)当x=6时,y=﹣30a2+36a+3,∵y p≤3,即﹣30a2+36a+3≤3,5a2﹣6a≥0a(5a﹣6)≥0∴或解得:a≥或a<0;综上所述:a≥或a<0(各2分)19.(1)解:∵△=(m﹣3)2+8m=(m+1)2+8>0,则该函数图象与x轴的公共点的个数2个,………………………(2分)(2)证明:y =﹣x 2+(m ﹣3)x +2m=﹣(x ﹣)2+ ………………………(4分) 把x =代入y =x 2+4x +6=(x +2)2+2y =(+2)2+2=+2 ………………………(6分) = ………………………(8分)则不论m 为何值,该函数的图象的顶点都在函数y =x 2+4x +6的图象上.(3)过A 作AC ∥x 轴,过B 作BC ∥y 轴,则△ACB 是等腰直角三角形, 设直线y =x 与y =﹣x 2+(m ﹣3)x +2m 的交点为A (x 1,y 1)B (x 2,y 2), 联立方程有:得:x 2﹣(m ﹣4)x ﹣2m =0,……………(9分)∴x 1+x 2=m ﹣4,x 1x 2=﹣2m ,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2,=(m ﹣4)2﹣4(﹣2m ),………………………(10分)=m 2+16,………………………(11分)(也可用求根公式求得该式)∴|AB |=,………………………(12分) ∵﹣4≤m ≤2,∴当m =0时,|AB |有最小值为4,………………………(13分) 当m =﹣4时,|AB |有最大值为8………………………(14分)20.解:(1)∵每千克降价x 元每天销量为y 千克,∴y =200+,即y =200+400x ;(2)设应将每千克小型西瓜的售价降低x 元.根据题意,得[(3﹣2)﹣x](200+)﹣24=200.原式可化为:50x2﹣25x+3=0,解这个方程,得x1=0.2,x2=0.3.为使每天的销量较大,应降价0.3元,即定价2.7元/千克.答:应将每千克小型西瓜的售价定为2.7元/千克.21.(满分10分)解:(1)∵y1﹣y2=0,∴x﹣(x2+bx+c)=0,即x2+(b﹣1)x+c=0∵α,β为方程y1﹣y2=0的两个根,且α=,β=,∴,解得:b=,c=∴y2=x2+x+,…(5分)(2)由A(,)B(,)得:AB==,过M作MF⊥AB于F,过M作ME⊥y轴于E,作MD⊥x轴交y1=x于D,过D作DC⊥x轴于D,设△ABM的高为h,则△MDF是等腰直角三角形,MF=h,∴S△ABM=AB•h=,即h=,即MD=MF=h…(7分)∵CD=EM=DN,∴|t﹣T|=MD=h,由|t﹣T|=h,T=t2+t+,得|﹣t2+t﹣|=,当=﹣时,解得t1=t2=;当=时,解得,t4=∴t的值为或或.(一个答案1分)…(10分)22.解:(1)由题意得,AM=t,ON=2t,则OM=OA﹣AM=18﹣t,四边形ABNM的面积S=△AOB的面积﹣△MON的面积=×18×30﹣×(18﹣t)×2t=t2﹣18t+270(0<t≤15);(2)S=t2﹣18t+270=t2﹣18t+81﹣81+270=(t﹣9)2+189,∵a=1>0,∴S有最小值,这个值是189.23.解:(9分)(1)在y=﹣x+3中,令y=0,得x=3;令x=0,得y=3,∴B(3,0),C(0,3),(1分)∵抛物线y=﹣x2+bx+c经过B、C两点,∴,(2分)解得,∴抛物线的函数表达式为:y=﹣x2+2x+3,(3分)(2)∵P(m,0),PD∥y轴交直线BC于D,交抛物线于E,∴D(m,﹣m+3),E(m,﹣m2+2m+3),∴DE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,(4分)∴当m=时,DE有最大值,(5分)∵DG∥x轴,EF∥x轴,∴DG∥EF,同理DE∥GF,∵∠FED=90°,∴四边形DEFG为矩形,∵OB=OC=3,∴∠DBP=∠BDP=∠EDF=∠EFD=45°,∴DE=EF,∴四边形DEFG为正方形,∴S=DE2,∴当m=时,S有最大值;(6分)(3)存在,有两种情况:①当点A′、C′落在抛物线上时,如图1,当y=0时,﹣x2+2x+3=0,x=﹣1或3,∴OA=1,由O′A′=OA=1,O′C′=OC=3,设A′(a,﹣a2+2a+3),则C′(a﹣3,﹣a2+2a+4),∴﹣a2+2a+4=﹣(a﹣3)2+2(a﹣3)+3,解得a=,∴A′(,)(7分)作QN⊥x轴于N,A′M⊥QN于M,连接QA、QA′,则∠AQA′=90°,由旋转得:AQ=A'Q,∵∠ANQ=∠A'MQ=90°,∠QAN=∠A'QM,可证△QAN≌△A′QM,设Q(x,y),则QM=AN=x+1,A′M=QN=y=x+1+=﹣x,解得x=,y=,∴Q(,);(8分)②当点O′、C′落在抛物线上时,如图2,则O′、C′两点关于抛物线的对称轴对称,∵抛物线的对称轴为直线:x=1,由O′C′=OC=3,可知C′(﹣,),作QN⊥O′C′于N,CM⊥QN于M,连接QC、QC′,则∠CQC′=90°,易得△CQM≌△QC′N,设Q(x,y),则QM=C′N=x+,CM=QN=y﹣=x=3﹣(x+)﹣,解得x=,y=,∴Q(,),(9分)综上所述,存在符合条件的点Q,点Q的坐标为(,)或(,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册第22章二次函数专题训练题(一)一.选择题1.下列函数中属于二次函数的是( )A.y=x B.y=2x2﹣1C.y=D.y=x2++1 2.关于二次函数y=﹣2(x+1)2+5,下列说法正确的是( )A.最小值为5B.最大值为1C.最大值为﹣1D.最大值为53.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是( )A.m≤0B.0<m≤1C.m≤1D.m≥14.二次函数y=ax2+bx+c的图象如右图所示,若M=5a+4c,N=a+b+c,则( )A.M>0,N>0B.M>0,N<0C.M<0,N>0D.M<,N<0 5.如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c<0;③5a+4c<0;④4ac﹣b2>0;⑤若P(﹣5,y1),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其中正确结论的个数是( )A.1B.2C.3D.46.二次函数y=2x2﹣4x﹣6的最小值是( )A.﹣8B.﹣2C.0D.67.函数y=ax2﹣a与y=ax﹣a(a≠0)在同一坐标系中的图象可能是( )A.B.C.D.8.对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②其图象与直线y=x﹣1有且只有一个公共点;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中正确结论的个数是( )A.1B.2C.3D.49.已知抛物线y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为A(﹣1,y1),B(2,y2),C(4,y3),则y1,y2,y3的大小关系为( )A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1 10.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此变换进行下去,若点P(21,m)在这种连续变换的图象上,则m的值为( )A.2B.﹣2C.﹣3D.3二.填空题11.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(x1,0),(x2,0),则x1+x2= .12.二次函数y=x2﹣3x+2的图象与x轴的交点坐标是 .13.如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有 .14.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是 m.15.二次函数y=ax2+bx+1(a≠0)的图象与x轴有两个交点A,B,顶点为C.若△ABC 恰好是等边三角形,则代数式b2﹣2(2a﹣5)= .三.解答题16.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标为P(h,k),h≠0.(1)若该函数图象过点(2,1),(5,7),h=3.①求该函数解析式;②t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,则t的值为 ;(2)若点P在函数y=x2﹣3x+c的图象上,且≤a≤2,求h的最大值.17.已知二次函数的解析式是y=x2﹣2x﹣3.(1)把它变形为y=a(x﹣h)2+k的形式: ;(2)它的顶点坐标是 ;当x 时,y随x的增大而减小.(3)在坐标系中利用描点法画出此抛物线;x… …y… …(4)结合图象回答:当﹣2<x<2时,函数值y的取值范围是 .18.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价是多少元?(2)若该型号自行车的进价不变,按标价出售,该店平均每月可售出60辆;若每辆自行车每降价50元,每月可多售出10辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?19.阅读以下材料:对于三个数a、b、c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}==;min{﹣1,2,3}=﹣1,…解决下列问题:(1)填空:如果min{2,2x+2,4﹣2x}=2,则x的取值范围为 ;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论:如果M{a,b,c}=min{a,b,c},那么 (填a、b、c的大小关系),证明你发现的结论.③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,+2x﹣y},则x+y (3)在同一直角坐标系中作出函数y=x+1,y=(x﹣1)2,y=2﹣x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x﹣1)2,2﹣x}的最大值为 .20.在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.答案一.选择题1.解:A、y=x是正比例函数,故本选项不符合题意;B、y=2x2﹣1是二次函数,故本选项符合题意;C、y=不是二次函数,故本选项不符合题意;D、y=x2++1不是二次函数,故本选项不符合题意.故选:B.2.解:∵二次函数y=﹣2(x+1)2+5,可得函数开口向下,∴函数有最大值,∴当x=﹣1时,函数有最大值5,故选:D.3.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.4.解:∵当x=2.5时,y=a+b+c>0,∴25a+10b+4c>0,∵﹣=1,∴b=﹣2a,∴25a﹣20a+4c>0,即5a+4c>0,∴M>0,∵当x=1时,y=a+b+c>0,∴N>0,故选:A.5.解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,当x=时,y<0,即a+b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C.6.解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.7.解:①当a>0时,二次函数y=ax2﹣a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y=ax2﹣a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.8.解:①当y=0,ax2﹣(2a﹣1)x+a﹣1=0,解得x1=1,x2=,则二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故①正确,符合题意;②由题意得:ax2﹣(2a﹣1)x+a﹣1=x﹣1,化简得:x2﹣2x+1=0,△=22﹣4=0,故抛物线图象与直线y=x﹣1有且只有一个公共点,故②正确,符合题意;③该抛物线对称轴为x=1﹣,顶点的纵坐标为y=,则y=(1﹣)﹣,即无论a取何值,抛物线的顶点始终在直线y=x﹣上,所以③正确,符合题意;④由①知,二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故无论a取何值,函数图象都经过同一个点(1,0),故④正确,符合题意.故选:D.9.解:y=ax2﹣2ax+b(a>0),对称轴是直线x=﹣=1,即二次函数的开口向上,对称轴是直线x=1,即在对称轴的右侧y随x的增大而增大,A点关于直线x=1的对称点是D(3,y1),∵2<3<4,∴y3>y1>y2,故选:A.10.解:∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4,∴OA1=A1A2=A2A3=A3A4=4,∵点P(21,m)在这种连续变换的图象上,∴x=21和x=1时的函数值互为相反数,∴﹣m=﹣1×(1﹣4)=3,∴m=﹣3,故选:C.二.填空题(共5小题)11.解:由韦达定理得:x1+x2=﹣=2,故答案为2.12.解:当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,所以二次函数y=x2﹣3x+2x的图象与x轴的交点坐标是(1,0),(2,0).故答案为(1,0)、(2,0).13.解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a>0,﹣>0,c<0,∴b<0,∴ab<0,说法①正确;②二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,∴方程ax2+bx+c=0的根为x1=﹣1,x2=3,说法②正确;③∵当x=2时,函数y<0,∴4a+2b+c<0,说法③正确;④∵抛物线与x轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x=1,∵图象开口向上,∴当x>1时,y随x值的增大而增大,说法④正确;⑤∵抛物线与x轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y<0时,﹣1<x<3,说法⑤错误;⑥∵当x=﹣1时,y=0,∴a﹣b+c=0,∴抛物线的对称轴为直线x=1=﹣,∴b=﹣2a,∴3a+c=0,∵c<0,∴3a+2c<0,说法⑥正确.故答案为⑤.14.解:地面,墙面所在直线为x轴,y轴建立平面直角坐标系,设抛物线解析式:y=a(x﹣1)2+,把点A(0,5)代入抛物线解析式得:a=﹣,∴抛物线解析式:y=﹣(x﹣1)2+.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3(m).故答案为3.15.解:如图,过C作CE⊥AB于E.当△ABC等边三角形时,CE=AC•sin60°=AC=AB,令y=ax2+bx+1=0,解得x=,则AB==,而CE=﹣,即==×,∵b2﹣4a>0,故b2﹣4a=12.则b2﹣2(2a﹣5)=b2﹣4a+10=22,故答案是22.三.解答题(共5小题)16.解:(1)①设解析式为y=a(x﹣h)2+k,将(2,1),(5,7),h=3代入,得解得a=2,k=﹣1,所以,解析式为y=2(x﹣3)2﹣1,即y=2x2﹣12x+17,②把y=1代入y=2x2﹣12x+17求得x=2或4,把y=﹣1代入y=2x2﹣12x+17求得x=3,∵t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,∴t=1或t=4,故答案为t=1或t=4.(2)设解析式为y=a(x﹣h)2+k,由y=ax2+bx+c(a≠0)知图象过(0,c),∴c=ah2+k.∵点P在函数y=x2﹣3x+c的图象上,∴k=h2﹣3h+c,∴h2﹣3h+ah2=0,∵h≠0,∴,∵,h随a的增大而减小,∴当时,h的值最大,h的最大值为2.17.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故答案为y=(x﹣1)2﹣4;(2)抛物线的顶点坐标为(1,﹣4),当x<1时,y随x的增大而减小.故答案为(1,﹣4),<1;(3)列表:x…﹣10123…y…0﹣3﹣4﹣30…描点,连线画出函数图象如图:(3)当﹣2<x<2时,函数值y的取值范围是﹣4≤y<5,故答案为﹣4≤y<5.18.解:(1)设进价为x元,则由题意得:(1500×0.9﹣x)×8=(1500﹣100﹣x)×7,解得:x=1000,∴改型号自行车进价1000元;(2)设自行车降价x元,获利为y元,则:==,∴对称轴:x=100,∵,∴当x=100时,=32000,答:降价100元时每月利润最大,最大利润为32000元.19.解:(1)由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1,故答案为:0≤x≤1;(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴,解得:,∴x=1;②证明:由M{a,b,c}=min{a,b,c},可令=a,即b+c=2a;又∵,解之得:a+c≤2b,a+b≤2c;把b+c=2a代入a+c≤2b可得c≤b;把b+c=2a代入a+b≤2c可得b≤c;∴b=c;将b=c代入b+c=2a得c=a;∴a=b=c,故答案为:a=b=c;③据②可得,解之得y=﹣1,x=﹣3,∴x+y=﹣4,故答案为:=﹣4;(3)作出图象,由图可知min{x+1,(x﹣1)2,2﹣x}的最大值为1,故答案为:1.20.解:(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)当a>0时,∵A(0,﹣4)和B(2,0),∴对称轴x=﹣=﹣=1﹣≤0,∴0<a≤1;当a<0时,对称轴x=1﹣≥2,∴﹣1≤a<0;综上所述:﹣1≤a≤1且a≠0;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=1﹣=﹣1,∴a=;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p)=,∴a=1.。

相关文档
最新文档