第五章 数字基带传输系统要点

合集下载

第5章数字基带传输

第5章数字基带传输

码及HDB3等码的编码及译码 三、差分码、AMI码及 差分码、 码及 等码的编码及译码
5、密勒码 、 编码规则: 码用码元中心点出现变化来表示, 编码规则:“1” 码用码元中心点出现变化来表示,即 来表示, 用“10” 或“01”来表示,码元交界处电平不变;“0” 来表示 码元交界处电平不变; 码分两种情况来表示:单个“ 码分两种情况来表示:单个“0” 用“00”或“11”来表 或 来表 码元交界处电平不变;如果出现连“ , 示,码元交界处电平不变;如果出现连“0”,则“00” 交替变化。 与“11”交替变化。 交替变化 如: 1 1 0 0 0 1 10 0 00 1 01 1 0
P ( f ) = 2 f b P (1 − P ) G1 ( f ) − G2 ( f )
2 2
2
此项为连续谱
+ f b PG1 (0) + (1 − P )G2 (0) δ ( f ) 此为直流分量
+ 2 fb
其中: 其中:
2
∑ PG (mf
m =1 1

2 b
) + (1 − P)G2 (mf b ) δ ( f − mf b )
常用码型示意图
5.1.2
数字基带信号的码型
差分码、 码及HDB3等码的编码及译码 三、差分码、AMI码及 码及 等码的编码及译码
1、差分码的编码及译码 、 用相邻码元的变化来表示信息。编码公式为: 用相邻码元的变化来表示信息。编码公式为:
bn = a n ⊕ bn −1
如信息a 如信息an为: 则差分码b 则差分码 n为: 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 译码公式为: 译码公式为:

现代通信原理第5章数字基带传输系统..

现代通信原理第5章数字基带传输系统..

4T
5T
6T
7T
t
图5-4 双极性归零码NZ
以上四种码型是最简单的二元码,它们有丰富的低 频乃至直流分量,不能用于有交流耦合的传输信道。另 外,当信息中出现长1串或长0串时,不归零码呈现连续 的固定电平,没有电平跃变,也就没有定时信息。这些 码型还存在的另一个问题是,信息1与0分别对应两个传 输电平,相邻信号之间取值独立,相互之间没有制约, 所以不具有检测错误的能力。由于以上这些原因,这些 码型通常只用于设备内部和近距离的传输。
2
2
(5-4) 式中, f s 1 / Ts ,V1 ( f ), V2 ( f ) 分别是 v1 (t ) 与v2 (t ) 的傅里叶变 换。
由式(5-4)可以看出, s (t ) 的功率谱包含两个部分,第一 部分由有冲激函数 ( f mf s ) ,所以为离散谱;第二部分由V1 ( f ) 和 V2 ( f ) 构成,为连续谱。 数字基带信号的功率谱密度对于数字基带传输系统的设 计具有非常重要的作用,系统可根据功率谱密度中的连续谱 确定数字基带信号的带宽。根据离散谱可以确定随机序列是 否包含直流分量(m 0 )及定时分量( m 1)。
s s
若 g (t )是 幅 度 为 1 、 占 空 比 为 50% 的 归 零 矩 形 脉 冲 , fTs 。 则 G( f ) Ts Sa
2 2
式(5-5)的离散谱中,当 m 0 时,G(mfs ) Ts Sa(0) 0,因 此离散谱中有直流分量;当 m 为奇数时,G (mf s ) Ts Sa( m ) 0, 2 2 尤其当m 1时, G( f s ) 0 。因而该信号包含离散的定时分量; Ts m 当 为偶数时, G (mf s ) Sa( 。 )0 m

通信原理第5章数字基带传输系统

通信原理第5章数字基带传输系统
s(t)的短截。即
N
sT (t) sn (t)
n N
为了使频谱分析的物理概念清楚,推导过程简 化,将sT(t)分解成稳态波vT(t)和交变波uT(t)。
24
稳态波:是随机序列s(t)的统计平均分量,
取决于每个码元内出现g1(t)、 g2(t)的概率加 权平均,且每个码元统计平均波形相同,因
此可表示成:
13
2. 双极性不归零码波形(BNRZ)
脉冲的正、负电平分别对应于二进制代码1、0。
特点:当0、 1符号等概出现时无直流分量(幅度相 等、极性相反的双极性波形) 。 接收端判决电平为 0,不受信道特性变化的影响,抗干扰能力较强。双 极性波形有利于在信道中传输。
E
10
-E
14
3. 单极性归零波形(RZ)
f
s
Pg1(t) (1 P)g2 (t) e jms d
f s PG1(m s ) (1 P)G2 (ms )
28
式中
G1(ms ) g1(t)e jmstdt
G2 (ms ) g2 (t)e jmstdt
29
把得到的Cm代回v(t)表达式得
v(t) f s PG1(m s ) (1 P)G2 (m s )e jmst
代码
10
0
Ts
12
此波型不宜传输。因为:
1)有直流分量,一般信道难于传输零频附近的 频率分量。 2)收端判决门限电平与信号功率有关,受信道特 性变化影响,不方便。 3)不能直接用来提取位同步信号,因NRZ连0序 列中不含有位同步信号频率成分。 4)要求传输线路有直流传输能力,即有一根需要 接地。
此波形只适用于计算机内部或极近传输。
信道匹配, 便于传输,减小码间串扰,利于同步提取

第五章数字信号的基带传输

第五章数字信号的基带传输

第五章 数字信号的基带传输基带传输系统频带传输系统(调制传输系统)数字基带信号:没有经过调制的原始数字信号。

(如各种二进制码PCM 码,M ∆码等)数字调制信号:数字基带信号对载波进行调制形成的带通信号。

5.1、基带信号的码型一、数字基带信号的码型设计原则:1. 对传输频带低端受限的信道,线路传输的码型的频谱中应该不含有直流分量;2.信号的抗噪声能力强;3.便于从信号中提取位定时信息;4.尽量减少基带信号频谱中的高频分量,节省传输频带、减小串扰; 5.编译码设备应尽量简单。

二、数字基带信号的常用码型。

1、单极性不归零码NRZ (Non Return Zero )脉冲宽度τ等于码元宽度T特点:(1)有直流,零频附近的低频分量一般信道难传输。

(2)收端判决门限与信号功率有关,不方便。

(3)要求传输线一端接地。

(4)不能用滤波法直接提取位定时信号。

2、双极性非归零码(BNRZ )T =τ,有正负电平特点:不能用滤波直接提取位定时信号。

⎩⎨⎧数字通信系统3、单极性归零码(RZ)τ<T特点:(1)可用滤波法提取位同步信号(2)NRZ的缺点都存在4、双极性归零码(BRZ)特点:(1)整流后可用滤波提取位同步信号(2)NRZ的缺点都不存在5、差分码电平跳变表1,电平不变表0 称传号差分码电平跳变表0,电平不变表1 称空号差分码特点:反映相邻代码的码元变化。

6、传号交替反转码(AMI)τ)归零码表0用零电平表示,1交替地用+1和-1半占空(T5.0=示。

优点:(1)“0”、“1”不等概时也无直流(2)零频附近低频分量小(3)整流后即为RZ码。

缺点:连0码多时,AMI整流后的RZ码连零也多,不利于提取高质量的位同步信号(位同频道抖动大)应用:μ律一、二、三次群接口码型:AMI加随机化。

7、三阶高密度双极性码()3HDBHDB3码编码步骤如下。

①取代变换:将信码中4个连0码用取代节000V或B00V代替,当两个相邻的V码中间有奇数个1码时用000V代替4个连0码,有偶数个1码时用B00V代替4个连0码。

第5章数字基带传输系统PPT课件

第5章数字基带传输系统PPT课件

0 T 2T 3T 4T 5T 6T 7T
t
图5-4 双极性归零码NZ
以上四种码型是最简单的二元码,它们有丰富的低 频乃至直流分量,不能用于有交流耦合的传输信道。另 外,当信息中出现长1串或长0串时,不归零码呈现连续 的固定电平,没有电平跃变,也就没有定时信息。这些 码型还存在的另一个问题是,信息1与0分别对应两个传 输电平,相邻信号之间取值独立,相互之间没有制约, 所以不具有检测错误的能力。由于以上这些原因,这些 码型通常只用于设备内部和近距离的传输。
1 1 1 0 1 0 1
0 T 2T 3T 4T 5T 6T 7T
t
图5-3 单极性归零码NZ
(4) 双极性归零码RZ
用正极性的归零码和负极性的归零码分别表示1和0。 这种码兼有双极性和归零的特点。虽然它的幅度取值存 在三种电平,但是它用脉冲的正负极性表示两种信息, 因此通常仍归入二元码。
1 1 1 0 1 0 1
由数字基带信号的模型可见,数字基带信号通常是 一个平稳随机过程。 要在数字基带系统中传输它,必须 了解它所占的频带宽度、所包含的频谱分量,才能确定 信号频谱与传输信道特性是否匹配,以及能否从信号中 提取定时分量。
按照式(5-1)和式(5-2)所给出的基带信号模
型,若基带信号s(t)的相关函数表示为
第5章 数字基带传输系统
5.1 数字基带信号 5.2 码型变换 5.3 数字基带信号传输与码间干扰 5.4 无码间干扰数字基带传输系统的误码特性 5.5 眼图 5.6
5.1 数字基带信号
数字通信系统是以数字信号为载体传输信息。而数 字信号可以是模拟信号经数字化处理后而形成的脉冲 编码信号,也可能是来自计算机、传真机等数据终端 设备的信号。数字基带信号的特点是信号频带通常从 直流和低频开始并且未经载波调制。

数字信号的基带传输

数字信号的基带传输

,图
5 - 4(c)画出了
ut ut
下面我们根据式(5.2 - 5)和式(5.2 - 8), 分别求出稳
态波 V t 和交变波 ut 的功率谱,然后根据式(5.2 -
6)的关系,将两者的功率谱合并起来就可得到随机基
带脉冲序列 S t 的频谱特性。
1. V的功t 率谱密度
Pv f
由于 是以 为周期的周期信号,
另一种比较简单的方法是以随机过程功率谱的原始定义为出发点,求出数字随机序列的 功率谱公式。
设二进制的随机脉冲序列如图 5 - 4(a)所示,其中,假设
表示“0”码, 表示“1”码。 和 在实际中可以是任意的脉冲,但为了便于在
图上g1区分t ,这里我们把
g画2成宽t 度为Ts的方波,把 g1 画t 成宽度g为2 Tst的三角波。
g
t
A t
2
0 t 其它值
T 22
T
22
其频谱为:G
A
Sa
2
4 2
2 4
此双极性信号的功率谱密度为:
PS
1 TS
G 2
1 TS
A2
2
Sa2
2
A2TS 4
Sa2
TS
4
近似带宽可视为:
BS
4
TS
2 2 1 TS
TS 2
8 4
TS
TS
4 8
TS
TS
(2) 若 g t 为单极性信号,则:
数字基带信号是随机的脉冲序列,没有确定的频谱函数, 所以只能用功率谱来描述它 的频谱特性。方法有二:
1:由随机过程的相关函数去求随机 过程的功率(或能量)谱密度就是一种典型 的分析广义平稳随机过程的方法。但这 种计算方法比较复杂。

第5章 数字信号基带传输.

第5章 数字信号基带传输.

第5章数字信号基带传输知识点:(1 信号设计——码型、波形是数字编码传输的基础;(2 随机数字波形序列的功率谱特性;(3 数字基带信号传输系统构成及其主要知识;(4 消除符号间干扰理论——Nyquist 准则基本原理及实施技术;(5 均衡的基本概念。

知识点层次:(1 掌握主要码型如双极性不归零码、AMI 、差分码等构成特点,理解其他码型特征;(2 理解功率谱构成特征,掌握决定功率谱的主要参量;(3 掌握奈氏第一准则及有关参数、关系,理解第二准则基本思想;(4 了解均衡目的及主要做法;(5 掌握并理解各典型例题及简答填空内容。

第五章数字信号基带传输返回本章讨论了三个问题:(1)发送信号的码型与波形选择及其功率谱特征;(2)符号间干扰及奈奎斯特准则——关于ISI 的产生机理与消除ISI 的基本原理;(3)作为消除ISI 及其它噪声、干扰影响,进行的接收波形均衡,以及直观评价接收效果的方法(眼图)。

现分别总结如下:1. 数字基带信号码型与波形设计(选择),首先应适于通信传输的基本要求,尽可能保证较高的可靠性及带宽利用率。

常用码型针对不同的要求,各有不同特点。

就二元信号来说,NRZ 、AMI 、CMI 、差分码等各有优势,并有很好的功率谱特性。

HDB 3码多用于PCM 基群线路码型,以及A 律PCM 各次群。

从减少平均误差来看,自然码不如格雷码。

用什么形状的波形表示各种码型,也需考究。

通常为便于介绍原理,多利用方波,这样单符号能量似乎最大。

从减少ISI 及适应限带信道特性系统来看,方波并不是最佳的。

另外,还应考虑二元或多元符号波形之间的正交性,以利较佳接收,如NRZ 、AMI 、CMI 等,均具有正交性或变相正交,抗干扰能力强。

数字基带信号的传输系统,较多为收发同步模式。

便于收端提取同步,往往是选择码型的主要考虑之一。

2. 数字基带信号作为随机信号采样,它具有具体的自相关函数及相互确定的功率谱。

它完全取决于三原则先验概率、码型波形形状及传输速率或码间间隔。

《通信原理》樊昌信,国防工业出版社,第五版)第五章总结

《通信原理》樊昌信,国防工业出版社,第五版)第五章总结

精品行业资料,仅供参考,需要可下载并修改后使用!第五章 总结节1 数字基带信号数字基带传输系统框图组成:信道信号形成器、编码信道、接收滤波器、抽样判决器。

一、时域形式:基带信号:单极性、双极性;归零、不归零。

二、频谱结构:1.稳态波v(t)的功率谱密度P v (ω):2.交变波u(t)的功率谱密度P u (ω):3.基带信号S(t)的功率谱密度P s (ω)=P v (ω)+P u (ω) 三、常用码型:对传输码的码型结构要求:① 能从相应的基带信号中获取定时信息。

( 减少连0,连1的可能 ) ② 相应的基带信号无直流成份和只有很小的低频成份。

③ 适应性强,不受信息源统计特性[P 、1-P]的影响。

④ 尽可能提高传输速率(传输效率)。

1.AMI 码(传号交替反转码):编码规则、AMI 码特点。

1B / 1T 码型 基本码()()∑+∞-∞==n n t s t s ()()()⎩⎨⎧---=pnT t g p nT t g t s s s n 121概率概率()()s m m v mf f C f P -=∑+∞-∞=δ2()()()()s m s s s mf f mf G p mf pG f --+=∑+∞-∞=δ22121()()[]()()()()2212112limf G f G p p f T N U E P ssT N u --=+=∴∞→ωω2.HDB3码(三阶高密度双极性码):编码规则、HDB3码特点。

1B / 1T 码型 改进码节2 性能分析一、数字基带传输系统模型:发送滤波器、恒参信道、噪声叠加、接收滤波器、抽样判决器。

二、码间串扰无噪分析 1.时域无码间串扰条件:2.频域无码间串扰条件:3.频带利用率=码元速率/传输带宽 有效性指标 最高2波特/Hz 4.理想特性的逼近——“滚降”特性优点:“尾巴”衰减振荡幅度小,对定时信号的要求可降低。

缺点:无码间串扰的最高频带利用率较低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆工程学院
教案
课程名称:数字通信技术
课程代码: 201303011
任课教师:张洪梅
授课班级: 1301001、1303201 授课时间: 2014-2015学年第1学期
重庆工程学院教案
在信号随信道特性变化时,难以保持最佳门限;在输入为连“1”或连“0”
码现已在高速网络技术中得到了应用,以前则有时作为线路码使用。

占空比指的是脉冲宽度τ与码元宽度Tb之比τ/Tb。

单极性RZ码的占空比为
RZ码的优点:发送端不必按固定频率发送信号,而接收端也不必提取同步对于差分码,即使接收端收到的码元极性与发送端完全相反,也能正确地进行判决。

重庆工程学院教案
重庆工程学院教案
重庆工程学院教案
重庆工程学院教案
重庆工程学院教案
前两种方法接收端与发送端的码元定时脉冲保持同步,相应的数据传输被称为同步(Synchronous Transmission) ;
后一种方法接收端与发送端各自采用两个互不相关的时钟电路,不能同步,
发端不发送数据时,接收端一直接收高电平,接收机以较高的速度对接收的信号进行取样检测,通常的取样速率是传输码率的16倍,也就是说在一个码元长度的时间里接收机要对信号检测16次,如果测到了一次低电平,它就认为发端可能开始发一组数。

相关文档
最新文档