高考全国卷数学试题及答案
2023年全国新高考Ⅱ卷数学试题答案

2023年全国统一高考数学试卷(新课标Ⅱ卷)(适用地区:辽宁、重庆、海南)注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,(1+3i)(3-i)对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】(1+3i)(3-i)=6+8i,故对应的点在第一象限,选A.2.设集合A={0,-a},B={1,a-2,2a-2},若A≤B,则a=A.2B.1C.D.-1【答案】B 【解析】若a-2=0,则a=2,此时A={0,-2},B={1,0,2},不满足题意;若2a-2=0,则a=1,此时A={0,-1},B={1,-1,0},满足题意.故选B.3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有.C0·C2D.C40·C₂0【答案】D【解析】根据按比例分配的分层抽样可知初中部抽40人,高中部抽20人,故选D.为偶函数,则a=A.-1B.0【答案】B.D.1C C【解析】发现是奇函数,而f(x)=(x+a)g(x)为偶函数,有f(-x)=(-x+a)g(-x)=-(-x+a)g(x)=(x+a)g(x)=f(x),故x-a=x+a,则a=0,选B.5.已知椭圆、右焦点分别为F,F₂,直线y=x+m与C交于A、B两点,若△FAB的面积是△F₂AB的面积的2倍,则m=....【答案】C【解析】由依题意可知s△n4B=2s△A₈,设椭圆的左、右焦点分别为F,F2到直线y=x+m的距离分别为d、d₂,且-2<m<0,所以有,即d₁=2d₂,将,,代入上式解得,故选C6.已知函数f(x)=ae'-Inx在区间(1,2)上单调递增,则a的最小值为A.e²B.eC.e¹D.e²【答案】C【解析】由题意可知在区间(1,2)上恒成立,即,设g(x)=xe',;则在xe(1,2)上恒有g(x)=(x+1)e²>0,所以g(x)m=g(1)=e,则,即a≥e⁻¹,故选C7.已知α为锐角,,则:A.B.C.D.【答案】D【解析】由半角公式si 解得,故选D DCBAB站:魔术大师-信信8.记S,等比数列{a,}的前n项和,若S₄=-5,S₆=21S₂,S=A.120B.85C.-85D.-120【答案】C【解析】由等比数列的性质可得S,S₄-S₂,S-S,成等比数列,因此(S₄-S₂)²=S₂(S₆-S₄),将S₄=-5,S₆=2IS₂代入上式解得S₂=-1(舍),此时,由等比数列性质可知S₄-S₂,S₆-S₄,S-S₆为等比数列,解得S=-85,故选C.二、多选题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆锥的顶点为P底面圆心为O,AB为底面的直径,∠APB=120°,AP=2,点C在底面圆周上,且二面角P-AC-O=45°,则A.该圆锥的体积为πB.该圆锥的侧面积为4√3πc.AC=2√2 D.△PAC的面积为√3【答案】AC【解析】由∠APB=120°,AP=2可知,底面直径AB=2√3,高PO=1,故该圆锥的体积为π,所以A对;该圆锥的侧面积为2√3π,所以B错.连接CB,取AC中点为Q,连接QO,PQ,易证二面角P-AC-O=45°的平面角为∠PQO=45°,所以QO=PO=1,PQ=√2,所以BC=2,所以AC=2√2,故C对;,故D错.10.设O为坐标原点,直线y=-√3(x-1)过抛物线C:y²=2pr(p>0)的焦点,且与C交于M、N两点,l为C的准线,则A.p=2B.C.以MN为直径的圆与l相切D.△OMN为等腰三角形【答案】AC【解析】直线y=-√3(x-1)与x轴的交点为(1,0)可知,抛物线的焦点的坐标为(1,0),所以p=2,故A选项正确;由kay=-√3可知直线MN的倾斜角为120°,所以,故B选项错误.过点M作准线l的垂线,交l于点M',过点N 作准线l的垂线,交l于点N';并取MN的中点为点P,过点P作准线l的垂线,交l于点P',连接MP'、NP',由抛物线的定义知MF=MM',NF=NN',所以MN|=|MM'+|NN',所以由梯形的中位线可知所以PP'=MP=PN,所以以MN为直径的圆与l相切,故C对,由图观察可知,△OMN显然不是等腰三角形,故D错.11.若函既有极大值又有极小值则:A.bc>0B.ab>0 c.b²+8ac>0 D.ac<0【答案】BCD【解析】由题可知f x的定义域为(0,+αo),。
全国卷Ⅰ2022年新高考数学真题及答案解析

绝密★启用前2022年普通高等学校招生全国统一考试数学一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{4},{31}M x N x x =<=≥∣,则M N = ()A.{}02x x ≤< B.123xx ⎧⎫≤<⎨⎬⎩⎭C.{}316x x ≤< D.1163xx ⎧⎫≤<⎨⎬⎩⎭【答案】D【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D 2.若i(1)1z -=,则z z +=()A.2-B.1- C.1D.2【答案】D【详解】由题设有21i1i i i z -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D 3.在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A.32m n -B.23m n-+C.32m n+D.23m n+【答案】B【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+.故选:B .4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,增加的水量约2.65≈)()A.931.010m ⨯B.931.210m ⨯ C.931.410m ⨯ D.931.610m ⨯【答案】C【解析】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =++=⨯⨯⨯+⨯'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213P -==.故选:D.6.记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A.1B.32C.52D.3【答案】A【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭.故选:A7.设0.110.1e ,ln 0.99a b c ===-,则()A.a b c <<B.c b a<< C.c a b<< D.a c b<<【答案】C【详解】方法一:构造法设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1()(0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1((0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C.方法二:比较法解:0.10.1a e =,0.110.1b =-,ln(10.1)c =--,①ln ln 0.1ln(10.1)a b -=+-,令()ln(1),(0,0.1],f x x x x =+-∈则1()1011x f x x x-'=-=<--,故()f x 在(0,0.1]上单调递减,可得(0.1)(0)0f f <=,即ln ln 0a b -<,所以a b <;②0.10.1ln(10.1)a c e -=+-,令()ln(1),(0,0.1],x g x xe x x =+-∈则1(1)(1)1()11x xxx x e g x xe e x x+--'=+---,令()(1)(1)1x k x x x e =+--,所以2()(12)0x k x x x e '=-->,所以()k x 在(0,0.1]上单调递增,可得()(0)0k x k >>,即()0g x '>,所以()g x 在(0,0.1]上单调递增,可得(0.1)(0)0g g >=,即0a c ->,所以.a c >故.c a b <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤四棱锥体积的取值范围是()A.8118,4⎡⎤⎢⎥⎣⎦ B.2781,44⎡⎤⎢⎥⎣⎦C.2764,43⎡⎤⎢⎥⎣⎦D.[18,27]【答案】C【详解】∵球的体积为36π,所以球的半径3R =,[方法一]:导数法设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l <≤时,0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.[方法二]:基本不等式法由方法一故所以2231211(122)64(6)(122)[](333333h h h V a h h h h h h h -++==-=-⨯⨯= 当且仅当4h =取到),当32h =时,得a =,则22min 11327;3324V a h ==⨯=当l =时,球心在正四棱锥高线上,此时39322h =+=,23322a a =⇒=,正四棱锥体积221119816433243V a h ==⨯=<,故该正四棱锥体积的取值范围是2764[,].43二、选择题:本题共4小题。
2022年高考真题全国乙卷(理科)数学【含答案及解析】

且
联立 可得
可求得此时 ,
将 ,代入整理得 ,
将 代入,得
显然成立,
综上,可得直线HN过定点
21.
(1)
的定义域为
当 时, ,所以切点为 ,所以切线斜率为2
所以曲线 在点 处的切线方程为
(2)
设
若 ,当 ,即
所以 在 上单调递增,
故 在 上没有零点,不合题意
若 ,当 ,则
所以 在 上单调递增所以 ,即
所以 在 上单调递增,
故 在 上没有零点,不合题意
若
(1)当 ,则 ,所以 在 上单调递增
所以存在 ,使得 ,即
当 单调递减
当 单调递增
所以
当
当
所以 在 上有唯一零点
又 没有零点,即 在 上有唯一零点
(2)当
设
所以 在 单调递增
所以存在 ,使得
当 单调递减
当 单调递增,
又
所以存在 ,使得 ,即
当 单调递增,当 单调递减
14.过四点 中的三点的一个圆的方程为____________.
15.记函数 的最小正周期为T,若 , 为 的零点,则 的最小值为____________.
16.己知 和 分别是函数 ( 且 )的极小值点和极大值点.若 ,则a的取值范围是____________.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(2)
证明:因为 , , ,
所以 , , ,
所以 , ,
当且仅当 时取等号.
答案及解析
注意事项:
1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.
2023年高考数学全国一卷试卷及解析

2023年高考数学全国一卷试卷及解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集{}54321,,,,=U ,集合{}41,=M ,{}52,=N ,则=⋃M C N U ()A .{}5,3,2B .{}431,,C .{}5,4,2,1D .{}5,4,3,22.()()()=-++i i i 22153()A .1-B .1C .i -1D .i+13.已知向量()1,3=a ,()2,2=b ,则=-+b a b a ,cos ()A .171B .1717C .55D .5524.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A .61B .31C .21D .325.记n S 为等差数列{}n a 的前n 项和.若1062=+a a ,4584=a a ,则=5S ()A .25B .22C .20D .156.执行右边的程序框图,则输出的=B ()A .21B .34C .55D .897.设21,F F 为椭圆1522=+y x C :的两个焦点,点P 在C 上,若021=⋅PF PF ,则=⋅21PF PF ()A .1B .2C .4D .58.曲线1+=x e y x 在点⎪⎭⎫⎝⎛21e ,处的切线方程为()A .x e y 4=B .x ey 2=C .44ex e y +=D .432ex e y +=9.已知双曲线()0,012222>>=-b a by a x C :的离心率为5,C 的一条渐近线与圆()()13222=-+-y x 交于B A ,两点,则=AB ()A .55B .552C .553D .55410.在三棱锥ABC P -中,ABC ∆是边长为2的等边三角形,2==PB P A ,6=PC ,则该棱锥的体积为()A .1B .3C .2D .311.已知函数()()21--=x ex f .记⎪⎪⎭⎫⎝⎛=22f a ,⎪⎪⎭⎫⎝⎛=23f b ,⎪⎪⎭⎫⎝⎛=26f c ,则()A .a c b >>B .c a b >>C .ab c >>D .b a c >>12.函数()x f y =的图象由⎪⎭⎫ ⎝⎛+=62cos πx y 的图象向左平移6π个单位长度,则()x f y =的图象与直线2121-=x y 的交点个数为()A .1B .2C .3D .4二、填空题:本大题动4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若3678S S =,则{}n a 的公比为.14.若()()⎪⎭⎫⎝⎛+++-=2sin 12πx ax x x f 为偶函数,则=a .15.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-1332323y x y x y x ,则y x z 23+=的最大值为.16.在正方体1111D C B A ABCD -中,4=AB ,O 为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2020年全国普通高等学校招生统一考试数学试卷 全国新高考Ⅰ卷 (含答案)

2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}2.2i 12i -= +A.1 B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
高考全国卷数学理科试题及答案详解

2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。
2021年全国新高考卷数学试题含答案

2021年全国新高考卷数学试题含答案一、选择题(每题1分,共5分)1. 下列函数中,奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^2 + 12. 已知集合A={x|0<x<3},B={x|x≤2},则A∩B等于()A. {x|0<x<2}B. {x|0<x≤2}C. {x|0≤x<3}D. {x|0≤x≤2}3. 在等差数列{an}中,若a1=1,a3=3,则公差d等于()A. 1B. 2C. 3D. 44. 若复数z满足|z|=1,则z的共轭复数z的模等于()A. 0B. 1C. 2D. z5. 下列函数中,在区间(0,+∞)上单调递减的是()A. y = e^xB. y = ln(x)C. y = x^2D. y = 1/x二、判断题(每题1分,共5分)1. 两个平行线的斜率相等。
()2. 若矩阵A可逆,则其行列式值不为0。
()3. 任何两个实数的和都是实数。
()4. 二项式展开式中,各项系数的和等于2的n次方。
()5. 函数y = x^3在区间(∞,+∞)上单调递增。
()三、填空题(每题1分,共5分)1. 若向量a=(1,2),b=(1,3),则向量a与向量b的夹角余弦值为______。
2. 在等比数列{bn}中,若b1=2,公比q=3,则b6=______。
3. 若函数f(x)=3x^24x+1,则f'(x)=______。
4. 三角形内角和为______。
5. 圆的标准方程为(xa)^2+(yb)^2=r^2,其中圆心坐标为______。
四、简答题(每题2分,共10分)1. 简述函数的极值的定义。
2. 什么是排列组合?请举例说明。
3. 请写出余弦定理的公式。
4. 简述概率的基本性质。
5. 举例说明平面向量的线性运算。
五、应用题(每题2分,共10分)1. 已知函数f(x)=x^22x+1,求f(x)的最小值。
2. 设有4个红球,3个蓝球,求从中任取3个球,恰有2个红球的概率。
历年高考数学真题(全国卷整理版)完整版完整版

参考公式:如果事件 A、B互斥,那么球的表面积公式P( A B) P( A) P(B)S 4R2如果事件 A、B相互独立,那么其中 R表示球的半径P(A B) P( A) P(B)球的体积公式如果事件 A 在一次试验中发生的概率是p ,那么V3R3n 次独立重复试验中事件 A 恰好发生k次的概率4其中 R 表示球的半径P n (k ) C n k p k (1 p)n k (k 0,1,2, n)普通高等学校招生全国统一考试一、选择题13i 1、复数i =1A 2+I B2-I C 1+2i D 1- 2i2、已知集合 A ={1.3.m },B={1,m} ,A B = A, 则 m=A0或3 B 0或3C1或3 D 1或33椭圆的中心在原点,焦距为 4 一条准线为 x=-4 ,则该椭圆的方程为A x2y2=1Bx2y2=1 16++12128C x2y2=1Dx2y28+12+=1 444已知正四棱柱ABCD- A 1B 1C1D1中,AB=2 ,CC1= 2 2 E 为 CC1的中点,则直线 AC 1与平面 BED 的距离为A2B3C2D1(5)已知等差数列{a n} 的前 n 项和为 S n, a5=5, S5=15,则数列的前100项和为10099(C)99101(A)(B)(D)100101101100(6)△ ABC 中, AB 边的高为 CD ,若a· b=0, |a|=1, |b|=2,则(A)(B)(C)(D)3(7)已知α为第二象限角,sinα+ sinβ =3,则 cos2α = 5555--(C) 9(D)3(A)3(B)9(8)已知 F1、 F2 为双曲线 C: x2-y2=2的左、右焦点,点P 在 C 上, |PF1|=|2PF2|,则 cos ∠F1PF2=1334(A) 4(B)5(C)4(D)51(9)已知 x=ln π, y=log52 ,z=e2,则(A)x < y< z(B)z<x<y(C)z < y< x(D)y < z< x(10) 已知函数y= x2-3x+c 的图像与 x 恰有两个公共点,则c=(A )-2 或 2 (B)-9 或 3 (C)-1 或 1 (D)-3 或 1(11)将字母 a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12 种( B)18 种( C)24 种( D)36 种7(12)正方形 ABCD 的边长为1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF =3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考试题(理工农医类)一、选择题:在每小题给出的四个选项中, 只有一项是符合题目要求的, 把所选项前的字母填在题后括号内.【】【】(3)如果轴截面为正方形的圆柱的侧面积是S, 那么圆柱的体积等于【】(4)方程sin2x=sinx在区间(0, 2π)内的解的个数是(A)1(B)2(C)3(D)4【】(5)【】【】(A){-2, 4}(B){-2, 0, 4}(C){-2, 0, 2, 4}(D){-4, -2, 0, 4}(7)如果直线y=ax+2与直线y=3x-b关于直线y=x对称, 那么【】(C)a=3, b=-2(D)a=3, b=6【】(A)圆(B)椭圆(C)双曲线的一支(D)抛物线【】(B){(2, 3)}(C)(2, 3)(D){(x, y)│y=x+1}【】(11)如图, 正三棱锥S-ABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点, 那么异面直线EF与SA所成的角等于【】(A)90°(B)60°(C)45°(D)30°(12)已知h>0.设命题甲为:两个实数a, b满足│a-b│<2h;命题乙为:两个实数a, b满足│a-1│<h且│b-1│<h.那么【】(A)甲是乙的充分条件, 但不是乙的必要条件(B)甲是乙的必要条件, 但不是乙的充分条件(C)甲是乙的充分条件(D)甲不是乙的充分条件, 也不是乙的必要条件(13)A, B, C, D, E五人并排站成一排, 如果B必须站在A的右边(A, B可以不相邻), 那么不同的排法共有【】(A)24种(B)60种(C)90种(D)120种(14)以一个正方体的顶点为顶点的四面体共有【】(A)70个(B)64个(C)58个(D)52个(15)设函数y=arctgx的图象沿x轴正方向平移2个单位所得到的图象为C.又设图象C'与C关于原点对称, 那么C'所对应的函数是【】(A)y=-arctg(x-2)(B)y=arctg(x-2)(C)y=-arctg(x+2)(D)y=arctg(x+2)二、填空题:把答案填在题中横线上.(17)(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中, x2的系数等于.(18)已知{a n}是公差不为零的等差数列, 如果S n是{a n}的前n项的和,那(20)如图, 三棱柱ABC-A1B1C1中, 若E、F分别为AB、AC的中点, 平面EB1C1F将三棱柱分成体积为V1、V2的两部分, 那么V1:V2=.(19)函数y=sinxcosx+sinx+cosx的最大值是.三、解答题.(21)有四个数, 其中前三个数成等差数列, 后三个数成等比数列, 并且第一个数与第四个数的和是16, 第二个数与第三个数的和是12.求这四个数.(23)如图, 在三棱锥S-ABC中, SA⊥底面ABC, AB⊥BC.DE 垂直平分SC, 且分别交AC、SC于D、E.又SA=AB, SB=BC.求以BD为棱, 以BDE与BDC为面的二面角的度数.(24)设a≥0, 在复数集C中解方程z2+2│z│=a.n≥2.(Ⅰ)如果f(x)当x∈(-∞, 1]时有意义, 求a的取值范围; (Ⅱ)如果a∈(0, 1], 证明2f(x)<f(2x)当x≠0时成立.1990年试题(理工农医类)答案一、选择题:本题考查基本知识和基本运算.(1)A(2)B(3)D(4)C(5)C(6)B (7)A(8)D(9)B(10)D(11)C(12)B (13)B(14)C(15)D二、填空题:本题考查基本知识和基本运算.三、解答题.(21)本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力.解法一:①由②式得d=12-2a.③整理得a2-13a+36=0解得a1=4, a2=9.代入③式得d1=4, d2=-6.从而得所求四个数为0, 4, 8, 16或15, 9, 3, 1.解法二:设四个数依次为x, y, 12-y, 16-x①由①式得x=3y-12.③将③式代入②式得y(16-3y+12)=(12-y)2,整理得y2-13y+36=0.解得y1=4, y2=9.代入③式得x1=0, x2=15.从而得所求四个数为0, 4, 8, 16或15, 9, 3, 1.(22)本小题考查三角公式以及三角函数式的恒等变形和运算能力.解法一:由已知得解法二:如图, 不妨设0≤α≤β<2π, 且点A的坐标是(cosα, sinα), 点B的坐标是(cosβ, sinβ), 则点A, B在单位圆x2+y2=1上.连结连结OC, 于是OC⊥AB, 若设点D的坐标是(1, 0), 再连结OA, OB, 则有解法三:由题设得4(sinα+sinβ)=3(cosα+cosβ).将②式代入①式, 可得sin(α-)=sin(-β).于是α-=(2k+1)π-(-β)(k∈Z),或α-=2kπ+(-β)(k∈Z).若α-=(2k+1)π-(-β)(k∈Z), 则α=β+(2k+1)π(k∈Z).于是sinα=-sinβ, 即sinα+sinβ=0.由此可知α-=2kπ+(-β)(k∈Z),即α+β=2+2kπ(k∈Z).所以(23)本小题考查直线和平面, 直线和直线的位置关系, 二面角等基本知识, 以及逻辑推理能力和空间想象能力.解法一:由于SB=BC, 且E是SC的中点, 因此BE是等腰三角形SBC 的底边SC的中线, 所以SC⊥BE.又已知SC⊥DE, BE∩DE=E,∴SC⊥面BDE,∴SC⊥BD.又∵SA⊥底面ABC, BD在底面ABC上,∴SA⊥BD.而SC∩SA=S, ∴BD⊥面SAC.∵DE=面SAC∩面BDE, DC=面SAC∩面BDC,∴BD⊥DE, BD⊥DC.∴∠EDC是所求的二面角的平面角.∵SA⊥底面ABC, ∴SA⊥AB, SA⊥AC.设SA=a,又因为AB⊥BC,∴∠ACS=30°.又已知DE⊥SC, 所以∠EDC=60°, 即所求的二面角等于60°.解法二:由于SB=BC, 且E是SC的中点, 因此BE是等腰三角形SBC 的底边SC的中线, 所以SC⊥BE.又已知SC⊥DE, BE∩DE=E∴SC⊥面BDE,∴SC⊥BD.由于SA⊥底面ABC, 且A是垂足, 所以AC是SC在平面ABC上的射影.由三垂线定理的逆定理得BD⊥AC;又因E∈SC, AC是SC在平面ABC 上的射影, 所以E在平面ABC上的射影在AC上, 由于D∈AC, 所以DE在平面ABC上的射影也在AC上, 根据三垂线定理又得BD⊥DE.∵DE面BDE, DC面BDC,∴∠EDC是所求的二面角的平面角.以下同解法一.(24)本小题考查复数与解方程等基本知识以及综合分析能力.解法一:设z=x+yi, 代入原方程得于是原方程等价于方程组由②式得y=0或x=0.由此可见, 若原方程有解, 则其解或为实数, 或为纯虚数.下面分别加以讨论.情形1.若y=0, 即求原方程的实数解z=x.此时, ①式化为x2+2│x│=a.③(Ⅰ)令x>0, 方程③变为x2+2x=a.④.由此可知:当a=0时, 方程④无正根;(Ⅱ)令x<0, 方程③变为x2-2x=a.⑤.由此可知:当a=0时, 方程⑤无负根;当a>0时, 方程⑤有负根x=1-.(Ⅲ)令x=0, 方程③变为0=a.由此可知:当a=0时, 方程⑥有零解x=0;当a>0时, 方程⑥无零解.所以, 原方程的实数解是:当a=0时, z=0;.情形2.若x=0, 由于y=0的情形前已讨论, 现在只需考查y≠0的情形, 即求原方程的纯虚数解z=yi(y≠0).此时, ①式化为-y2+2│y│=a.⑦(Ⅰ)令y>0, 方程⑦变为-y2+2y=a, 即(y-1)2=1-a.⑧由此可知:当a>1时, 方程⑧无实根.当a≤1时解方程⑧得y=1±,从而, 当a=0时, 方程⑧有正根y=2;当0<a≤1时, 方程⑧有正根y=1±.(Ⅱ)令y<0, 方程⑦变为-y2-2y=a, 即(y+1)2=1-a.⑨由此可知:当a>1时, 方程⑨无实根.当a≤1时解方程⑨得y=-1±,从而, 当a=0时, 方程⑨有负根y=-2;当0<a≤1时, 方程⑨有负根y=-1±所以, 原方程的纯虚数解是:当a=0时, z=±2i;当0<a≤1时, z=±(1+)i, z=±(1-)i.而当a>1时, 原方程无纯虚数解.解法二:设z=x+yi代入原方程得于是原方程等价于方程组由②式得y=0或x=0.由此可见, 若原方程有解, 则其解或为实数, 或为纯虚数.下面分别加以讨论.情形1.若y=0, 即求原方程的实数解z=x.此时, ①式化为x2+2│x│=a.即| x |2+2│x│=a.③解方程③得,所以, 原方程的实数解是.情形2.若x=0, 由于y=0的情形前已讨论, 现在只需考查y≠0的情形, 即求原方程的纯虚数解z=yi(y≠0).此时, ①式化为-y2+2│y│=a.即-│y│2 +2│y│=a.④当a=0时, 因y≠0, 解方程④得│y│=2,即当a=0时, 原方程的纯虚数解是z=±2i.当0<a≤1时, 解方程④得,即当0<a≤1时, 原方程的纯虚数解是.而当a>1时, 方程④无实根, 所以这时原方程无纯虚数解.解法三:因为z2=-2│z│+a是实数, 所以若原方程有解, 则其解或为实数, 或为纯虚数, 即z=x或z=yi(y≠0).情形1.若z=x.以下同解法一或解法二中的情形1.情形2.若z=yi(y≠0).以下同解法一或解法二中的情形2.解法四:设z=r(cosθ+isinθ), 其中r≥0, 0≤θ<2π.代入原方程得r2cos2θ+2r+ir2sin2θ=a.于是原方程等价于方程组情形1.若r=0.①式变成0=a.③由此可知:当a=0时, r=0是方程③的解.当a>0时, 方程③无解.所以, 当a=0时, 原方程有解z=0;当a>0时, 原方程无零解.考查r>0的情形.(Ⅰ)当k=0, 2时, 对应的复数是z=±r.因cos2θ=1, 故①式化为r2+2r=a.④.由此可知:当a=0时, 方程④无正根;当a>0时, 方程④有正根.所以, 当a>0时, 原方程有解.(Ⅱ)当k=1, 3时, 对应的复数是z=±ri.因cos2θ=-1, 故①式化为-r2+2r=a, 即(r-1)2=1-a, ⑤由此可知:当a>1时, 方程⑤无实根, 从而无正根;.从而, 当a=0时, 方程⑤有正根r=2;.所以, 当a=0时, 原方程有解z=±2i;当0<a≤1时, 原方程有解当a>1时, 原方程无纯虚数解.(25)本小题考查椭圆的性质, 距离公式, 最大值知识以及分析问题的能力.解法一:根据题设条件, 可取椭圆的参数方程是其中a>b>0待定, 0≤θ<2π.设椭圆上的点(x, y)到点P的距离为d, 则大值, 由题设得,因此必有,由此可得b=1, a=2.所求椭圆的参数方程是.解法二:设所求椭圆的直角坐标方程是其中a>b>0待定.,设椭圆上的点(x, y)到点P的距离为d, 则其中-byb.由此得,由此可得b=1, a=2.所求椭圆的直角坐标方程是(26)本题考查对数函数, 指数函数, 数学归纳法, 不等式的知识以及综合运用有关知识解决问题的能力.(Ⅰ)解:f(x)当x∈(-∞, 1]时有意义的条件是1+2x+…(n-1)x+n x a>0x∈(-∞, 1], n≥2,上都是增函数,在(-∞, 1]上也是增函数, 从而它在x=1时取得最大值也就是a的取值范围为(Ⅱ)证法一:2f(x)<f(2x)a∈(0, 1], x≠0.即[1+2x+…+(n-1)x+n x a]2<n[1+22x+…+(n-1)2x+n2x a]a∈(0, 1], x≠0.②现用数学归纳法证明②式.(A)先证明当n=2时②式成立.假如0<a<1, x≠0, 则(1+2x a)2=1+2·2x a+22x a2≤2(1+22x)<2(1+22x a).假如a=1, x≠0, 因为1≠2x, 所以因而当n=2时②式成立.(B)假如当n=k(k≥2)时②式成立, 即有[1+2x+…+(k-1)x+k x a]2<k[1+22x+…+(k-1)2x a] a∈(0, 1], x≠0, 那么, 当a∈(0, 1], x≠0时[(1+2x+…+k x)+(k+1)xa]2=(1+2x+…+k x)2+2(1+2x+…+k x)(k+1)x a+(k+1)2x a2<k(1+22x+…+k2x)+2(1+2x+…+k x)(k+1)x a+(k+1)2x a2=k(1+22x+…+k2x)+[2·1·(k+1)x a+2·2x(k+1)x a+…+2k x(k+1)x a]+(k+1)2x a2<k(1+22x+…+k2x)+{[1+(k+1)2x a2]+[22x+(k+1)2x a2]+…+[k2x+(k+1)2x a2]}+(k+1)2x a2]=(k+1)[1+22x+…+k2x+(k+1)2x a2]≤(k+1)[1+22x+…+k2x+(k+1)2x a],这就是说, 当n=k+1时②式也成立.根据(A), (B)可知, ②式对任何n≥2(n∈N)都成立.即有2f(x)<f(2x)a∈(0, 1], x≠0.证法二:只需证明n≥2时因为其中等号当且仅当a1=a2=…=a n时成立.利用上面结果知, 当a=1, x≠0时, 因1≠2x, 所以有[1+2x+…+(n-1)x+n x]2<n[1+22x+…+(n-1)2x+n2x].当0<a<1, x≠0时, 因a2<a, 所以有[1+2x+…+(n-1)x+n x a]2≤n[1+22x+…+(n-1)2x+n2x a2]<n[1+22x+…+(n-1)2x+n2x a].即有2f(x)<f(2x)a∈(0, 1), x≠0.。