数字基带传输系统概述

合集下载

数字基带传输系统课件

数字基带传输系统课件

与模拟基带传输系统的比较
1 数字基带传输系统
2 模拟基带传输系统
使用数字信号进行传输,具有高速、稳定 和可靠的特点。
使用模拟信号进行传输,传输速率和稳定 性较低。
市场前景
数字基带传输系统在通信、互联网和广播电视等领域的应用越来越广泛,市场需求不断增加。
技术要点
调制技术
将数据转换为数字信号并进行调制,常见技 术包括ASK、FSK、PSK等。
信道编码技术
在传输过程中对数字信号进行编码和解码, 实现数据的可靠传输。
解调技术
接收和解调传输的数字信号,将其还原为原 始数据。
功率控制技术
控制传输信号的功率,保证传输质量和节约 能源。
应用案例
通信网络
数字基带传输系统在各类通信 网络中广泛应用,提供高速、 稳定的数据传输。
互联网
数字基带传输系统为互联网提 供了稳定和高效的数据传输基 础。
应用领域
1 通信网络
2 互联网
3 广播电视
数字基带传输系统被广 泛应用于各类通信网络, 包括有线和无线网络。
数字基带传输系统支持 高速、稳定的数据传输, 是互联网的基础。
数字基带传输系统用于 广播电视信号的传输和 播放。
优点与缺点
优点
• 高传输速率 • 低传输误码率 • 抗干扰性强
缺点
• 对传输介质要求高 • 成本较高 • 技术要求相对复杂
组成部分
发送器
将数据转换为பைடு நூலகம்字信号并进行调制。
接收器
接收和解调传输的数字信号,并将其转换为 可识别的数据。
传输介质
用于传输数字信号的物理媒介,如光纤、电 缆等。
控制模块
管理和控制数字基带传输系统的运行和功能。

通信原理-数字基带传输系统

通信原理-数字基带传输系统

数字基带信号的表示式:表示信息码元的单个脉冲 的波形并非一定是矩形的。
若表示各码元的波形相同而电平取值不同,则 数字基带信号可表示为:
s(t) an g(t nTs ) n
式中,an - 第n个码元所对应的电平值 Ts - 码元持续时间
g(t) -某种脉冲波形
一般情况下,数字基带信号可表示为一随机脉冲序
5
第6章 数字基带传输系统
差分波形:用相邻码元的电平的跳变和不变来表示消息代码 , 图中,以电平跳变表示“1”,以电平不变表示“0”。它也称 相对码波形。用差分波形传送代码可以消除设备初始状态的 影响。
多电平波形:可以提高频带利用率。图中给出了一个四电平 波形2B1Q。
6
第6章 数字基带传输系统
通信原理
第6章 数字基带传输系统
1
第6章 数字基带传输系统
概述
数字基带信号 - 未经调制的数字信号,它所占据的频 谱是从零频或很低频率开始的。
数字基带传输系统 -不经载波调制而直接传输数字基 带信号的系统,常用于传输距离不太远的情况下。
数字带通传输系统 -包括调制和解调过程的传输系统 研究数字基带传输系统的原因:
4
第6章 数字基带传输系统
单极性归零(RZ)波形:信号电压在一个码元终止时刻前总要 回到零电平。通常,归零波形使用半占空码,即占空比为 50%。从单极性RZ波形可以直接提取定时信息 。 与归零波形相对应,上面的单极性波形和双极性波形属 于非归零(NRZ)波形,其占空比等于100%。
双极性归零波形:兼有双极性和归零波形的特点。使得接收 端很容易识别出每个码元的起止时刻,便于同步。
s(t) sn (t) n
式中
sn
(t)
g1(t nTS ) , g(2 t nTS),

数字基带传输系统的基本结构

数字基带传输系统的基本结构

数字基带传输系统的基本结构数字基带传输系统是一种用于将数字信号传输的通信系统。

其基本结构包括信源、编码器、调制器、信道、解调器和解码器等组成。

本文将逐一介绍这些组成部分的功能和作用。

1. 信源信源是数字基带传输系统的起点,其作用是产生数字信号。

信源可以是各种数字信息,如文字、音频、视频等。

通过信源的输入,数字信号被生成并传输到下一个组成部分。

2. 编码器编码器是将输入的数字信号进行编码的部分。

编码的目的是将数字信号转换为适合传输的形式,并增加抗干扰能力。

编码器可以采用多种编码方式,如霍夫曼编码、差分编码等。

编码后的信号被传输到调制器。

3. 调制器调制器是将编码后的数字信号转换为模拟信号的部分。

在数字基带传输系统中,调制器采用调制技术将数字信号转换为模拟信号。

常用的调制方式有频移键控(FSK)、相移键控(PSK)和振幅键控(ASK)等。

调制后的信号被传输到信道。

4. 信道信道是数字基带传输系统中信号传输的媒介。

信道可以是有线的,如电缆和光纤,也可以是无线的,如无线电波。

在信道中,信号可能会受到各种干扰和噪声的影响,因此需要采取适当的技术来增强信号的可靠性和抗干扰能力。

5. 解调器解调器是将经过信道传输的模拟信号转换为数字信号的部分。

解调器采用解调技术将模拟信号转换为数字信号,并将其传输到解码器。

常见的解调方式包括相干解调和非相干解调等。

6. 解码器解码器是将解调后的数字信号还原为原始信号的部分。

解码器根据编码器的编码规则,对解调后的数字信号进行解码,将其转换为原始的数字信号。

解码后的信号可以用于恢复信源产生的原始信息。

数字基带传输系统的基本结构如上所述。

通过信源产生数字信号,经过编码器、调制器、信道、解调器和解码器等组成部分的处理,最终实现对数字信号的传输和还原。

这种传输系统在现代通信中得到广泛应用,提高了通信的可靠性和效率。

数据通信原理第6章

数据通信原理第6章


码型的频域特性 抗噪声能力 提取位定时信息 简单二元码 1B2B码 AMI码 HDB3码 2B1Q码
2. 二元码

每个码元上传送一位二进制信息
3. 三元码

4. 多元码

每个码元上传送一位多进制信息
28
2.简单二元码的功率谱

花瓣形状:主瓣,旁瓣 主瓣带宽:信号的近似带宽-----谱零点带宽

数字信息--------------->码型---------->数字信息
5
数字基带信号的码型设计原则
⑴ 码型应不含有直流,且低频成分小,尽量减少高频分量以节约 频率资源减少串音;
(2)码型中应含有定时信息,便于提取定时信息;
(3)码型变换设备要简单; (4)编码应具有一定的检错能力; (5)编码方案应对信息类型没有任何限制; (6)低误码率繁殖;
H ( ) GT ( )C( )GR ( )
假定输入基带信号的基本脉冲为单位冲击δ(t),这样发送 滤波器的输入信号可以表示为
d (t )
k
a (t kT )
k b

图 6 – 6 基带传输系统简化图
38
其中ak 是第k个码元,对于二进制数字信号,ak 的取值为0、 1(单极性信号)或-1、+1(双极性信号)。
(7) 高的编码效率;
6
7
8
1.单极性非归零(NRZ)码 单极性:1---高电平;0---0电平,码元持续期间电平不变 非归零:NRZ (nor-return to zero) 有直流且有固定0电平,多用于终端设备或近距离传输 (线路板内或线路板间);

特点:发送能量大,有利于提高收端信噪比;信道上占 用频带窄;有直流分量,导致信号失真;不能直接提取 位同步信息;判决门限不能稳定在最佳电平上,抗噪声 性能差;需一端接地。

数字基带传输系统的基本原理

数字基带传输系统的基本原理

数字基带传输系统的基本原理数字基带传输系统是一种将数字信号传输到远距离的通信系统。

它的基本原理是将数字信号通过编码和调制技术转换为模拟信号,然后通过传输介质将模拟信号传输到接收端,再经过解调和解码技术将模拟信号还原为数字信号。

数字基带传输系统的基本组成部分包括发送端和接收端。

发送端主要由编码器、调制器和发送器组成,接收端主要由接收器、解调器和解码器组成。

在发送端,首先需要将数字信号进行编码。

编码的作用是将数字信号转换为模拟信号,使其能够通过传输介质传输。

常用的编码技术有非归零编码(NRZ)、归零编码(RZ)和曼彻斯特编码等。

编码后的信号经过调制器进行调制,将其转换为适合传输介质的模拟信号。

调制常用的技术有频移键控(FSK)、相移键控(PSK)和振幅键控(ASK)等。

调制后的模拟信号通过发送器发送到传输介质中。

在接收端,接收器将传输介质中的信号接收下来,并将其进行解调。

解调的作用是将模拟信号转换为数字信号,使其能够被解码器识别和还原。

常用的解调技术有相干解调和非相干解调等。

解调后的信号经过解码器进行解码,将其转换为原始的数字信号。

数字基带传输系统的传输介质有多种选择,常见的有双绞线、同轴电缆和光纤等。

不同的传输介质具有不同的传输特性和传输距离,可以根据具体需求选择适合的传输介质。

数字基带传输系统的优点是传输速率高、抗干扰能力强、传输质量稳定。

数字信号可以进行编码和调制处理,使其能够适应不同的传输介质和环境条件。

同时,数字信号的传输质量可以通过纠错码等技术进行提高,增强了系统的可靠性和稳定性。

然而,数字基带传输系统也存在一些问题和挑战。

首先,数字信号的传输距离受到传输介质的限制,传输距离较远时需要采用中继或光纤等传输增强技术。

其次,数字信号的传输过程容易受到干扰和衰减,需要采取抗干扰和信号补偿等技术进行处理。

此外,数字基带传输系统的设计和调试需要一定的专业知识和技术支持,对于一般用户来说可能较为复杂。

数字通信原理-数字基带传输系统

数字通信原理-数字基带传输系统

信道信号 形成器
GT( )
信道 C( )
接收 滤波器
GR( )
同步 提取
抽样 判决器
信道信号形成器用来产生适合于信道传输的基带信号; 信道是允许基带信号通过的媒质; 接收滤波器是用来接收信号和尽可能排除信道噪声和其他干扰的; 抽样判决器则是在噪声背景下用来判定与再生基带信号。
信道信号形成器
把原始基带信号变换成适合于信道传输的基带信号,这种 变换主要是通过码型变换和波形变换来实现的,其目的是 与信道匹配,便于传输,减小码间串扰,利于同步提取和 抽样判决。
第五章
数字信号基带传输
第一节 数字基带传输系统
数字信号 传输方式
数字基带 传输方式
数字频带 传输方式
数字基带传输
• 数字基带传输:具有低通特性的有线信道中,特别是传输 距离不太远的情况下,数字基带信号可以直接传输。直接 传输数字基带信号的方式即数字基带传输。
基带脉冲输入
信道
基带脉冲输出
干扰
数字基带传输系统示意图
数字信号频带传输
数字频带传输:大多数带通型信道,如各种无线信道和光纤信道, 数中传 输。包括调制和解调过程的传输方式称为数字频带传输。
基带脉冲输入
调制器
信道
基带脉冲输出
解调器
干扰
数字频带传输系统示意图
数字基带传输系统组成模型
n(t)
数字 基带信号
信道
• 信道是允许基带信号通过的媒质,通常为有线信道。 • 信道的传输特性通常不满足无失真传输条件,甚至是随
机变化的,信道还会引入噪声。 • 在通信系统的分析中,常常把噪声n(t)等效,集中在信
道中引入。
接收滤波器
• 滤除带外噪声,对信道特性均衡,使输出的基带波形有 利于抽样判决。

数字基带传输系统的基本结构及功能

数字基带传输系统的基本结构及功能

数字基带传输系统的基本结构及功能数字基带传输系统是一种基于数字信号基带处理的通信系统,广泛应用于短距离通信、数字局域网、多媒体设备等领域。

该系统由以下主要部分组成:1. 信号源编码:首先,需要对原始信号进行编码,将模拟信号转换为数字信号。

常见的方法包括采样、量化和编码等。

2. 基带信号处理:信号源编码后的数字信号需要进行基带信号处理,以适应传输信道的特性。

基带信号处理包括信号调制、滤波、放大等,以提高信号传输的稳定性和可靠性。

3. 信道编码:为了提高传输的可靠性,需要对基带信号进行信道编码,添加冗余信息,以便在接收端进行错误检测和纠正。

常见信道编码方式包括差错控制编码(如CRC)和前向纠错编码(如卷积码、分组码等)。

4. 调制:将基带信号或已编码信号调制为适合传输的形式,如调幅、调频、调相等。

调制的主要目的是将数字信号转换为模拟信号,以便在模拟传输媒体上进行传输。

5. 传输媒体:数字基带传输系统使用的传输媒体包括电缆、光纤、无线电波、卫星等。

传输媒体负责将调制后的信号从发送端传输到接收端。

6. 解调:接收端需要对接收到的信号进行解调,将模拟信号转换为数字信号。

解调的方式与调制方式相对应,如解调调幅、调频、调相等。

7. 信道解码:接收端在解调后需要对信号进行信道解码,以还原原始数据。

信道解码过程与信道编码过程相反,如解码差错控制码和前向纠错码等。

8. 数据判决:在接收到解码后的数据后,需要进行数据判决,以确定数据的准确性。

数据判决通常采用硬判决和软判决两种方式,其中硬判决是根据接收到的信号电压或电流直接判断数据,而软判决则是根据多个样值的统计特性进行判断。

9. 再生:在数据判决后,需要进行信号再生,以消除噪声和信号衰减的影响。

信号再生通常采用线性放大器和线性检波器等技术,以提高信号的稳定性。

10. 同步:为了保证数据的正确传输和接收,需要建立可靠的同步机制。

同步机制包括位同步、字符同步、帧同步等,以确保发送端和接收端的数据传输同步。

第六章 数字基带传输系统6.1,6.2

第六章 数字基带传输系统6.1,6.2
相邻脉冲之间必定 留有零电位的间隔

t
19
6.1.1 数字基带信号
P(f )
双极性归零码
1
t
3 TS
2
f
t
特点:兼有双极性和归零波形的特点。还可以通过简单的变换 电路(全波整流电路),变换为单极性归零码,有利于同步脉 冲的提取。
20
6.1.1 数字基带信号
(5)差分波形: 编码规则(传号差分): 1:相邻码元电平极性改变 0:相邻码元电平极性不改变 编码规则(空号差分): 1:相邻码元电平极性不改变 0:相邻码元电平极性改变
s( t ) 二进制{an } 码型变 发送 换器 符号 滤波器
信道
接收 滤波器
y( t )
抽样 判决
{ an }
n( t )
定时脉冲
cp
同步提 取电路
e
f
接收滤波输出 位定时脉冲
t
g
a
1
1 0
1
1 0 0 0
恢复的信息
t
错误码元
0
1
1
0
0
1
t
7
基带传输系统框图
再生信号波形 0 接收基带 1 0 1 判决门限
每个“1“和”0“相互独立,无错误检测能力
单极性码传输时需要信道一端接地,不能用两根芯线均不接地的 电缆传输; 接收单极性码,判别电平为E/2,由于信道衰减,不存在最佳判决 电平。

14
6.1.1 数字基带信号
(2)双极性波形: 编码规则: 1:正电平表示,整个码元期间电平保持不变。 0:负电平表示,整个码元期间电平保持不变。
10
主要内容
第6章
数字基带传输系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功率谱PDF
12
以 频分复 用为例 :
频 分 复 用 ( FDM) :(frequency division multiply) 就 是以频 段分割 的方法 在一个 信道内 实现多 路通信 的传输 体制。
调 制 --将 信 号 乘以 载波, 将信号 频谱搬 移到高 频处
基 带信号 :
频 带信号 : ( 已调调 制):
接 收滤波 器
接接 收接收 收
均均 衡均衡 器衡器 器 滤波器滤波滤波器 器
抽抽样样 抽样 判判决决器器 判 决器
数数字字 数字 基基带带信信号号 基带信号
同 同同步 步步 提 提提取 取取
信 道 是 允 许 基带信 号通过 的媒质 ,通常 为有线 信道, 如市话 电缆、 架空明 线等。
17
❖基带系统的各点波形示意图

无 码间串 扰的基 带传输 特性--奈奎斯 特第一 准则

部 分响应 系统--奈奎斯 特第二 准则
例 如 : 计 算 机输出 的二进 制序列 电 传 机 输 出 的代码 PCM码 组 , ΔM序 列
--本章6.2的主要内容
➢ 数字基带传输:是在具有低通特性的有线信道中,特别是传输距离不太远的 情况下,直接传输基带信号。
--本章的主要研究内容
➢ 数字频带(或带通)传输:是将数字基带信号经过正弦载波调制,把频谱搬 移到高频处在带通型信道(如各种无线信道和光信道)中传输。
第六章 数字基带传输系统
主要内容: 数字基带传输系统概述 数字基带信号的波形 数字基带信号的功率谱 基带传输的常用码型
重点: ➢基带信号的频谱特征 ➢常用码型的规则和选择方法 ➢奈奎斯特准则的应用 ➢时域均衡器
无码间干扰的基带传输特性
部分响应系统
基带传输系统的抗噪声性能以及眼图
时域均衡
6.1 数字基带传输系统概述
功率谱PDF
3
例如:话音信号:
4
LabView程序前面板
5
LabView程序后面板—程序框图
分支1
分支2
6
正弦信号波形及频谱
7
方波波形及频谱
8
Chirp信号波形及频谱
9
➢ 数字基带信号:二进制(或多进制)的脉冲序列(码流或比特流) 特点:没有经过正弦载波调制,频带在零频0~最高截至频率fH之间。 往往包含丰富的低频分量,甚至直流分量。
输入
形成器
信道
接收 滤波器
抽 样 基带脉冲
判决器
输出
噪声
基 带传输 系统模 型
同步 提取
➢ 信道信号形成器:把传输码变换成适宜于信道传输的基带信号波形。 ➢ 信道:信道的传输特性一般不满足无失真传输条件,因此会引起传输波
形的失真。另外信道还会引入噪声n(t),并假设它是均值为零的高斯白 噪声。 ➢ 接收滤波器: 它用来接收信号,滤除信道噪声和其他干扰,对信道特性 进行均衡,使输出的基带波形有利于抽样判决。 ➢ 同步提取:用同步提取电路从接收信号中提取定时脉冲 。 ➢ 抽样判决器:对接收滤波器的输出波形进行抽样判决,以恢复或再生基 带信号。
15
数字基带传输系统的简化数学模型是什么?
n(t)
数字 基带信号
信道信号 形成器
GT()
信道 C( )
基 带传输 系统模 型
接收 滤波器
GR( )
同步 提取
抽样 判决器
➢ 数字基带通信系统中两个变换: 消息(离散的或连续的)与数字信号间的变换。 --信源编码—模拟信号的数字传输—第9章主要研究内容 本章默认的输入是已经经过信源编码的数字信号。
Fb ( )
fa t cos at fb t cosbt fc t
cosct
ya t yb t gt
yc t
O
13
➢ 数字基带传输系统属于数字系统、基带系统,信道中传输的是数字基带信号 基带信号是数字信号,信号含丰富的低频分量,甚至直流分量 没有经过正弦载波调制,在信道中直接传输,如在某些具有低通特性的有 线信道中,特别是传输距离不太远的情况下。
数字基带信号与信道信号间的变换----在信道信号形成器中完成。
16
数数字字 数字 基基带带信信号号 基带信号
发 送滤波 器
码型和 波波形形 波形 变 变变换 换换器 器器
发发送送 发送 滤 滤滤波 波波器 器器
干干扰扰 干扰 信信信道道道
信道信号形成器
把 原 始 基 带 信号变 换成适 合于信 道传输 的基带 信号, 这种变 换主要 是通过 码型变 换、波 形变换 和发送 滤波器 来实现 的。
❖ 几个基本概念 ❖ 本章与其他通信系统的关系? ❖ 为什么要研究数字基带系统? ❖ 数字基带传输系统的简化数学模型是什么? ❖ 本章研究的主要问题是什么?
2
几个基本概念
➢ 基带信号:原始电信号。 特点:没有经过正弦载波调制,频带在零频 0~最高截至频率fH之间。
时域波形f(t) 往往包含丰富的低频分量,甚至直流 分量。例如:Chirp信号:
❖若基带信号幅值连续,是模拟信号,该系统就是模拟 系统;
❖若基带信号幅值离散,是数字信号,该系统就是数字 系统。
基带通信系统与频带通信系统区别的核心: 在 11 于是否将基带信号经过正弦载波调制:
调 制 --将 信 号 乘以 正弦载 波,将 信号频 谱搬移 到高频 处
例如:1000Hz的正弦波
时域波形f(t)
a 1
0
11
001Fra bibliotekbc
d
e
f
g
1
1
1
0
0
0
0
18
t
输入信号 码型变换后 传输的波形
信道输出
接收滤波输出 位定时脉冲 恢复的信息
错误码元
本章主要研究内容:数字基带信号的表示与传输。

数 字基带 传输系 统概要

数 字基带 信号波 形与常 用传输 码型

数 字基带 信号频 谱结构

码 间干扰 的基本 概念
❖ 研究基带传输系统的原因
在利用对称电缆构成的近程数据通信系统广泛 采用了这种传输方式;
因为基带传输系统的许多问题也是频带传输系 统必须考虑的问题,是频带传输系统研究的基 础;
任何一个采用线性调制的频带传输系统可等效 为基带传输系统来研究。
14
数字基带传输系统的简化数学模型是什么?
基带脉冲 信道信号
--本课第7、8章的主要研究内容
10
本章与其他通信系统的关系
通 信系统 一般按 在信道 中传输 的信号 的特点 来分类
依 据此分 类方法 :与数 字通信 系统对 应的是 ? 与 基 带 通 信 系统 对应的 是?
模 拟通信 系统
频带 通信系 统
模拟通信系统与数字通信系统区别的核心: 在 于基带信号的幅值是否连续:
相关文档
最新文档