时空数据模型简介

合集下载

时空数据库名词解释

时空数据库名词解释

时空数据库名词解释
时空数据库是一种处理时空数据的数据存储和查询技术。

时空数据是指跨越不同时间和空间范围的数据,例如地理位置数据、气象数据、社交媒体数据等。

在时空数据库中,数据被组织为时间戳和空间点这两个维度,并且可以根据不同的时区和地理位置进行地理位置查询。

时空数据库的主要特点包括:
1. 跨时空查询:时空数据库允许用户在跨越不同时间和空间范围的数据中进行查询,使得用户可以轻松地获取有关特定地点或事件的信息。

2. 数据集成:时空数据库可以将不同类型的时空数据集成在一起,形成一个更全面的数据集。

这有助于更好地理解和分析数据。

3. 数据可视化:时空数据库允许用户将时空数据可视化,以便更好地理解数据趋势和模式。

4. 数据建模:时空数据库允许用户对数据进行建模和分析,以便更好地预测未来的趋势和事件。

时空数据库的应用非常广泛,例如城市规划、交通运输、医疗保健、环境保护等领域。

随着数据规模的不断增长和时空数据变得越来越普遍,时空数据库将成为未来数据处理和分析的重要工具。

时空数据模型标准

时空数据模型标准

时空数据模型标准
时空数据模型是一种用于处理和管理具有时间和空间维度的数据的模型。

以下是一些常见的时空数据模型标准:
1.时空立方体模型(Spatio-Temporal Cube Model):这是一种基于立方体的数据模型,将空间数据按照不同的维度进行组织和存储。

时空立方体模型可以用于表示不同时间和空间分辨率的数据。

2.时空对象模型(Spatio-Temporal Object Model):这是一种基于对象的数据模型,将时空数据表示为具有时间和空间属性的对象。

时空对象模型可以用于表示具有复杂时空行为的数据。

3.时空索引模型(Spatio-Temporal Index Model):这是一种用于快速查询和检索时空数据的模型,通过建立索引来提高查询效率。

时空索引模型可以基于不同的索引结构,如R 树、四叉树等。

4.时空数据仓库模型(Spatio-Temporal Data Warehouse Model):这是一种用于存储和管理大规模时空数据的模型,将时空数据组织成数据仓库的形式。

时空数据仓库模型可以用于支持时空数据的分析和决策。

这些时空数据模型标准在不同的应用领域和数据管理系统中得到广泛应用,可以根据具体需求选择适合的标准。

地理时空数据模型研究及应用综述

地理时空数据模型研究及应用综述

国土资源国土资源LAND&RESOURCESLAND&RESOURCES44地理时空数据模型研究及应用综述□浙江省测绘科学技术研究院 王杰栋地理信息系统(Geographic I n f o r m a t i o n S y s t e m ,GIS )的概念起源于60年代末、70年代初,其基本内容主要包括地理基础、标准化和数字化、多维结构等部分,可以反映出地理学中的区域综合能力、动态预测功能。

自1962年加拿大学者Roger. Tomlinson 建立了国际上第一个具有实用价值的加拿大地理信息系统CGIS 之后,很多国家相继建立了自己的地理信息系统。

同时,中国也完成了一批优秀的专用GIS 系统并投入使用。

地理实体主要通过空间、属性、时间等特征进行表达。

空间特征用于描述地理对象在地球表面及其附近位置的空间分布,属性特征着重描述地理对象的质量信息,时间特征则记录地理对象的时间尺度与时态关系。

然而,目前国内外的大多数GIS 系统主要局限于通过空间与属性数据来表达某一时刻地理实体的空间分布与相互关系,这并不能准确描述和描述真实世界中的时空变化。

由此,为满足动态目标与传感器等实时观测数据的要求,亟需发展一种新型地理信息系统——时态GIS (Temporal GIS, TGIS )。

一、TGIS 数据模型(一)时空立方体模型Hägerstrand 于1970年提出了时空立方体模型(Space-Time cube, ST-Cube ),其最初被应用于分析人类的迁徙状态并取得了较好的效果。

基于此模型,我们可以直观地描述地理空间实体的位置随时间序列的演变情况,其形成的运动轨迹称为时空路径。

不难理解,若一个时空路径为垂线段则表示地理实体在该时间跨度内的空间位置保持不变,若时间路径为倾斜线段则表示地理实体在时间跨度内发生了移动,且移动速度可以用斜率的倒数来表示。

(二)快照序列模型快照序列模型通常包括矢量快照模型和栅格快照模型。

地空一体化战场时空数据组织模型及应用

地空一体化战场时空数据组织模型及应用

地空一体化战场时空数据组织模型及应用近年来,随着战场从单一层面向多层面发展,地空一体化战场出现,使得地面和空中作战单元沿着地面和航空空间共同进行战斗。

在这种新型的空地联合作战环境中,数据的有效组织和利用是决定作战胜负的关键因素。

有效的组织、处理和有效地利用战场数据是实现战场整合管理的基础,地空一体化战场时空数据组织模型及应用正是从这个角度出发,研究地空一体化战场中的时空数据组织与利用。

一、地空一体化战场时空数据组织模型地空一体化战场中,时空数据组织模型是地面和航空空间中作战单元处理不同类型信息的基础。

这种新型战场中的时空数据组织模型,主要是根据作战单元的不同位置、时间、方向、范围、作战任务等因素,建立数据组织模型,分析战场中对象的空间结构,有效地看清战场整体状况,从而形成科学、有效、全面的组织模型。

在建立时空数据组织模型的过程中,首先要明确作战单元所处的地空环境,其次要确定作战单元的位置、方向、范围等参数,再根据实际情况建立相应的空间数据组织模型,最后对作战单元的实时信息进行数据处理。

建立的数据组织模型可以有效地帮助作战单元实现空间数据的组织和处理,使得作战单元可以有效地从战场数据中获取有用信息,实现有效战斗管理。

二、地空一体化战场时空数据组织模型及应用地空一体化战场时空数据组织模型及应用也包括从数据采集、数据处理、数据分析到数据应用等过程。

此外,在建立模型中,还要考虑到网络体系的设计,以保证信息的流通和有效传输。

具体来说,首先要实现数据采集,主要要求对不同类型的战场信息及数据进行有效采集,确保这些信息和数据的有效性和准确性;其次要建立时空数据处理系统,确保数据的准确性和可靠性,提高数据处理和分析的效率;第三要建立时空数据分析模型,将不同的数据进行整合分析,有助于作战单元对战场完整的把握;最后要进行有效的数据应用,准确地把握战场实际状况,及时有效地修正作战计划,从而更好地实现一体化的战场控制。

总之,从地空一体化战场中进行数据组织和利用,建立地空一体化战场时空数据组织模型及应用,有助于作战单元有效地实现战斗管理,从而取得战斗胜利。

时空数据模型

时空数据模型
• 因此提出一种面向非遗文化空间的时空 数据模型,对非遗文化空间的时空演变 过程进行表达和分析。
2.建立非遗文化空间时空 数据模型的关键
2.1 时空特性 2.2 载体类型
把握非遗文化空间的时空特征, 理清非遗文化空间载体的类型, 并对其进行时空表达,是建立 非遗文化空间时空数据模型的 关键。
非遗文化空 间的基
• 为了更好地表达非遗文化空间对象的行 为特性和变化原因,本模型中讨论的 “事件”和“过程”都是在特定尺度下 的划分。
3.1 模型的主要构成
事件
事件的类型、发生的时间、 地点、参与者、事件产生 的原因等。
过程
被用来描述事件,主要是指对 象演化进程中相邻两个状态间 的系列操作,这些操作最终引 起对象发生由量到质的变化。
感谢您的聆听
籍贯地、工作地等的空间分布格局,描 述传承人在不同发展时期的空间动态。
4.2 载体数据采集及表达
数据采集
整理出孝感雕花剪纸相关资源信息 123 条, 时间跨度为: 1950年 1 月 1 日至 2017 年 12 月 31 日。其中,围绕传承人建立的数据信息 如图。
提取传承人相关的事件( 包括发生的时间、 范围、过程与变化等) 、空间位置及状态等 信息,并建立空数据库。时空数据模型构建
——非物质文化遗产文化空间
目录
1. 概述
2. 建立非遗文化空间时空
数据模型的关键
非遗非遗文化空间的时
3. 空数据模型
4. 案例
1.概述
1.1 背景及意义 1.2 时空数据模型
1.1 背景及意义
• 非物质文化遗产 是一种产生于特定时空、以人为依托而进行世代相承的活态艺术。 • “文化空间”,即“具有特殊价值的非物质文化遗产的集中表现”,是非遗不可分割的

时空数据库的建模与查询技术研究

时空数据库的建模与查询技术研究

时空数据库的建模与查询技术研究摘要:时空数据库是一种专门用于存储、管理和查询时空数据的数据库系统。

随着时空数据的广泛应用,如位置服务、交通管理、环境监测等,时空数据库的建模和查询技术逐渐成为研究的热点。

本文围绕时空数据库的建模和查询技术展开研究,介绍了时空数据库的概念和特点,分析了时空数据建模的方法,探讨了时空查询语言和时空索引技术,并对未来时空数据库技术的发展趋势做出了展望。

1. 引言在当今信息时代,时空数据的重要性日渐凸显。

时空数据是指具有时序和空间属性的数据,如交通流量数据、卫星遥感数据等。

传统的关系数据库无法存储和管理时空数据,因此时空数据库的建立具有重要的意义。

2. 时空数据库的概念与特点时空数据库是一种专门用于存储和管理时空数据的数据库系统。

它具有以下特点:2.1 时序性:时空数据的一个重要特点是具有时序性,时空数据库需要能够存储和处理时间上的变化。

2.2 空间性:时空数据同样具有空间性,时空数据库需要提供空间查询和分析的能力。

2.3 多维性:时空数据的属性通常具有多个维度,时空数据库需要提供多维数据分析的功能。

3. 时空数据的建模方法时空数据的建模是时空数据库设计的关键步骤,常用的建模方法包括对象关系模型、格网模型和网格空间模型。

3.1 对象关系模型:基于对象关系模型的建模方法将时空数据建模为对象和关系的集合,适用于小规模的时空数据。

3.2 格网模型:格网模型是将二维空间按照一定规则划分为格网单元,将格网单元作为基本的空间单位进行建模。

3.3 网格空间模型:网格空间模型是一种将空间划分为规则的网格,每个网格单元包含时空属性,适用于大规模时空数据的建模。

4. 时空查询语言时空查询语言是进行时空数据查询的重要手段,它扩展了传统的SQL语言,增加了时间和空间查询条件的支持。

常用的时空查询语言有TSQL和STSQL。

4.1 TSQL:TSQL是一种基于时间查询的语言,它支持时间查询条件的限定,例如查询某一时间段内的数据。

贝叶斯时空高斯过程模型

贝叶斯时空高斯过程模型

贝叶斯时空高斯过程模型全文共四篇示例,供读者参考第一篇示例:贝叶斯时空高斯过程模型是一种统计模型,它结合了贝叶斯统计和高斯过程,用于对时空数据进行建模和预测。

在实际应用中,贝叶斯时空高斯过程模型被广泛应用于气象预测、地震预测、人口迁移模式等领域。

本文将从概念、原理、应用等方面对贝叶斯时空高斯过程模型进行深入探讨。

一、概念贝叶斯时空高斯过程模型是一种统计模型,它基于高斯过程和贝叶斯统计的原理,用于对时空数据进行建模和预测。

高斯过程是一种连续随机变量的分布,通过其均值和协方差函数来描述变量之间的相关性。

而贝叶斯统计是一种基于贝叶斯定理的统计推断方法,通过先验分布和观测数据来更新参数的后验分布。

贝叶斯时空高斯过程模型结合了这两种方法的优势,可以对时空数据进行有效的建模和预测。

二、原理贝叶斯时空高斯过程模型的核心原理在于高斯过程的建模和贝叶斯推断。

我们假设时间和空间上的随机变量服从高斯过程,即满足高斯过程的均值和协方差函数。

然后,我们通过贝叶斯推断的方式更新参数分布,从而得到最优的模型参数。

在贝叶斯时空高斯过程模型中,我们通常会定义一个空间上的协方差函数和一个时间上的协方差函数,用来描述地点之间和时间点之间的相关性。

通过这两个协方差函数,我们可以构建一个时空协方差函数,来描述整个时空数据的相关性。

在实际应用中,我们可以通过观测数据来估计模型参数,并利用模型进行预测和推断。

三、应用贝叶斯时空高斯过程模型在各个领域都有广泛的应用。

在气象预测中,我们可以利用时空高斯过程模型来对降雨量、气温等气象数据进行建模和预测,从而提高气象预测的准确性。

在地震预测中,我们可以利用时空高斯过程模型来对地震发生地点和时间进行建模,从而提前预警地震发生的可能性。

在人口迁移模式中,我们可以利用时空高斯过程模型来对人口流动的规律进行分析,从而为城市规划和政策制定提供参考。

贝叶斯时空高斯过程模型是一种强大的统计模型,可以对时空数据进行有效的建模和预测。

时空数据模型简介资料

时空数据模型简介资料

时空数据模型研究进展
时空数据模型的研究历程可概括为20世纪70年代 的酝酿起始阶段,80年代的开拓阶段和90年代后的 大发展阶段。前两个阶段重点主要表现为空间为主 的GIS功能研究和以时态信息处理为主的时态数据库 研究,时空结合方面涉及的很少。20世纪90年代初 期,出现了大量专门用于处理时空数据的模型和原 型系统。目前主要时空数据模型设计方法有一下几 种:一是在栅格、矢量空间模型基础上扩展时间维, 二是在时间模型基础上扩展空间维,三是面向对象 方法。
时空数据模型简介
时空数据模型是TGIS和STDB的基础。时 空数据模型通常由数据结构、数据操作和完 整性约束三部分组成(张祖勋等,1996)。 时空数据模型是一种有效组织和管理时态地 学数据、空间、专题、时间语义完整的地学 数据模型,它不仅强调地学对象的空间和专 题特征,而且强调这些特征随时间的变化, 既时态特征。建立合理、完善、高效的时空 数据模型是实现时态GIS的基础和关键。
时空立方体模型
时空立方体模型用几何立体图形表示二维图形 沿时间维发展变化的过程,表达了现实世界平面 位置随时间的演变,将时间标记在空间坐标点上。 给定一个时间位置值,就可以从三维立方体中获 得相应截面的状态,也可扩展表达三维空间沿时 间变化的过程。缺点是随着数据量的增大,对立 方体的操作会变的越来越复杂,以至于最终变的 无法处理。
(3)在地学对象认识和表达过程中,领域专家、 数据收集者和GIS技术人员存在着重要的概念差异, 导致在对象抽象方式、模型定义、数据结构和组织 方式上存在着争议。经验表明,仅仅依靠简单的时 间或空间的扩展方式是无法灵活、高效地表达时空 现象及其关系的,也不能满足时态GIS的需求。 (4)时空数据模型通用性低。目前的时态GIS主 要有一下3种实现方式:基于商业GIS系统的时态扩 展,用于科学研究的原型系统,针对特殊应用的时 空查询工具。然而这些系统大多是针对特定的应用 而设计的,只能使用特定的数据结构,通用性非常 弱。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间和时间是现实世界最基本、最重要的属 性。许多空间应用系统,尤其是地理信息系统 (GIS)都需要表达地学对象的时空属性。例如 在地籍变更、环境监测、城市演化等领域都需 要管理历史变化数据,以便重建历史、跟踪变 化、预测未来。传统的GIS数据模型强调地学对 象的静态描述,通常采用矢量或栅格的方式来 描述空间数据。这种机制限制了如位移、变迁 等动态信息的表达。
面向对象的时空数据模型ቤተ መጻሕፍቲ ባይዱ
面向对象方法是在节点、弧段、多边形等几 何要素的表达上增加时间信息,考虑空间拓扑 结构和时态拓扑结构。一个地理实体,无论多 么复杂,总可以作为一个对象来建模。缺点是, 没有考虑地理现象的时空特性和内在联系,缺 少对地理实体或现象的显式定义和基础关系描 述。
时空数据模型研究中存在的问题
时空立方体模型
时空立方体模型用几何立体图形表示二维图形 沿时间维发展变化的过程,表达了现实世界平面 位置随时间的演变,将时间标记在空间坐标点上。 给定一个时间位置值,就可以从三维立方体中获 得相应截面的状态,也可扩展表达三维空间沿时 间变化的过程。缺点是随着数据量的增大,对立 方体的操作会变的越来越复杂,以至于最终变的 无法处理。
时空对象模型
时空对象模型认为世界是由时空原子 (Spatio-temporal Atom)所组成,时空 原子为时间属性和空间属性均质的实体。 在该模型中时间维是与空间维垂直的,它 可表示实体在空间和属性上的变化,但未 涉及对渐变实体的表示。缺点是随着时间 发生的空间渐进的变化不能在时空对象模 型中表示,没有一个描绘变迁、过程的概 念。
时空复合模型
将每一次独立的叠加操作转换为一次性的合成叠加, 变化的累积形成最小变化单元,由这些最小变化单元构 成的图形文件和记录变化历史的属性文件联系在一起表 达数据的时空特征。最小变化单元即是一定时空范围内 的最大同质单元。其缺点在于多边形碎化和对关系数据 库的过分依赖,随着变化的频繁会形成很多的碎片。
基态修正模型
为避免连续快照模型将未发生变化部分的特征重 复记录,基态修正模型只存储某个时间点的数据状 态(基态)和相对于基态的变化量。只有在事件发 生或对象发生变化时才将变化的数据存入系统中, 时态分辨率刻度值与事件或对象发生变化的时刻完 全对应。基态修正模型对每个对象只存储一次,每 变化一次,仅有很少量的数据需要记录。基态修正 模型也称为更新模型,有矢量更新模型和栅格更新 模型。其缺点是较难处理给定时刻时空对象间的空 间关系,且对很远的过去状态进行检索时,几乎对 整个历史状况进行阅读操作,效率很低。
地学中的时空观
人类对地学中时空概念的认知可以追溯到19世纪末20世纪 初。1899年Davis对地貌循环的研究;1925年Sauer对历史地理 学的研究;1939年Hartshorne对地域差异的研究;说明了人类 很早就认识到地学中时空相互作用的重要性。 地学对象之间的空间关系往往随着时间而变化,与时间关 系交织在一起就行成了多种时空关系。Tryfona把空间关系分为 拓扑关系、方向关系和度量关系,把时间分为有效时间、事务 时间和存在时间。Allen提出了基于时态区间代数理论的时态拓 扑关系模型。Egenhofer 、Szmurlo等对空间拓扑关系的渐变规 律、时空概念理解做了一些探讨,给出了反映拓扑关系时空变 化的最邻近拓扑关系邻接图。舒红、陈军等给出了时空拓扑关 系的定义和基于点集理论的形式化描述,并针对时空数据建模 中存在的时空语义模糊问题,提出了时间尺度和事件序列两种 时间概念模型。
时空数据模型的类型
随着近年来以空间数据库为基础的GIS研 究和应用的不断深入,随时间而变化的信息 越来越受到人们的关注,因而提出了时态 GIS(简称TGIS)的概念。时态GIS的组织核 心是时空数据库,时空数据模型则是时空数 据库的基础。但是由于空间、属性、时间三 者之间的关系和结构组织非常复杂,理想的 时空数据库和时态GIS系统目前还没有出现。 目前研究比较有影响的时空数据模型有以下 几种:
时态地理信息系统是一种采集、存储、管 理、分析与显示地学对象随时间变化信息的计 算机系统。时态GIS的核心问题之一是时空数据 模型的建立。
时空数据模型的核心问题是研究如何有效地表达、 记录和管理现实世界的实体及其相互关系随时间不 断发生的变化。这种时空变化表现为三种可能的形 式,一是属性变化,其空间坐标或位置不变;二是 空间坐标或位置变化,而属性不变,这里空间的坐 标或位置变化既可以是单一实体的位置、方向、尺 寸、形状等发生变化,也可以是两个以上的空间实 体之间的关系发生变化;三是空间实体或现象的坐 标和属性都发生变化。当前时态GIS研究的主要问题 有:表达时空变化的数据模型、时空数据组织与存 取方法、时空数据库的版本问题、时空数据库的质 量控制、时空数据的可视化问题等。
连续快照模型
连续快照模型在数据库中仅记录当前数 据状态,数据更新后,旧数据变化值不再 保留,即“忘记”过去的状态。连续的时 间快照模型是将一系列时间片段快照保存 起来,以反映整个空间特征的状态。由于 快照将对未发生变化的所有特征重复进行 存储,会产生大量的数据冗余,当事件变 化频繁时,且数据量较大时,系统效率急 剧下降。
时空数据模型研究进展
时空数据模型的研究历程可概括为20世纪70年代 的酝酿起始阶段,80年代的开拓阶段和90年代后的 大发展阶段。前两个阶段重点主要表现为空间为主 的GIS功能研究和以时态信息处理为主的时态数据库 研究,时空结合方面涉及的很少。20世纪90年代初 期,出现了大量专门用于处理时空数据的模型和原 型系统。目前主要时空数据模型设计方法有一下几 种:一是在栅格、矢量空间模型基础上扩展时间维, 二是在时间模型基础上扩展空间维,三是面向对象 方法。
尽管时空数据模型的研究已经取得了比较丰 硕的成果,但目前所能看到的各种方法中,理 论层面和概念模型的研究居多,然而其成果仍 然局限于概念模型和原型系统阶段。 距离实 际应用还相差较远。时空数据表达、时空地理 数据库以及时态GIS的研究仍然存在很多问题, 具体表现在:
相关文档
最新文档