北师大版九年级数学上册期末复习压轴题专题训练试题
北师大版九年级数学上期末备考压轴题专项培优:特殊的平行四边形(解析版)

期末备考压轴题专项培优:特殊的平行四边形1.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.设点N 的坐标为(m,n).(1)若建立平面直角坐标系,满足原点在线段BD上,点B(﹣1,0),A(0,1).且BM=t(0<t≤2),则点D的坐标为(1,0),点C的坐标为(0,﹣1);请直接写出点N纵坐标n的取值范围是0<n≤;(2)若正方形的边长为2,求EC的长,以及AM+BM+CM的最小值.(提示:连结MN:=+1,=﹣1)解:(1)如图1,以直线BD为x轴,直线AC为y轴,建立平面直角坐标系,∵四边形ABCD是正方形,∴OA=OB=OC=OD,∵点B(﹣1,0),A(0,1),∴D(1,0),C(0,﹣1);过N作NH⊥BD于h,∴∠NHB=90°,∵将BM绕点B逆时针旋转60°得到BN,∴∠NBH=60°,BM=BN,∴NH=BN=t,∵0<t≤2,∴点N纵坐标n的取值范围是0<n≤;故答案为:(1,0),(0,﹣1);0<n≤;(2)如图所示,连接MN,过E作EH⊥BC,交CB的延长线于H,由旋转可得,BM=BN,∠NBM=60°,∴△BMN是等边三角形,∴MN=BM,∵△ABE是等边三角形,∴BE=BA,∠ABE=60°,∴∠ABM=∠EBN,∴△ABM≌△EBN(SAS),∴AM=EN,∴AM+BM+CM=EN+MN+CM,∴当E,N,M,C在同一直线上时,AM+BM+CN的最小值是CE的长,又∵∠ABE=60°,∠ABH=90°,∴∠EBH=30°,∴Rt△EBH中,EH=EB=×2=1,∴BH===,∴CH=2+,∴Rt△CEH中,CE====;∴AM+BM+CM的最小值为+.2.如图,在▱ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作▱ECFG.(1)证明▱ECFG是菱形;(2)若∠ABC=120°,连结BD、CG,求∠BDG的度数;(3)若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长.解:(1)证明:,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=6,AD=8,∴BD=10,∴DM=BD=5.3.如图,在正方形ABCD中,对角线AC、BD相交于点O,以AD为边向外作等边△ADE,连接CE,交BD于F.(1)如图1,若AE=,求DF的长;(2)如图2,点M为AB的延长线上一点,连接CM,连接FM且FM平分∠AMC,求证:CM=MF﹣AM.解:(1)如图1,连接OE,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,OA=OD=OB=OC∵△ADE是等边三角形∴AD=DE=AE=,∠ADE=60°∴CD=AD=,OD=OB=∵AE=DE,OD=OA∴OE垂直平分AD即OE⊥AD,DH=AH∴OE=OH+EH=+=,∵∠ADC=∠DHE=90°∴CD∥OE∴△CDF∽△EOF∴=,即DF=OF∵DF+OF=OD=∴OF=﹣DF∴DF=(﹣DF),解得:DF=﹣1.(2)如图2,连接EO,过点F作PQ⊥CD交EO于N,在MA上截取MT=MC,连接FT,设正方形边长为a,∵四边形ABCD是正方形,△ADE是等边三角形∴AD=AB=CD=DE=a,∠ADC=∠DAB=90°∠ADE=60°易证OE⊥AD∴OE=a,OD=a,由(1)知△CDF∽△EOF∴=,即a•DF=a•OF∵DF+OF=a∴OF=a﹣DF∴a•DF=a(a﹣DF)∴DF=a,∵△DPF是等腰直角三角形∴DP=PF=DF=a,∴FQ=a﹣a=a=CP,∵FM平分∠AMC,∴∠CMF=∠AMF在△MCF和△MTF中∴△MCF≌△MTF(SAS)∴CF=FT∴Rt△CFP≌Rt△FTQ(HL)∴QT=PF=a,∵AQ=DP∴AQ=QT∵BM+AB﹣AT=MT=CM∴CM﹣BM=AB﹣AT=a﹣2×a=a,CM+BM=MT+BM=BT+2BM=a﹣2×a+2BM=a+2BM∴CM2﹣BM2=(CM﹣BM)(CM+BM)=a(a+2BM)∵CM2﹣BM2=BC2=a2,∴a(a+2BM)=a2,∴BM=a在Rt△BCM中,tan∠BMC===,∴∠BMC=60°∴∠AMF=30°∴=cos∠AMF=cos30°=∴2MQ=MF∵2MQ=2BM+2BQ=2BM+2BT+2QT=(BM+BT)+(BM+BT+AT)=CM+AM ∴CM+AM=MF即CM=MF﹣AM.4.在菱形ABCD中,∠ABC=60°,BD为菱形的一条对角线.(1)如图1,过A作AE⊥BC于点E,交BD于点F,若EF=2,求菱形ABCD的面积;(2)如图2,M为菱形ABCD外一点,过A作AN⊥BM交BM的延长线于点N,连接AM,DM,AG⊥DM于点G,且∠AMN=∠AMD,求证:DM=BM+AM.(1)解:如图1中,∵四边形ABC都是菱形,∠ABC=60°,∴∠ABD=∠DBC=30°,∵AE⊥BC,∴∠BEF=90°,∵EF=2,∴BF=2EF=4,∠BFE=60°,∵∠BFE=∠ABF+∠F AB,∴∠ABF=∠F AB=30°,∴BF=AF=4,∴AE=AF+EF=6,∴AB==4,∴BC=AB=4,∴S=BC•AE=24.菱形ABCD(2)证明:如图2中,∵∠AMN=∠AMG,AN⊥MN,AG⊥DM,∴AN=AG,∵∠MNA=∠MGA=90°,AM=AM,AN=AG,∴Rt△MAN≌Rt△MAG(HL),∴NM=MG,∵∠ANB=∠AGD=90°,AN=AG,AB=AD,∴Rt△ANB≌Rt△AGD(HL),∴∠ABN=∠ADG,BN=DG,∴∠BMD=△BAD=120°,∴∠NMG=60°,∴∠AMN=∠AMG=30°,∴DM﹣BM=MG+DG﹣(BN﹣MN)=2MN=AM,∴DM=BM+AM.5.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=12,DC=3,∠EBD=60°,则BE=6时,四边形BFCE是菱形.(只需完成填空,不需写出具体过程.)(1)证明:∵在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴BE=FC,∠ABE=∠DCF,∴∠EBC=∠FCB,∴BE∥FC,∴四边形BFCE是平行四边形;(2)解:当四边形BFCE是菱形,则BE=EC,∵AD=12,DC=3,AB=DC,∴BC=6,∵∠EBD=60°,EB=EC,∴△EBC是等边三角形,∴BE=6.故答案为:6.6.已知:如图,在▱ABCD中,G、H分别是AD、BC的中点,E、O、F分别是对角线BD上的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;(3)若BD=2AB,①探究四边形GEHF的形状,并说明理由;②当AB=2,∠ABD=120°时,直接写出四边形GEHF的面积.(1)证明:连接AC,如图1所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴BD的中点在AC上,∵E、O、F分别是对角线BD上的四等分点,∴E、F分别为OB、OD的中点,∵G是AD的中点,∴GF为△AOD的中位线,∴GF∥OA,GF=OA,同理:EH∥OC,EH=OC,∴EH=GF,EH∥GF,∴四边形GEHF是平行四边形;(2)解:当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;理由如下:连接GH,如图2所示:则AG=BH,AG∥BH,∴四边形ABHG是平行四边形,∴AB∥GH,∵AB⊥BD,∴GH⊥BD,∴GH⊥EF,∴四边形GEHF是菱形;故答案为:AB⊥BD;(3)解:①四边形GEHF是矩形;理由如下:由(2)得:四边形GEHF是平行四边形,∴GH=AB,∵BD=2AB,∴AB=BD=EF,∴GH=EF,∴四边形GEHF是矩形;②作AM⊥BD于M,GN⊥BD于N,如图3所示:则AM∥GN,∵G是AD的中点,∴GN是△ADM的中位线,∴GN=AM,∵∠ABD=120°,∴∠ABM=60°,∴∠BAM=30°,∴BM=AB=1,AM=BM=,∴GN=,∵BD=2AB=4,∴EF=BD=2,∴△EFG的面积=EF×GN=×2×=,∴四边形GEHF的面积=2△EFG的面积=.7.如图,边长为6的正方形ABCD中,E,F分别是AD,AB上的点,AP⊥BE,P为垂足.(1)如图1,AF=BF,AE=2,点T是射线PF上的一个动点,当△ABT为直角三角形时,求AT的长;(2)如图2,若AE=AF,连接CP,求证:CP⊥FP.(1)解:在正方形ABCD中,可得∠DAB=90°.∵在Rt△BAE中,tan∠ABE===,∴∠ABE=30°.点T是射线PF上的一个动点,当△ABT为直角三角形时,分三种情况:①当点T在AB的上方,∠ATB=90°,显然此时点T和点P重合,即AT=AP=AB=3;②当点T在AB的下方,∠ATB =90°,如图①所示.在Rt△APB中,由AF=BF,可得:AF=BF=PF=3,∴∠BPF=∠FBP=30°,∴∠BFT=60°.在Rt△ATB中,TF=BF=AF=3,∴△FTB是等边三角形,∴TB=3,AT==3;③当点T在AB的下方,∠ABT=90°时,如图②所示.在Rt△FBT中,∠BFT=60°,BF=3,BT=BF•tan60°=3.在Rt△ATB中:AT==3.综上所述:当△ABT为直角三角形时,AT的长为3或3或3;(2)证明:如图③所示,∵四边形ABCD是正方形,∴AB=AD=BC,AD∥BC,∠DAB=90°,∴∠3=∠4.∵在Rt△EAB中,AP⊥BE,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,∴∠1=∠3=∠4,∵tan∠1=,tan∠3=,∴=,∵AE=AF,AB=BC,∴=,∴△PBC∽△P AF,∴∠5=∠6.∵∠6+∠7=90°,∴∠5+∠7=90°,即∠CPF=90°,∴CP⊥FP.8.已知:如图,在▱ABCD中,G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:四边形GEHF是平行四边形;(2)已知AB=5,AD=8.求四边形GEHF是矩形时BD的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠GDE=∠FBH,∵G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,∴在Rt△AED和Rt△CFB中,EG=AD=GD,FH=BC=HB,∴EG=FH,∠GED=∠GDE,∠FBH=∠BFH,∴∠GED=∠BFH,∴EG∥FH,∴四边形GEHF是平行四边形;(2)解:连接GH,当四边形GEHF是矩形时,∠EHF=∠BFC=90°,∵∠FBH=∠BFH,∴△EFH∽△CBF,∴=,由(1)可得:GA∥HB,GA=HB,∴四边形GABH是平行四边形,∴GH=AB=5,∵在矩形GEHF中,EF=GH,且AB=5,AD=8,∴=,解得:BF=,∴BE=BF﹣EF=﹣5=,在△ABE和△CDF中∴△ABE≌△CDF(AAS),∴BE=DF=,∴BD=BF+DF=+=.9.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△F AH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.10.在四边形ABCD中,对角线AC、BD相交于点O,过点O的两条直线分别交边AB、CD、AD、BC于点E、F、G、H.【感知】如图①,若四边形ABCD是正方形,且AG=BE=CH=DF,则S四边形AEOG= S 正方形ABCD ;【拓展】如图②,若四边形ABCD 是矩形,且S 四边形AEOG =S 矩形ABCD ,设AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);【探究】如图③,若四边形ABCD 是平行四边形,且AB =3,AD =5,BE =1,试确定F 、G 、H 的位置,使直线EF 、GH 把四边形ABCD 的面积四等分.解:【感知】如图①,∵四边形ABCD 是正方形,∴∠OAG =∠OBE =45°,OA =OB ,在△AOG 与△BOE 中,, ∴△AOG ≌△BOE ,∴S 四边形AEOG =S △AOB =S 正方形ABCD ;故答案为:;【拓展】如图②,过O 作ON ⊥AD 于N ,OM ⊥AB 于M ,∵S △AOB =S 矩形ABCD ,S 四边形AEOG =S 矩形ABCD ,∴S △AOB =S 四边形AEOG ,∵S △AOB =S △BOE +S △AOE ,S 四边形AEOG =S △AOG +S △AOE , ∴S △BOE =S △AOG , ∵S △BOE =BE •OM =mb =mb ,S △AOG =AG •ON =AG •a =AG •a , ∴mb =AG •a ,∴AG =;【探究】如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,∵S平行四边形ABCD=AB•KL=AD•PQ,∴3×2OK=5×2OQ,∴=,∵S△AOB =S平行四边形ABCD,S四边形AEOG=S平行四边形ABCD,∴S△AOB =S四边形AEOG,∴S△BOE =S△AOG,∵S△BOE =BE•OK=×1×OK,S△AOG=AG•OQ,∴×1×OK=AG•OQ,∴=AG=,∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.11.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q 的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.12.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说理由.证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAF=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.13.如图,在△ABC中,点O是边AC上一个点,过点O作直线MN∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?证明你的结论.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.14.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°.求AE的长.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.15.如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.(1)求证:△BDE≌△BAC;(2)求证:四边形ADEG是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC满足什么条件时,四边形ADEG是矩形?②当△ABC满足什么条件时,四边形ADEG是正方形?(1)证明:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。
初中数学 北师大版 九年级上学期期末备考压轴题专项习题:反比例函数(含答案)

数学九年级(北师大版)上学期期末备考压轴题专项习题:反比例函数1.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,OA=10,sin∠AOB=,反比例函数y=kx﹣1(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)求反比例函数的表达式;(2)若点F为BC的中点,求△OBF的面积.2.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出使一次函数值大于反比例函数值的x的范围.3.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求△OAP的面积.4.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B'、D'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B'、D'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.5.如图,直线y=x与反比例函数y=(x>0)的图象相交于点D,点A为直线y=x上一点,过点A作AC⊥x轴于点C,交反比例函数y=(x>0)的图象于点B,连接BD.(1)若点B的坐标为(8,2),则k=,点D的坐标为;(2)若AB=2BC,且△OAC的面积为18,求k的值及△ABD的面积.6.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求△AOB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.7.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y于点D,A(﹣6,0),C(6,0),tan∠ACB =2,∠BAC=45°(1)则AC=;(2)反比例函数y=的图象经过点B,求k的值;(3)在线段OD上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请直接写出满足条件的点P的坐标(不用写过程);若不存在,请说明理由.8.“凡此变数中函彼变数者,则此为彼之函数”这是我国著名数学家李善兰给出的“(function)函数”翻译,一次函数、二次函数、反比例函数是初中阶段必须掌握的三大初等函数.(1)已知一次函数y=kx+b与反比例函数相交于A(1,6),B(n,2)两点,求这两个函数的解析式及由坐标系原点O,A,B围成的三角形的面积;(2)已知实数m,n(m<n)在二次函数y=x2+3x﹣4对称轴的同一侧,当m≤x≤n时,y的取值范围为,求出m,n的值;(3)已知直线y=2tx﹣2和抛物线y=(t2﹣1)x2﹣1在y轴左边相交于A,B两点,点C是线段AB的中点,经过C,D(﹣2,0)的直线交y轴于点H(0,h),求h取值范围.9.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)求△AOB的面积;(3)在坐标轴上是否存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P的坐标:若不存在,简述你的理由.10.如图,点A(a,b)是双曲线y=(x>0)上的一点,点P是x轴负半轴上的一动点,AC⊥y轴于C点,过A作AD⊥x轴于D点,连接AP交y轴于B点.(1)△P AC的面积是;(2)当a=2,P点的坐标为(﹣2,0)时,求△ACB的面积;(3)当a=2,P点的坐标为(x,0)时,设△ACB的面积为S,试求S与x之间的函数关系.11.直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.12.已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S=.△OAB(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.13.如图,双曲线y=(x>0)经过△AOB的点顶A(2,3),AB∥x轴,OB交双曲线于点C,且OB=3OC(1)求k的值;(2)连接AC,求点C的坐标和△ABC的面积.14.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.15.如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.参考答案1.解:(1)如图,过点A 作AH ⊥OB 于H , ∵sin ∠AOB =,OA =10, ∴AH =8,OH =6, ∴A 点坐标为(6,8),代入反比例函数y =kx ﹣1(k >0)可得:k =6×8=48, ∴反比例函数解析式:y =;(2)如图,过点F 作FM ⊥x 轴于M , ∵四边形AOBC 是平行四边形, ∴AO ∥BC ,AO =CB =10, ∴∠AOB =∠FBM , ∵sin ∠AOB =, ∴sin ∠FBM =, ∵点F 为BC 的中点, ∴BF =5,∵AH =8,OH =6, ∴FM =4,BM =3, ∴S △BFM =6,∵F 在反比例函数图象上, ∴S △OFM =24,∴S △OBF =S △OFM ﹣S △BFM =18.2.解:(1)把A(2,﹣4)的坐标代入得:,∴4﹣2m=﹣8,反比例函数的表达式是;把B(n,﹣2)的坐标代入得,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,一次函数值大于反比例函数值的x的范围为0<x<2或x>4.3.解:(1)将点A(4,3)代入y=(k≠0),得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);设OB所在直线解析式为y=mx(m≠0),将点B(9,3)代入得m=,∴OB所在直线解析式为y=x;(3)联立解析式:解得:,可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,连接AP,则点E坐标为(6,3),∴AE=2,PE=1,PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.4.解:(1)如图,过点B、D分别作BH⊥x轴、DG⊥x轴交于点H、G,∵点A(﹣6,0)、D(﹣7,3),∴OA=6,OG=7,DG=3,∴AG=OG﹣OA=1,∵∠DAG+∠BAH=90°,∠DAG+∠GDA=90°,∴∠GDA=∠BAH,又∠DGA=∠AHB=90°,AD=AB,∴△DGA≌△AHB(AAS),∴DG=AH=3,BH=AG=1,∴点B坐标为(﹣3,1);(2)由(1)知,B(﹣3,1),∵D(﹣7,3)∴运动t秒时,点D'(﹣7+2t,3)、B'(﹣3+2t,1),设反比例函数解析式为y=,∵点B',D'在反比例函数图象上,∴k=(﹣7+2t)×3=(﹣3+2t)×1,∴,k=6,∴反比例函数解析式为;(3)存在,理由:由(2)知,点D'(﹣7+2t,3)、B'(﹣3+2t,1),t=,∴D'(2,3)、B'(6,1),由(2)知,反比例函数解析式为y=,设点Q(m,),点P(0,s),以P、Q、B'、D'四个点为顶点的四边形是平行四边形,∴①当PQ与B'D'是对角线时,∴(0+m)=(2+6),(s+)=(3+1),∴m=8,s=,∴Q(8,),P(0,),②当PB'与QD'是对角线时,∴(0+6)=(2+m),(s+1)=(+3),∴m=4,s=,∴Q(4,),P(0,).③当PD'与QB'是对角线时,∴(0+2)=(m+6),(s+3)=(+1),∴m=﹣4,s=﹣,∴Q(﹣4,﹣),P(0,﹣),综上:Q(8,),P(0,)或Q(4,),P(0,)或Q(﹣4,﹣),P(0,﹣).5.解:(1)把B(8,2)代入y=得:k=2×8=16,∴反比例函数的关系式为y=,由题意得:解得:,(舍去)∴点D的坐标为(4,4)故答案为:16,(4,4)(2)过点D作DE⊥OC,DF⊥AC,垂足为E、F,如图所示:∵点A在第一象限y=x上,∴AC=OC,又∵△OAC的面积为18,∴AC=OC=6,∵AB=2BC,∴AB=4,BC=2,∴点B(6,2),代入y=得,k=12;设点D(a,a)代入y=得,a=(a>0)∴D (,),即OE =DE =,∴DF =EC =OC ﹣OE =6﹣,∴△ABD 的面积=AB •DF =×4×(6﹣)=12﹣;因此k 的值为12,∴△ABD 的面积为12﹣.6.解:(1)∵已知反比例函数y =与一次函数y =x +b 的图象在第一象限相交于点A (1,﹣k +4), ∴﹣k +4=k , 解得k =2,故反比例函数的解析式为y =,又知A (1,2)在一次函数y =x +b 的图象上, 故2=1+b , 解得b =1,故一次函数的解析式为y =x +1; (2)由题意得:,解得x =﹣2或1, ∴B (﹣2,﹣1),令y =0,得x +1=0,解得x =﹣1, ∴C (﹣1,0), ∴S △AOB =S △AOC +S △COB =×1×2+×1×1 =1+ =1.5;(3)由图象可知,当一次函数的值大于反比例函数值时,x的取值范围是x>1或﹣2<x <0.7.解:(1)6﹣(﹣6)=12.故答案为:12.(2)过点B作BE⊥x轴,如图1所示.设BE=m,则CE==m,AE==m.∵AE+CE=12,∴m+m=12,∴m=8,∴OE=OC﹣CE=6﹣×8=2.∴点B的坐标为(2,8).(3)∵点B的坐标为(2,8),BD⊥y于点D,∴点D的坐标为(0,8),∴BD=2.∵点A的坐标为(﹣6,0),∴OA=6.设点P的坐标为(0,n)(0<n<8),则OP=n,DP=8﹣n.∵∠AOP=∠BDP=90°,以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似,∴=或=,即=或=,解得:n=2或n=6,∴在线段OD上存在点P(0,2)或(0,6),使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似.8.解:(1)∵A(1,6),B(n,2)在反比例函数的图象上,∴m=6,∴反比例函数的解析式是y=,∴2n=6,解得n=3,∴B(3,2),∵一次函数y=kx+b与反比例函数y=的图象交于A、B两点.∴,解得,∴一次函数解析式为y=﹣2x+8;设直线y=﹣2x+8与x轴相交于点C,C的坐标是(4,0).S△AOB =S△AOC﹣S△BOC=OC|y A|﹣OC|y B)=8;(2)分两种情况讨论:①当m<n<﹣,即m、n在对称轴的左侧时,二次函数y的值随x增大而减小,∵,∴方程组中的第一个方程×n得,n3+3n2﹣4n=12∴(n+2)(n﹣2)(n+3)=0解得n=﹣2或2或﹣3,同理由方程组中的第二个方程×m得m=﹣2或2或3,∵m<n<﹣,∴m=﹣3,n=﹣2;②当﹣<m<n,即m、n在对称轴的右侧时,二次函数y的值随x增大而增大,∵,,方程①×n﹣2×m,得m2n﹣n2m+4(m﹣n)=0,∴(mn+4)(m﹣n)=0,∵m﹣n≠0,∴mn+4=0,m=﹣,将m=﹣代入方程②得,n2+3n﹣4=﹣3n,∴n=﹣3±∵n>﹣n=﹣3+∴m=﹣3﹣<﹣,与上述﹣<m<n矛盾,∴没有满足的m、n.综上,在对称轴的左侧存在实数m、n,当m≤x≤n时,y的取值范围为,此时m=﹣3,n=﹣2;(3)设点A(x1,y1)、B(x2,y2),则x1、x2是方程2tx﹣2=(t2﹣1)x2﹣1即(t2﹣1)x2﹣2tx+1=0,解得x1=,x2=,∴x1+x2=,y1+y2=2tx1﹣2+2tx2﹣2=2t(x1+x2)﹣4=.∵点C是AB的中点,∴点C的坐标为(,)即(,).设直线DC的解析式为y=mx+n,则有,解得.∴直线与y轴的交点纵坐标h=n=.∵点A、B在y轴的左侧,∴x1=<0且x2=<0,解得t<﹣1.设k=2t2+t﹣1,则有h=,k=2(t+)2﹣,∵2>0,∴当t<﹣1时k随着t的增大而减小,∴k>2(﹣1+)2﹣即k>﹣1,对于h=,①当﹣1<k<0时,h<﹣4;②当k>0时,h>0,∴直线与y轴的交点纵坐标h的取值范围是h<﹣4或h>0.9.解:(1)将A(,1)代入y=,得:1=,解得:k=,∴反比例函数的表达式为y=.(2)∵点A的坐标为(,1),AB⊥x轴于点C,∴OC=,AC=1,∴OA==2=2AC,∴∠AOC=30°.∵OA⊥OB,∴∠AOB=90°,∴∠B=∠AOC=30°,∴AB=2OA=4,=AB•OC=×4×=2.∴S△AOB(3)在Rt△AOB中,OA=2,∠AOB=90°,∠ABO=30°,∴OB==2.分三种情况考虑:①当OP=OB时,如图2所示,∵OB=2,∴OP=2,∴点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2);②当BP=BO时,如图3,过点B做BD⊥y轴于点D,则OD=BC=AB﹣AC=3,∵BP=BO,∴OP=2OC=2或OP=2OD=6,∴点P的坐标为(2,0),(0,﹣6);③当PO=PB时,如图4所示.若点P在x轴上,∵PO=PB,∠BOP=60°,∴△BOP为等边三角形,∴OP=OB=2,∴点P的坐标为(2,0);若点P在y轴上,设OP=a,则PD=3﹣a,∵PO=PB,∴PB2=PD2+BD2,即a2=(3﹣a)2+12,解得:a=2,∴点P的坐标为(0,﹣2).综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形,点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2),(0,﹣6),(0,﹣2).10.解:(1)∵点A(a,b)是双曲线y=(x>0)上,∴ab=8,∵AC⊥y轴于C点,AD⊥x轴于D点,∴AC=a,AD=b,∴△P AC的面积=AD•AC=ab=4;故答案为:4;(2)∵a=2,∴b=4,∴AC=2,AD=4,A(2,4),设直线AP的解析式为y=kx+b,∴,∴,∴直线AP的解析式为y=x+2,∴B(0,2),∴S=AC•BC==2;△ABC(3)同理直线AP的解析式为y=﹣,∴B(0,﹣),∴BC=4+=∴S=×2×=.11.解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=﹣x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10﹣a 由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△P AD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.12.解:(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S=,△OAB∴×5×AD=,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD==4,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=中得,m=9×3=27,∴反比例函数的解析式为y=,将点A(9,3),B(5,0)代入直线y=kx+b中,,∴,∴直线AB的解析式为y=x﹣;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2∴a=,∴P(,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).13.解:(1)把A (2,3)代入y =得:k =2×3=6, 答:k 的值为:6.(2)过点A 、C 、B 分别作AF ⊥x 轴,CD ⊥x 轴,BE ⊥x 轴,垂足为F 、D 、E , ∵A (2,3) ∴OF =2,AF =3, 由△OCD ∽△OBE 得:,∴CD =1,把y =1代入y =得:x =6, ∴C (6,1), ∴OE =18,∴S △OAB =S 梯形OABE ﹣S △OBE =(18+16)×3﹣×18×3=24, ∵OB =3OC , ∴S △ABC =S △AOB ==16.答:点C 的坐标为(6,1),△ABC 的面积为16.14.(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.15.解:(1)∵点A是一次函数y=mx﹣4的图象上,∴﹣4m﹣4=0,∴m=﹣1,∴一次函数的解析式为y=﹣x﹣4,∵点C(﹣5,n)是直线y=﹣x﹣4上,∴n=﹣(﹣5)﹣4=1,∴C(﹣5,1),∵点C(﹣5,1)是反比例函数y=(k≠0)的图象上,∴k=﹣5×1=﹣5,∴反比例函数的解析式为y=﹣;(2)由(1)知,C(﹣5,1),直线AB的解析式为y=﹣x﹣4,∴B(0,﹣4),设点Q(q,0),P(p,﹣),∵以B,C,P,Q为顶点的四边形是平行四边形,且P,Q两点在直线AB的同侧,∴①当BP与CQ是对角线时,∴BP与CQ互相平分,∴,∴,∴P(﹣1,5),Q(4,0)②当BQ与CP是对角线时,∴BQ与CP互相平分,∴,∴,∴P(﹣1,5),Q(﹣4,0),此时,点C,Q,B,P在同一条线上,不符合题意,舍去,即以B,C,P,Q为顶点的四边形是平行四边形,点P(﹣1,5),点Q(4,0).。
北师大版九年级数学上学期期末压轴题培优第六章:反比例函数(含答案)

九年级上学期期末压轴题培优:反比例函数1.如图,在平面直角坐标系xOy中,反比例函数y=(x>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).(1)若反比例函数y=(x>0)的图象经过点B,求此反比例函数的解析式;(2)若将△ABC向下平移m(m>0)个单位长度,A,C两点的对应点同时落在反比例函数图象上,求m的值.解:(1)∵AB=AC=,BC=4,点A(3,5).∴B(1,),C(5,),若反比例函数y=(x>0)的图象经过点B,则=,解得,k=,∴反比例函数的解析式为y=;(2)∵点A(3,5).C(5,),将△ABC向下平移m个单位长度,∴A(3,5﹣m),C(5,﹣m),∵A,C两点同时落在反比例函数图象上,∴3(5﹣m)=5(﹣m),∴m=.2.一次函数y =kx +b 的图象与反比例函数y =的图象相交于A (﹣1,m ),B (n ,1)两点.(1)求出这个一次函数的表达式; (2)求△OAB 的面积.解:(1)把A (﹣1,m ),B (n ,﹣1)分别代入y =得﹣m =﹣2,﹣n =﹣2,解得m=2,n =2,所以A 点坐标为(﹣1,2),B 点坐标为(2,﹣1),把A (﹣1,2),B (2,﹣1)代入y =kx +b 得,解得,所以这个一次函数的表达式为y =﹣x +1; (2)设直线AB 交y 轴于P 点,如图, 当x =0时,y =1,所以P 点坐标为(0,1),所以S △OAB =S △AOP +S △BOP =×1×1+×1×2=.3.如图所示,已知双曲线y=(k>0,x>0)的图象上有两点P1(x1,y1),P2(x2,y2),且x1<x2,分别过P1,P2向x轴作垂线,垂足为B,D,过P1,P2向y轴作垂线,垂足分别为A,C.(1)若记四边形AP1BO和四边形CP2DO的面积分别为S1,S2,试比较S1和S2的大小.(2)若记四边形AP1BO和四边形CP2DO的周长分别为C1和C2,试比较C1,C2的大小.(3)若P是双曲线y=(k>0,x>0)上一点,分别过P向x轴、y轴作垂线,垂足分别为M,N.试问当P在何处时四边形PMON的周长最小,最小值为多少?解:(1)根据反比例函数系数k的几何意义可知S1=S2=k;(2)∵C1=2OB+2AO=2BO+2CO+2AC,C2=2CO+2OD=2CO+2OB+2BD,∴当y1﹣y2=x2﹣x1,即AC=BD时,C1=C2;当y1﹣y2<x2﹣x1,即AC<BD时,C1<C2;当y1﹣y2>x2﹣x1,即AC>BD时,C1>C2.(3)设P(x,y),即(x,),四边形PMON的周长=2(x+y)=2(x+),因为面积相等的四边形中正方形的周长最小,所以x=,即x2=k,解得x=,故P点坐标为(,).∴最小值为4.4.如图,在平面直角坐标系中,过点M (0,2)的直线l 与x 轴平行,且直线l 分别与反比例函数y =(x >0)和y =(x <0)的图象分别交于点P ,Q . (1)求P 点的坐标;(2)若△POQ 的面积为9,求k 的值.解:(1)∵PQ ∥x 轴, ∴点P 的纵坐标为2,把y =2代入y =得x =3, ∴P 点坐标为(3,2);(2)∵S △POQ =S △OMQ +S △OMP ,∴|k |+×|6|=9, ∴|k |=12, 而k <0, ∴k =﹣12.5.如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P 从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=的图象恰好同时经过P、Q 两点,求这个反比例函数的解析式.解:(1)由题意AB=OC=8cm,AO=BC=6cm,∠B=90°,∵P A=2t,BQ=t,∴PB=8﹣2t,∵△BPQ的面积为4cm2,∴•(8﹣2t)•t=4,解得t=2,∴t=2s时,△PBQ的面积为4.(2)①当△BPQ∽△BAC时,=,∴=,解得t=.②当△BPQ∽△BCA时,=,∴=,解得t=,∴t为s或s时,以B、P、Q为顶点的三角形与△ABC相似.(3)由题意P(2t,6),Q(8,6﹣t),∵反比例函数y=的图象恰好同时经过P、Q两点,∴12t=8(6﹣t),解得t=,∴P(,6),∴m=,∴反比例函数的解析式为y=.6.如图1,在平面直角坐标系中,点A(0,4),B(1,m)都在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)直接写出m和k的值;(2)如图2,将线段AB向右平移n个单位长度(n≥0),得到对应线段CD,连接AC,BD.①在平移过程中,若反比例函数图象与线段AB有交点,求n的取值范围;②在平移过程中,连接BC,若△BCD是直角三角形,请直接写出所有满足条件n的值.解:(1)∵点A(0,4)在直线y=﹣2x+b上,∴﹣2×0+b=4,∴b=4,∴直线AB的解析式为y=﹣2x+4,将点B(1,m)代入直线AB的解析式y=﹣2x+4中,得﹣2×1+4=m,∴b=2,∴B(1,2),将B(1,2)在反比例函数解析式y=(x>0)中,得k=xy=1×2=2;(2)①∵将线段AB向右平移n个单位长度,∴A(n,4),把A(n,4)代入y=中,得,4=,∴n=,∴在平移过程中,若反比例函数图象与线段AB有交点,n的取值范围为0≤n≤;②∵将线段AB向右平移n个单位长度(n≥0),得到对应线段CD,∴AB∥CD,∴∠CDB≠90°,当∠CBD=90°时,△BCD是直角三角形,∴CB⊥BC,∴C(1,4),∴n=1;当∠BCD=90°,△BCD是直角三角形,则C(n,4),D(n+1,2),∵BC2+CD2=BD2,∴(n﹣1)2+(4﹣2)2+12+(4﹣2)2=n2,解得:n=5,综上所述,若△BCD是直角三角形,n的值为1或5.7.如图,在平面直角坐标系xOy中,直线y=﹣x+1与图数y=的限象交于A(﹣2,a),B两点.(1)求a,k的值;(2)已知点P(0,n),过点P作平行于x轴的直线l,交函数y=的图象于点C(x1,y1),交直线y=﹣x+1的图象于点D(x2,y2),若|x1|≤|x2|,结合函数图象,请求出m的取值范围.解:(1)∵直线y=﹣x+1与函数y=的图象交于A(﹣2,a),把A(﹣2,a)代入y=﹣x+1解得a=3,∴A(﹣2,3).把A(﹣2,3)代入y=,解得k=﹣6;(2)画出函数图象如图解得或,∵A (﹣2,3), ∴B (3,﹣2),根据图象可得:若|x 1|≤|x 2|,则m ≥3或﹣2≤m <0.8.如图,在直角坐标系xOy 中,矩形ABCD 的DC 边在x 轴上,D 点坐标为(﹣6,0)边AB 、AD 的长分别为3、8,E 是BC 的中点,反比例函数y =的图象经过点E ,与AD 边交于点F .(1)求k 的值及经过A 、E 两点的一次函数的表达式;(2)若x 轴上有一点P ,使PE +PF 的值最小,试求出点P 的坐标;(3)在(2)的条件下,连接EF 、PE 、PF ,在直线AE 上找一点Q ,使得S △QEF =S △PEF 直接写出符合条件的Q 点坐标.解:(1)在矩形ABCD 中,AB =3,AD =8, ∴CD =AB =3,BC =AD =8, ∵D (﹣6,0),∴A (﹣6,8),C (﹣3,0),B (﹣3,8), ∵E 是BC 的中点, ∴E (﹣3,4),∵点D 在反比例函数y =的图象上, ∴k =﹣3×4=﹣12,设经过A 、E 两点的一次函数的表达式为y =k 'x +b ,∴,∴,∴经过A 、E 两点的一次函数的表达式为y =﹣x ;(2)如图1,由(1)知,k =﹣12,∴反比例函数的解析式为y =﹣,∵点F 的横坐标为﹣6, ∴点F 的纵坐标为2, ∴F (﹣6,2),作点F 关于x 轴的对称点F ',则F '(﹣6,﹣2), 连接EF '交x 轴于P ,此时,PE +PF 的值最小, ∵E (﹣3,4),∴直线EF '的解析式为y =2x +10, 令y =0,则2x +10=0, ∴x =﹣5, ∴P (﹣5,0);(3)如图2,由(2)知,F '(﹣6,﹣2), ∵E (﹣3,4),F (﹣6,2),∴S △PEF =S △EFF '﹣S △PFF '=×(2+2)×(﹣3+6)﹣(2+2)×(﹣5+6)=4, ∵E (﹣3,4),F (﹣6,2),∴直线EF 的解析式为y =x +6,由(1)知,经过A 、E 两点的一次函数的表达式为y =﹣x ,设点Q (m ,﹣m ),过点Q 作y 轴的平行线交EF 于G ,∴G (m , m +6),∴QG =|﹣m ﹣m ﹣6|=|2m +6|, ∵S △QEF =S △PEF ,∴S △QEF =|2m +6|×(﹣3+6)=4,∴m =﹣或m =﹣,∴Q (﹣,)或(﹣,).9.如图,直线y =2x +6与反比例数y =(x >0)的图象交于点A (1,m ),与x 轴交于点B ,与y 轴交于点D .(1)求m 的值和反比例函数的表达式;(2)在y 轴上有一动点P (0,n )(n <6),过点P 作平行于x 轴的直线,交反比例函数的图象于点M ,交直线AB 于点N ,连接OM ,MN①当n =4时,判断四边形BOMN 的形状,并简要写出证明思路; ②若S △BDM >S △BOD ,直接写出点P 的纵坐标n 的取值范围.解:(1)当x=1时,m=2x+6=8,∴点A的坐标为(1,8).∵点A(1,8)在反比例数y=的图象上,∴k=1×8=8,∴反比例函数的解析式为y=.(2)①四边形BOMN为平行四边形.证明:当y=0时,2x+6=0,解得:x=﹣3,∴点A的坐标为(﹣3,0),OB=3;当y=4时,2x+6=4,=4,解得:x=﹣1,x=2,∴点M的坐标为(2,4),点N的坐标为(﹣1,4),∴MN=2﹣(﹣1)=3,∴MN=OB.∵MN∥x轴,OB在x轴上,∴MN∥OB,∴四边形BOMN为平行四边形.②过点O作直线l∥AB,交反比例数y=(x>0)的图象于点M.∵直线AB的解析式为y=2x+6,∴直线l的解析式为y=2x.联立直线l 和反比例函数解析式成方程组,得:,解得:,(舍去),∴点M 的坐标为(2,4);同理,可求出直线y =2x +12与反比例函数y =的图象交点M 3(﹣3﹣,6﹣2)(舍去),M 4(﹣3+,6+2)(舍去).∵S △BDM >S △BOD , ∴0<n <4.10.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y (℃)与开机时间x (分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y (℃)与开机时间x (分)成反比例关系),当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤10时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,依据题意,得,解得:,故此函数解析式为:y=8x+20;(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,依据题意,得:100=,即m=1000,故y=,当y=20时,20=,解得:t=50;(3)∵57﹣50=7≤10,∴当x=7时,y=8×7+20=76,答:小明散步57分钟回到家时,饮水机内的温度约为76℃.11.如图,平面直角坐标系中,一次函数y=kx﹣2的图象与反比例函数y=(x<0)的图象交于点B,与x轴,y轴交于点D,E,BC⊥x轴于C,BA⊥y轴于A,=,△ABE 的面积为24.(1)点E的坐标是(0,﹣2);(2)求一次函数和反比例函数的表达式;(3)以BC为边作菱形CBMN,顶点M在点B左侧的一次函数y=kx﹣2的图象上,判断边MN与反比例函数y=(x<0)的图象是否有公共点.解:(1)∵一次函数y=kx﹣2的图象与y轴交于点E,令x=0,得到y=﹣2,∴E(0,﹣2),故答案为(0,﹣2).(2)∵BC⊥x轴于C,BA⊥y轴于A,∴∠BCO=∠BAO=∠AOD=90°,∴四边形ACOB是矩形,∴OC∥AB,OC=AB,∵=,∴===,∵OE=2,∴EA=6,∴OA=4,=×AB×6=24,∵S△ABE∴AB=8,∴B(﹣8,4),∵点B在y=上,∴m=﹣32,把B(﹣8,4)代入y=kx﹣2得到k=﹣,∴一次函数的解析式为y =﹣x ﹣2,反比例函数的解析式为y =﹣.(3)设M (m ,﹣m ﹣2),延长MN 交x 轴于H .由题意D (﹣,0),∵BC =BM =4,BD ==,∵BC ∥MH ,∴=,∴=,解得m =﹣,∴M (﹣,),N (﹣,),对于反比例函数y =﹣,当x =﹣时,y =,∵<,∴线段MN 与反比例函数的图象有交点.12.如图,已知一次函数y 1=ax +b 的图象与x 轴、y 轴分别交于点D ,C ,与反比例函数y 2=的图象交于A ,B 两点,且点A 的坐标是(1,3)、点B 的坐标是(3,m ). (1)求一次函数与反比例函数的解析式; (2)求C 、D 两点的坐标,并求△AOB 的面积;(3)根据图象直接写出:当x 在什么取值范围时,y 1>y 2?解:(1)把点A (1,3)代入y 2=, ∴3=,即k =3,故反比例函数的解析式为:y 2=.把点B 的坐标是(3,m )代入y 2=,得:m ==1, ∴点B 的坐标是(3,1).把A (1,3),B (3,1)代入y 1=ax +b ,得,解得,故一次函数的解析式为:y 1=﹣x +4;(2)令x =0,则y 1=4; 令y 1=0,则x =4, ∴C (0,4),D (4,0),∴S △AOB =S △AOD ﹣S △BOD =×4×3﹣×4×1=4;(3)当x 满足1<x <3时,则y 1>y 2.13.如图,正比例函数y =2x 的图象与反比例函数的图象交于A 、B 两点,过点A 作AC 垂直x 轴于点C ,连结BC .若△ABC 的面积为2. (1)求k 的值;(2)直接写出:①点A 坐标 (1,2) ;点B 坐标 (﹣1,﹣2) ;②当时,x 的取值范围 x ≥1或0>x ≥﹣1 ;(3)x 轴上是否存在一点D ,使△ABD 为直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.解:(1)∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=2÷2=1,又∵A是反比例函数y=图象上的点,且AC⊥x轴于点C,∴△AOC的面积=|k|,∴|k|=1,∵k>0,∴k=2;(2)①解得,或,∴点A坐标(1,2),点B坐标(﹣1,﹣2),②当时,x的取值范围为x≥1或0>x≥﹣1;故答案为:(1,2),(﹣1,﹣2),x≥1或0>x≥﹣1;(3)x轴上存在一点D,使△ABD为直角三角形.∵A(1,2),B(﹣1,﹣2),①当AD⊥AB时,如图1,设直线AD的关系式为y=﹣x+b,将A(1,2)代入上式得:b=,∴直线AD的关系式为y=﹣x+,令y=0得:x=5,∴D(5,0);②当BD⊥AB时,如图2,设直线BD的关系式为y=﹣x+b,将B(﹣1,﹣2)代入上式得:b=﹣,∴直线BD的关系式为y=﹣x﹣,令y=0得:x=﹣5,∴D(﹣5,0);③当AD⊥BD时,如图3,∵O为线段A的中点,∴OD=AB=OA,∵A(1,2),∴OC=1,AC=2,由勾股定理得:OA===,∴OD=,∴D(,0).根据对称性,当D为直角顶点,且D在x轴负半轴时,D(﹣,0).故x轴上存在一点D,使△ABD为直角三角形,点D的坐标为(5,0)或(﹣5,0)或(,0)或(﹣,0).14.如图,平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣1,6),直线y =mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值.(2)点P是直线y=﹣2x位于第二象限上的一个动点,过点P作平行于x轴的直线,交直线y=mx﹣2于点C,交函数y=(x<0)的图象于点D,设P(n,﹣2n).①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由②当PD≥2PC时,结合函数的图象,直接写出n的取值范围.解:(1)∵函数y=(x<0)的图象经过点A(﹣1,6),∴k=﹣1×6=﹣6;将B(﹣1,0)代入y=mx﹣2,得:0=﹣m﹣2,解得:m=﹣2.(2)①PD=2PC,理由如下:当n=﹣1时,点P的坐标为(﹣1,2).当y=2时,﹣2x﹣2=2,=2,解得:x=﹣2,x=﹣3,∴点C 的坐标为(﹣2,2),点D 的坐标为(﹣3,2), ∴PC =1,PD =2, ∴PD =2PC .②当n =﹣3时,点P 的坐标为(﹣3,6).当y =6时,﹣2x ﹣2=6,=6,解得:x =﹣4,x =﹣1,∴点C 的坐标为(﹣4,6),点D 的坐标为(﹣1,6), ∴PC =1,PD =2, ∴PD =2PC .∵点P 是直线y =﹣2x 位于第二象限上的一个动点, ∴当PD ≥2PC 时,﹣1≤n <0或n ≤﹣3.15.如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,D 是BC 边上的一点,OC :CD =5:3,DB =6.反比例函数y =(k ≠0)在第一象限内的图象经过点D ,交AB 于点E ,AE :BE =1:2. (1)求这个反比例函数的表达式;(2)动点P 在矩形OABC 内,且满足S △P AO =S 四边形OABC . ①若点P 在这个反比例函数的图象上,求点P 的坐标;②若点Q 是平面内一点使得以A 、B 、P 、Q 为顶点的四边形是菱形求点Q 的坐标.解:(1)设点B 的坐标为(m ,n ),则点E 的坐标为(m , n ),点D 的坐标为(m ﹣6,n ).∵点D ,E 在反比例函数y =(k ≠0)的图象上, ∴k =mn =(m ﹣6)n , ∴m =9.∵OC :CD =5:3, ∴n :(m ﹣6)=5:3, ∴n =5,∴k =mn =×9×5=15,∴反比例函数的表达式为y =.(2)∵S △P AO =S 四边形OABC ,∴OA •y P =OA •OC ,∴y P =OC =4.①当y =4时,=4,解得:x =,∴若点P 在这个反比例函数的图象上,点P 的坐标为(,4).②由(1)可知:点A 的坐标为(9,0),点B 的坐标为(9,5), ∵y P =4,y A +y B =5,∴y P ≠,∴AP ≠BP ,∴AB不能为对角线.设点P的坐标为(t,4).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(9﹣t)2+(4﹣0)2=52,解得:t1=6,t2=12(舍去),∴点P1的坐标为(6,4).又∵P1Q1=AB=5,∴点Q1的坐标为(6,9);(ii)当BP=AB时,(9﹣t)2+(5﹣4)2=52,解得:t3=9﹣2,t4=9+2(舍去),∴点P2的坐标为(9﹣2,4).又∵P2Q2=AB=5,∴点Q2的坐标为(9﹣2,﹣1).综上所述:点Q的坐标为(6,9)或(9﹣2,﹣1).16.(1)如图1,已知△ABC与△ABD的面积相等,证明AB∥CD;(2)①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,E,请利用(1)的结果,证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行(不用写理由).(1)证明:在图1中,过点C 作CP ⊥AB 于点P ,过点D 作DQ ⊥AB 于点Q ,则∠CP A =∠DQB =90°, ∴CP ∥DQ .∵△ABC 与△ABD 的面积相等, ∴CP =DQ ,∴四边形CPQD 为平行四边形, ∴AB ∥CD .(2)①证明:在图2中,连接FM ,EN .设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2).∵点M ,N 在反比例函数y =(k >0)的图象上, ∴k =x 1y 1=x 2y 2. ∵ME ⊥y 轴,NF ⊥x 轴,∴OE =y 1,OF =x 2,ME =x 1,NF =y 2.∵S △EFM =ME •OE =x 1y 1=k ,S △EFN =NF •OF =x 2y 2=k , ∴S △EFM =S △EFN , ∴MN ∥EF ;②解:MN ∥EF ,理由如下: 在图3中,连接MN ,FM ,EN .设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2).∵点M ,N 在反比例函数y =(k >0)的图象上, ∴k =x 1y 1=x 2y 2.∵ME ⊥y 轴,NF ⊥x 轴,∴OE =y 1,OF =x 2,ME =x 1,NF =y 2.∵S △EFM =ME •OE =x 1y 1=k ,S △EFN =NF •OF =x 2y 2=k , ∴S △EFM =S △EFN , ∴MN ∥EF ;17.如图,正比例函数y 1=kx 与反比例函数y =(x >0)交于点A (2,3),AB ⊥x 轴于点B ,平移直线y 1=kx 使其经过点B ,得到直线y 2,y 2与y 轴交于点C ,与y =交于点D .(1)求正比例函数y 1=kx 及反比例函数y =的解析式;(2)求点D 的坐标; (3)求△ACD 的面积.解:(1)将点A (2,3)分别代入y 1=kx 、得3=2k 、,解得k =,m =6,∴正比例函数及反比例函数的解析式分别为y 1=x 、;(2)∵y 2由y 1平移得到,所以设y 2=x +b ,∵AB ⊥x 轴,∴B (2,0),将其代入y 2=x +b 得b =﹣3,∴y 2=x ﹣3,由题意得:解得:,(舍去),∴点D 坐标为(,);(3)连接OD ,过点D 作DE ⊥y 轴,垂足为E ,则DE =1+,把x =0代入y 2=x ﹣3得,y =﹣3, ∴C (0,﹣3) ∵直线y 1∥y 2,∴S △ACD =S △OCD =OC •DE =×3×()=.答:△ACD 的面积为.18.已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(10,0),点B的坐标为(10,8),已知直线AC与双曲线y=(m≠0)在第一象限内有一交点Q(5,n).(1)求直线AC和双曲线的解析式;(2)若动点P从A点出发,沿折线AO→OC的路径以每秒2个单位长度的速度运动,到达C处停止.求△OPQ的面积S与的运动时间t秒的函数关系式,并求当t取何值时S=10.解:设直线AC的解析式为y=kx+b(k≠0),过A(10,0)、C(0,8),,解得:,∴直线AC的解析式为y=﹣x+8,又∵Q(5,n)在直线AC上,∴n=﹣×5+8=4,又∵双曲线y=过Q(5,4),∴m=5×4=20,∴双曲线的解析式为:y=;②当0≤t≤5时,OP=10﹣2t,过Q作QD⊥OA,垂足为D,如图1,∵Q(5,4),∴QD=4,∴S=(10﹣2t)×4=20﹣4t,当S=10时,20﹣4t=10解得t=2.5,当5<t≤9时,OP=2t﹣10,过Q作QE⊥OC,垂足为E,如图2∵Q(5,4),∴QE=5,∴S=(2t﹣10)×5=5t﹣25,当S=10时,5t﹣25=10,解得t=7,综上,S=,当t=5秒时,△OPQ的面积不存在,∴当t=2.5秒或t=7秒时,S=10.19.如图,一次函数y1=k1x+2与反比例函数y2=的图象交于点A(4,m)和B(﹣8,﹣2),与y轴交于点C.(1)k1=,k2=16;(2)根据函数图象可知,当y1>y2时,x的取值范围是﹣8<x<0或x>4;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC :S△ODE=3:1时,求直线OP的解析式.解:(1)把B(﹣8,﹣2)代入y1=k1x+2得﹣8k1+2=﹣2,解得k1=,∴一次函数解析式为y1=x+2;把B(﹣8,﹣2)代入y2=得k2=﹣8×(﹣2)=16,∴反比例函数解析式为y2=,故答案为:,16;(2)∵当y1>y2时即直线在反比例函数图象的上方时对应的x的取值范围,∴﹣8<x<0或x>4;故答案为:﹣8<x<0或x>4;(3)把A(4,m)代入y2=得4m=16,解得m=4,∴点A的坐标是(4,4),而点C的坐标是(0,2),∴CO=2,AD=OD=4.∴S梯形ODAC=×(2+4)×4=12,∵S梯形ODAC :S△ODE=3:1,∴S△ODE=×12=4,∴OD•DE=4,∴DE=2,∴点E的坐标为(4,2).设直线OP的解析式为y=kx,把E(4,2)代入得4k=2,解得k=,∴直线OP的解析式为y=x.20.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.解:(1)∵等边△OAB,∴AB=BO=AO=4,∠ABO=∠BOA=∠OAB=60°,∵点C是AB的中点,∴BC=AC=2,过点C作CM⊥OB,垂足为M,在Rt△BCM中,∠BCM=90°﹣60°=30°,BC=2,∴BM=1,CM=,∴OM=4﹣1=3,∴点C的坐标为(﹣3,),代入y=得:k=﹣3答:k的值为﹣3.(2)过点A作AN⊥OB,垂足为N,由题意得:AN=2CM=2,ON=OB=2,∴A(﹣2,2),设直线OA的关系式为y=kx,将A的坐标代入得:k=﹣,∴直线OA的关系式为:y=﹣x,31由题意得:,解得:舍去,,∴D(﹣,3) 过D 作DE ⊥OB ,垂足为E ,S △OCD =S CMED +S △DOE ﹣S △COM =S CMED=(+3)×(3﹣)=3, 答:△OCD 的面积为3.(3)①当与直线CD 平行的直线y =mx +n 过点O 时,此时y =mx +n 的n =0, ②当与直线CD 平行的直线y =mx +n 经过点A 时,设直线CD 的关系式为y =ax +b ,把C 、D 坐标代入得:,解得:a =1,b =3+∴直线CD 的关系式为y =x+3+, ∵y =mx +n 过与直线y =x+3+平行, ∴m =1,把A (﹣2,2)代入y =x +n 得:n =2+2因此:0≤n ≤2+2.答:n 的取值范围为:0≤n ≤2+2.。
最新1、北师大版初三数学几何压轴题专项训练(探究题)资料

压轴题几何专项训练(一)——几何探究题渗透思想方法:特殊到一般、类比、化归解题策略:运用特殊情况解答中所积累的经验和知识,进一步完成一般情况。
1、课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD 中,AC平分∠DAB, ∠DAB=60°, ∠B与∠D互补,求证:AB+AD= 3 AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”, 如图2,可证AB+AD= 3 AC.(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)2、如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.⑴求证:CE=CF;⑵在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?⑶运用⑴⑵解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.图1A DEB C图23、(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB 的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.4、(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH 于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:(3)在(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积。
北师大版九年级数学上学期期末备考压轴题专项习题:特殊的平行四边形(含答案)

期末备考压轴题专项习题:特殊的平行四边形1.已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.(1)如图1,求证:AE=EF;(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.2.如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)判断四边形ACDF的形状;(2)当BC=2CD时,求证:CF平分∠BCD.3.在菱形A BCD中,∠ABC=60°,延长BA至点F,延长CB至点E,使BE=AF,连结CF,EA,AC,延长EA交CF于点G.(1)求证:△ACE≌△CBF;(2)求∠CGE的度数.4.如图,△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.(1)试判断四边形AEDF的形状.(2)当△ABC满足条件时,EF∥BC;当△ABC满足条件时,EF=AD.5.如图正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45°,求证:EF=BE+DF;(2)若该正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.6.一个六边形的花坛被分割成7个部分,其中四边形PRBA,RQDC,QPFE为正方形.记正方形PRBA,RQDC,QPFE的面积分别为S1,S2,S3,RH⊥PQ,垂足为H.(友情提示:正方形的四个内角都等于90度,四边都相等)(1)若PR⊥QR,S1=16,S2=9,则S3=,RH=;(2)若四边形PRBA,RQDC,QPFE的面积分别为25m2、13m2、36m2①求△PRQ的面积;②请判断△PRQ和△DEQ的面积的数量关系,并证明你的结论;③六边形花坛ABCDEF的面积是m2.7.已知,如图所示,正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D 不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H.(1)求证:①△BCG≌△DCE.②BH⊥DE.(2)当BH平分DE时,求GC的长.8.如图,过矩形ABCD的对角线AC的中点O做EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求EF的长.9.已知:如图,在平行四边形ABCD中,G、H分别是AD、BC的中点,E、O、F分别是对角线BD上的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)当平行四边形ABCD满足条件时,四边形GEHF是菱形;(3)若BD=2AB,探究四边形GEHF的形状,并说明理由.10.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结C E,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.11.如图,在四边形ABCD中,AD∥BC,AB=8,AD=16,BC=22,∠ABC=90°,点P 从点A出发,以每秒1单位的速度向点D运动,点Q从点C同时出发,以每秒v单位的速度向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当v=3时,若以点P,Q和点A,B,C,D中的两个点为顶点的四边形为平行四边形,且线段PQ为平行四边形的一边,求t的值;(2)若以点P,Q和点A,B,C,D中的两个点为顶点的四边形为菱形,且线段PQ为菱形的一条对角线,请直接写出t的值.12.如图,在四边形ABCD中,AB∥CD,AC垂直平分BD,交BD于点F,延长DC到点E,使得CE=DC,连接BE.(1)求证:四边形ABCD是菱形.(2)填空:①当∠ADC=°时,四边形ACEB为菱形;②当∠ADC=90°,BE=4时,则DE=.13.如图,在矩形ABCD中,M是BC上一点,EF垂直平分AM,分别交BC,AM,AD于点E,O,F,连接AE,MF.(1)求证:四边形AEMF是菱形;(2)若AB=6,H为AB的中点,连接OH交AE于点P,OH+OA=9,求△OPE的周长.14.在菱形ABCD中,P、Q分别是边BC、CD的中点,连接AP、AQ.(1)如图(1),求证:AP=AQ;(2)如图(2),连接PQ、AC,在不添加任何辅助线的情况下,请直接写出图中所有的等腰三角形.15.如图,四边形ABCD为菱形,∠BCD=60°,E为对角线AC上一点,且AE=AB,F 为CE的中点,接DF、BF,BG⊥BF与AC交于点G;(1)若AB=2,求EF的长;(2)求证:CG﹣EF=BG.参考答案1.(1)证明:如图1,在AB上截取BM=BE,连接ME,∵∠B=90°,∴∠BME=∠BEM=45°,∴∠AME=135°=∠ECF,∵AB=BC,BM=BE,∴AM=EC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF;(2)解:取AB中点M,连接EM,∵AB=BC,E为BC中点,M为AB中点,∴AM=CE=BE,∴∠BME=∠BME=45°,∴∠AME=135°=∠ECF,∵∠B=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴EM=CF,∵AB=2,点E是边BC的中点,∴BM=BE=1,∴CF=ME=.2.(1)解:四边形ACDF是平行四边形,理由如下:∵四边形ABCD是矩形,∴AB∥CD,∠BCD=∠B=90°,∴∠F AE=∠CDE,∵E是AD的中点,∴AE=DE,在△F AE和△CDE中,,∴△F AE≌△CDE(ASA),∴CD=F A,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)证明:∵BC=2CD,AB=CD,四边形ACDF是平行四边形,∴AF=CD,BF=BC,∴△BCF是等腰直角三角形,∴∠BCF=45°,∴∠DCF=45°,∴CF平分∠BCD.3.(1)证明:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=∠ABC,∵BE=AF,∴BE+BC=AF+AB,即CE=BF,在△ACE和△CBF中,,∴△ACE≌△CBF(SAS);(2)解:由(1)可知:△ABC是等边三角形,△ACE≌△CBF,∴∠E=∠F,∵∠BAE=∠F AG,∴∠E+∠BAE=∠F+∠F AG,∴∠CGE=∠ABC,∵∠ABC=60°,∴∠CGE=60°.4.解:(1)四边形AEDF是菱形;理由如下:∵DE∥AC交AB于点E,DF∥AB交AC于点F,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∴∠ADF=∠F AD,∴F A=FD,∴四边形AEDF是菱形;(2)当△ABC满足AB=AC条件时,EF∥BC;当△ABC满足∠BAC=90°条件时,EF =AD.理由如下:由(1)得:四边形AEDF是菱形,∴AD⊥EF,∵AB=AC,AD是角平分线,∴AD⊥BC,∴EF∥BC;当∠ABC=90°时,四边形AEDF是正方形,∴EF=AD;故答案为:AB=AC,∠BAC=90°.5.(1)证明:如图,延长CD至E',使DE'=BE,连接AE',∵四边形ABCD为正方形,∴AB=AD=CB=CD,∠BAD=∠B=90°,∴∠ADE'=90°=∠ABE,在△ADE'和△ABE中,,∴△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=∠BAE,∵∠EAF=45°,∴∠DAF+∠B AE=45°,∴∠DAF+∠DAE'=∠E'AF=45°=∠EAF,在△E′AF和△EAF中,,∴△E′AF≌△EAF(SAS),∴E′F=EF,∵E′F=DE′+DF=BE+DF,∴EF=BE+DF;(2)延长CD至E'使DE'=BE,连接AE',由(1)知,△ADE'≌△ABE(SAS),∴AE'=AE,∠DAE'=BAE,设BE=x,DF=y,∵正方形ABCD的边长为1,∴CE=1﹣x,CF=1﹣y,∵△CEF的周长为2,∴CE+CF+EF=2,∴1﹣x+1﹣y+EF=2,∴EF=x+y=BE+DF=DE'+DF=E'F,在△E'AF和△EAF中,,∴△E'AF≌△EAF(SSS),∴∠E'AF=∠EAF,∴∠DAE'+∠DAF=∠BAE+∠DAF=∠EAF,∵∠DAF+∠EAF+∠BAE=90°,∴∠EAF=45°.6.解:(1)∵PR⊥QR,∴∠PRQ=90°,∴PR2+RQ2=PQ2,∵S1=16,S2=9,∴S3=16+9=25,∴PR=4,RQ=3,PQ=5,∵RH⊥PQ,∴PR•RQ=PQ•RH,∴RH==,故答案为:25,2.4;(2)①设PH=a,则QH=6﹣a,∵RH2=PR2﹣PH2=RQ2﹣HQ2,∴25﹣a2=13﹣(6﹣a)2,解得:a=4,∴RH2=PR2﹣PH2=25﹣16=9,∴RH =3,∴S △PQR =×6×3=9;②S △PRQ =S △DQE ,证明:延长RQ 到点M ,使QM =RQ ,连结PM ,∵QD =QM ,∠DQE =∠MQP ,QE =QP∴△DQE ≌△MQP (SAS ),∴S △DQE =S △MQP ,∵RQ =QM ,∴S △PRQ =S △MQP ,∴S △PRQ =S △DQE ;③六边形花坛ABCDEF 的面积=25+13+36+4×9=74+36=110m 2. 故答案为:110.7.(1)证明:∵正方形ABCD ,∴∠BCD =90°,BC =CD ,同理:CG =CE ,∠GCE =90°,∴∠BCD =∠GCE =90°,,∴△BCG ≌△DCE (SAS ),∴∠GBC=∠CDE,在Rt△DCE中∠CDE+∠CED=90°,∴∠GBC+∠BEH=90°,∴∠BHE=180°﹣(∠GBC+∠BHE)=90°,∴BH⊥DE;(2)若BH垂直平分DE,连接BD,∴BD=BE,∵BD=,∴CG=CE=BE﹣BC=﹣1.8.解:(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2.9.(1)证明:连接AC,如图1所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴BD的中点在AC上,∵E、O、F分别是对角线BD上的四等分点,∴E、F分别为OB、OD的中点,∵G是AD的中点,∴GF为△AOD的中位线,∴GF∥OA,GF=OA,同理:EH∥OC,EH=OC,∴EH=GF,EH∥GF,∴四边形GEHF是平行四边形;(2)解:当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;理由如下:连接GH,如图2所示:则AG=BH,AG∥BH,∴四边形ABHG是平行四边形,∴AB∥GH,∵AB⊥BD,∴GH⊥BD,∴GH⊥EF,∴四边形GEHF是菱形;故答案为:AB⊥BD;(3)解:四边形GEHF是矩形;理由如下:由(2)得:四边形GEHF是平行四边形,∴GH=AB,∵BD=2AB,∴AB=BD=EF,∴GH=EF,∴四边形GEHF是矩形.10.(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=4时,四边形CEDF是菱形,理由是:∵AD=10,AE=4,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:4.11.解:(1)∵当P、Q两点与A、B两点构成的四边形是平行四边形时,∵AP∥BQ,∴当AP=BQ时,四边形APQB为平行四边形.此时,t=22﹣3t,t=.当P、Q两点与C、D两点构成的四边形是平行四边形时,∵PD∥QC,∴当PD=QC时,四边形PQCD为平行四边形.此时,16﹣t=3t,t=4,∵线段PQ为平行四边形的一边,故当t=或4时,线段PQ为平行四边形的一边.(2)当PD=BQ=BP时,四边形PBQD能成为菱形.由PD=BQ,得16﹣t=22﹣3t,解得t=3,当t=3时,PD=BQ=13,AP=AD﹣PD=16﹣13=3.在Rt△ABP中,AB=8,根据勾股定理得,BP═≠13∴四边形PBQD不能成为菱形;如果Q点的速度改变为vcm/s时,能够使四边形PBQD在时刻ts为菱形,由题意得,,解得,.故点Q的速度为2cm/s时,能够使四边形PBQD在t=6时为菱形.12.(1)证明:∵AC垂直平分BD,∴AB=AD,BF=DF,∵AB∥CD,∴∠ABD=∠CD B.∵∠AFB=∠CFD,∴△AFB≌△CFD(ASA),∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形,∵AB=AD,∴平行四边形ABCD是菱形;(2)①当∠ADC=60°,四边形ACEB为菱形,∵∠ADC=60°,∴∠BCE=60°,∴△BCE是等边三角形,∴CE=BE,∴四边形ACEB为菱形,故答案为:60;②当∠ADC=90°,BE=4时,DE=4,故答案为:4.13.(1)证明:∵EF垂直平分AM,∴AE=EM,OA=OM.∵四边形ABCD是矩形,∴AD∥BC.∴∠AFO=∠MEO,在△OF和△MOE中,,∴△AOF≌△MOE(AAS).∴OF=OE.∴四边形AEMF是平行四边形.∵AE=EM.∴四边形AEMF是菱形;(2)解:∵O、H分别为AM、AB的中点,∴BM=2OH,AM=2OA,∴AM+BM=2OA+2OH=18.设BM=x,则AM=18﹣x,在Rt△ABM中,由勾股定理得:62+x2=(18﹣x)2,解得:x=8,∴BM=8,AM=10.∴OA=AM=5,设EM=m,则BE=8﹣m,AE=EM=m,在Rt△ABE中,由勾股定理得:62+(8﹣m)2=m2,解得:m=,∴AE=EM=在Rt△AOE中,EO===.∵OP∥EM,∴==1,∴AP=PE,∴OP=EM=,∵PE=AE=,∴△OPE的周长=EO+PE+OP=++=10.14.证明:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D,∵P、Q分别是边BC、CD的中点,∴BP=CQ,在△ABP和△ADQ中,,∴△ABP≌△ADQ(SAS),∴AP=AQ,(2)∵AP=AQ,∴△APQ是等腰三角形,∵BC=CD,∵P、Q分别是边BC、CD的中点,∴PC=CQ,∴△PQC是等腰三角形,∵AB=BC,AD=CD,∴△ABC,△ACD是等腰三角形,∴图中所有的等腰三角形有△ABC,△APQ,△ACD,△CPQ.15.(1)解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴∠BAD=∠BCD=60°,AC⊥BD,OB=OD,OA=OC,∠OAB=∠BAD=30°,∴OB=AB=1,OA=OB=,∴AC=2OA=2,∵AE=AB=2,∴CE=AC﹣AE=2﹣2,∵F为CE的中点,∴EF=CE=﹣1;(2)证明:设AB=2a,同(1)得:OB=AB=a,OA=OB=a,∴AC=2OA=2a,∵AE=AB=2a,∴CE=AC﹣AE=(2﹣2)a,OE=AE﹣OA=(2﹣)a,∵F为CE的中点,∴EF=CE=(﹣1)a,∴OF=OE+EF=(2﹣)a+(﹣1)a=a,∴OB=OF,∵AC⊥BD,∴△BOF是等腰直角三角形,∴∠BFG=45°,∵BG⊥BF,∴△BFG是等腰直角三角形,∴GF=BG,∵GF=CG﹣CF=CG﹣EF,∴CG﹣EF=BG.。
1、北师大版初三数学几何压轴题专项训练(探究题)

压轴题几何专项训练(一)——几何探究题渗透思想方法:特殊到一般、类比、化归解题策略:运用特殊情况解答中所积累的经验和知识,进一步完成一般情况。
1、课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD 中,AC平分∠DAB, ∠DAB=60°, ∠B与∠D互补,求证:AB+AD= 3 AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”, 如图2,可证AB+AD= 3 AC.(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)2、如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .⑴求证:CE =CF ;⑵在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么?⑶运用⑴⑵解答中所积累的经验和知识,完成下题: 如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =12,E 是AB 上一点,且∠DCE =45°,BE =4,求DE 的长.B C A G D FE图1 图2B CA DE3、(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:△△AEB的度数为;△线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,△ACB=△DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断△AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且△BPD=90°,请直接写出点A到BP的距离.4、(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH 于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:(3)在(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积。
2023学年北师大版九年级数学上学期专项讲练1-29 《特殊平行四边形》全章复习与巩固(培优篇)

专题1.29 《特殊平行四边形》全章复习与巩固(培优篇)(专项练习)一、单选题1.如图,菱形OABC 的顶点O 与原点重合,点C 在x 轴上,点A 的坐标为(3,4).将菱形OABC 绕点O 逆时针旋转,每次旋转90°,则第2022次旋转结束时,点B 的坐标为( )A .(-8,-4)B .(-9,-4)C .(-9,-3)D .(-8,-3) 2.如图,在边长为4的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 方向平移,得到△EFG ,连接EC 、GC .则EC +GC 的最小值为( )A .B .C .D .3.如图,在平面直角坐标系中,点A 的坐标为(1,0),四边形OABC 是菱形,60AOC ∠=︒,以OB 为边作菱形11OBB C ,使顶点1B 在OC 的延长线上,再以1OB 为边作菱形122OB B C ,使顶点2B 在1OC 的延长线上,再以2OB 为边作菱形233OB B C ,使顶点3B 在2OC 的延长线上,按照此规律继续下去,则2021B 的坐标是( )A .101130-(,)B .101132(,)C .20210-(,)D .202310113322(-,)4.如图,点H ,F 分别在菱形ABCD 的边AD ,BC 上,点E ,G 分别在BA ,DC 的延长线上,且AE AH CG CF ===.连结EH ,EF ,GF ,GH ,若菱形ABCD 和四边形EFGH 的面积相等,则AH AD的值为( )A .12 B C D .15.如图,矩形ABCD 中,AB =8,AD =4,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A.4 B .8 C .D .6.如图,在矩形ABCD 中,1AB =,AD =O 是对角线的交点,过C 作CE BD ⊥于点E ,EC 的延长线与BAD ∠的平分线相交于点H ,AH 与BC 交于点F .给出下列四个结论:∠AF FH =;∠BF BO =;∠AC CH =;∠3BE DE =.其中正确结论有( ).A .1个B .2个C .3个D .4个7.如图,四边形ABCD 是矩形纸片,6AB =,对折矩形纸片ABCD ,使AD 与BC 重合,折痕为EF .展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N ,折痕为BM ,再次展平,连接BN ,MN ,延长MN 交BC 于点G .有如下结论:∠60ABN ∠=︒;∠3AM =;∠∠BMG是等边三角形;∠EN =∠P 为线段BM 上一动点,H 是线段BN 上的动点,则PN PH+的最小值是 )A .∠∠∠∠B .∠∠∠∠C .∠∠∠∠D .∠∠∠∠∠8.如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点M 处,折痕为AP ;再将PCM △,ADM △分别沿PM ,AM 折叠,此时点C ,D 落在AP 上的同一点N 处.下列结论不.正确的是( )A .M 是CD 的中点B .MN AP ⊥C .当四边形APCD 是平行四边形时,AB =D .AD BC ∥ 9.如图,在∠ABC 中,∠ACB =90°, 分别以AC , BC 为边向外作正方形ACDE 与正方形BCFG , H 为EG 的中点,连接DH ,FH .记∠FGH 的面积为S 1,∠CDH 的面积为S 2,若S 1-S 2=6,则AB 的长为( )A .B .C .D .10.如图,正方形ABCD 边长为4,点E 是CD 边上一点,且75ABE ∠=︒.P 是对角线BD 上一动点,则12AP BP +的最小值为( )A.4 B .C D 11.如图,在平面直角坐标系中,正方形纸片ABCD 的顶点A 的坐标为(-1,3),在纸的正方形1111D C B A ,将该纸片以O 为旋转中心进行逆时针旋转,每次旋转45°,则第298次旋转后,点C 和点1B 的坐标分别为( )A .(-3,-1),(1,0)B .(-3,-1),(0,-1)C .(3,1),(0,-1)D .(3,1),(1,0) 12.如图,将正方形纸片ABCD 沿EF 折叠,使点B 落在AD 边的点P 处(不与点A ,点D 重合),点C 落在G 点处,PG 交DC 于点H ,连接BP ,BH .BH 交EF 于点M ,连接PM .下列结论:∠PB 平分∠APG ;∠PH =AP +CH ;∠BM ,∠若BE =53,AP =1,则S 四边形BEPM =113,其中正确结论的序号是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠二、填空题 13.如在菱形ABCD 中,2BC =,120C ∠=︒,E 为AB 的中点,P 为对角线BD 上的任意一点,则PA PE +的最小值为__________.14.如图,已知ABC 中,5AB AC ==,8BC =,将ABC 沿射线BC 方向平移m 个单位得到DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以A ,D ,E 为顶点的三角形是等腰三角形,则m 的值是___________.15.如图,在菱形ABCD 中,∠ABC =120°,对角线AC 、BD 交于点O ,BD =4,点E 为OD 的中点,点F 为AB 上一点,且AF =3BF ,点P 为AC 上一动点,连接PE 、PF ,则PF ﹣PE 的最大值为 ___.16.如图,在菱形ABCD 中,∠BAD =60°,点E 在边BC 上,将∠ABE 沿直线AE 翻折180°,得到∠AB ′E ,点B 的对应点是点B ′.若AB ′∠BD ,BE =2,则BB ′的长是___.17.如图,在矩形ABCD 中,E 是BC 上一动点,将ABE △沿AE 折叠后得到AFE △,点F 在矩形ABCD 内部,延长AF 交CD 于点G ,3AB =,4=AD .当点E 是BC 的中点时,线段GC 的长为______;点E 在运动过程中,当∠CFE 的周长最小时,BE 的长为______.18.如图,在等腰Rt ABC 中,CA BA =,90CAB ∠=︒,点M 是AB 上一点,点P 为射线CA (除点C 外)上一个动点,直线PM 交射线CB 于点D ,若1AM =,3BM =,CPD ∆的面积的最小值为________.19.如图,在四边形ABCD 中,AB ∠BC ,AD ∠AC ,AD =AC ,∠BAD =105°,点E 和点F 分别是AC 和CD 的中点,连接BE ,EF ,BF ,若CD =8,则BEF 的面积是_____.20.如图,点E 是矩形ABCD 的边AB 的中点,点P 是边AD 上的动点,沿直线PE 将△APE 对折,点A 落在点F 处. 已知AB =6,AD =4,连结CF 、CE ,当△CEF 恰为直角三角形时,AP 的长度等于___________.21.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF =45°,∠ECF 的周长为8,则正方形ABCD 的边长为_____.22.如图,Rt ABC 中,90ABC ∠=︒,30C ∠=︒,1AB =,点D 为AC 边上任意一点,将BCD 沿BD 折叠,点C 的对应点为点E ,当30ADE ∠=︒时,CD 的长为______.23.如图,正方形ABCD 的边长为4,E ,F ,H 分别是边BC ,CD ,AB 上的一点,将正方形ABCD 沿FH 折叠,使点D 恰好落在BC 边的中点E 处,点A 的对应点为点P ,则折痕FH 的长为______.24.图,正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,若F 是BC 的中点,45EDF ∠=︒,则DE 的长为 _____.三、解答题25.直线443y x =-+与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线y x m =+经过点C ,交x 轴于点E .(1)请直接写出点C ,点D 的坐标,并求出m 的值;(2)点()0,P t 是线段OB 上的一个动点(点P 不与O 、B 重合),经过点P 且平行于x 轴的直线交AB 于M ,交CE 于.N 当四边形NEDM 是平行四边形时,求点P 的坐标;(3)点()0,P t 是y 轴正半轴上的一个动点,Q 是平面内任意一点,t 为何值时,以点C 、D 、P 、Q 为顶点的四边形是菱形?26.综合与实践:如图,在平面直角坐标系中,A ,B 两点的坐标分别为(0,)A a ,点(,0)B b ,且a .b 满足:4b +=C 与点B 关于y 轴对称,点P ,点E 分别是x 轴,直线AB 上的两个动点.(1)求点C 的坐标;(2)连接PA ,PE .∠如图1,当点P 在线段BO (不包括B ,O 两个端点)上运动,若APE 为直角三角形,F 为PA 的中点,连接EF ,OF ,试判断EF 与OF 的关系,并说明理由;∠如图2,当点P 在线段OC (不包括O ,C 两个端点)上运动,若APE 为等腰三角形,M 为底边AE 的中点,连接MO ,请直接写出PA 与OM 的数量关系.27.操作与证明:如图1,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C 重合,点E 、F 分别在正方形的边CB 、CD 上,连接AF ;取AF 中点M ,EF 的中点N ,连接MD ,MN .(1)连接AE ,求证:△AEF 是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD 、MN 的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是___________________________;结论2:DM、MN的位置关系是___________________________;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.28.正方形ABCD的边长为6,点E是BC边上一动点,点F是CD边上一动点,过点E作AF的平行线,过点F作AE的平行线,两条线交于点G.(1)如图1,若BE=DF,求证:四边形AEGF是菱形;(2)如图2,在(1)小题条件下,若∠EAF=45°,求线段DF的长;(3)如图3,若点F运动到DF=2的位置,且∠EAF依然保持为45°,求四边形AEGF的面积.参考答案1.A【分析】过点A作AE∠OC于E,设第一次旋转点B的对应点为B1,作B1F∠y轴于F,利用全等三角形的性质求出的坐标,根据循环性规律,得出第2022次旋转结束时,点B的坐标即可.解:过点A作AE∠OC于E,设第一次旋转点B的对应点为B1,作B1F∠y轴于F,∠点A的坐标为(3,4),∠5OA,∠菱形OABC的顶点O与原点重合,∠5AB OA==,AB∠OC,∠点B的坐标为(8,4),延长BA交y轴于H,∠BH∠OF,∠∠BHO=∠B1FO=90°,∠∠BOB1=90°,∠∠BOH+∠FOB1=90°,∠BOH+∠OBH=90°,∠∠FOB1=∠OBH,∠OB1=OB,∠∠OBH∠∠OB1F,∠FB1=OH=4,FO1=BH=8,B1的坐标为(-4,8);同理可求,第二次旋转点B的坐标为(-8,-4),第三次旋转点B的坐标为(4,-8),第四次旋转点B的坐标为(8,4),四次一循环,∠2022÷4=505……2,故第2022次旋转结束时,点B的坐标(-8,-4),故选:A.【点拨】本题考查了菱形的性质、勾股定理、点的坐标变换,解题关键是熟练运用相关性质求出变换后点的坐标,发现规律求解.2.B【分析】连接AE ,作点D 关于直线AE 的对称点H ,连接DE ,DH ,EH ,AH ,CH .由平移和菱形的性质可证明四边形CDEG 为平行四边形,即得出HE CG =,从而可得出EC GC EC HE CH +=+≥,即CH 的长为EC GC +的最小值.最后根据等边三角形的判定和性质,含30度角的直角三角形的性质与勾股定理求出CH 的长即可.解:如图,连接AE ,作点D 关于直线AE 的对称点H ,连接DE ,DH ,EH ,AH ,CH .由平移的性质可知AB EG =,AB EG .∠四边形ABCD 为菱形,∠AB CD =,AB CD ,1302ADB ABD ABC ∠=∠=∠=︒, ∠CD EG =,∥EG CD ,∠四边形CDEG 为平行四边形,∠GC DE =.由轴对称的性质可知HE DE =,DAE HAE ∠=∠,AH AD =,∠HE CG =,∠EC GC EC HE CH +=+≥,即CH 的长为EC GC +的最小值.∠AB EG =,AB EG ,∠四边形ABGE 为平行四边形,∠AE BG ∥,∠30EAD ADB ∠=∠=︒,∠260HAD EAD ∠=∠=︒,∠ADH 为等边三角形,∠4DH AD CD ===,60ADH ∠=︒,∠2120CDH ADH ∠=∠=︒,∠30HCD ∠=︒,即CDH △为顶角是120°,底角为30°的等腰三角形,结合含30°角的直角三角形和勾股定理即可求224CH === 故选B .【点拨】本题考查平移的性质,菱形的性质,平行四边形的判定和性质,等边三角形的判定和性质,轴对称变换,含30°角的直角三角形的性质以及勾股定理等知识,综合性强,为选择题中的压轴题.正确的作出辅助线是解题关键.3.A【分析】连接AC 、BC 1,分别交OB 、OB 1于点D 、D 1,利用菱形的性质及勾股定理即可得OB 的长,进一步在菱形OBB 1C 1计算出OB 1,过点B 1作B 1M ∠x 轴于M ,利用勾股定理计算出B 1M ,OM ,从而得B 1的坐标,同理可得B 2,B 3,B 4,B 5,B 6,B 7,B 8,B 9,B 10,B 11,B 12,根据循环规律可得B 2021的坐标.解:如图所示,连接AC ,1BC 分别交OB ,1OB 与D 、1D ,∠点A 的坐标为(1,0),∠OA =1,∠四边形OABC 是菱形,∠AOC =60°,∠OC =OA =1,OB =2OD ,∠COD =30°,∠CDO =90°, ∠1122CD OC ==,∠OD ==∠OB =∠∠AOC =60°,∠∠B 1OC 1=90°-60°=30°,∠四边形OBB 1C 1是菱形,11111902C DO OC OB OB OD ∴∠=︒===,,在Rt ∠OC 1D 1中11112C D OC ==,∠132OD ==, ∠OB 1=2OD 1=3,过点B 1作B 1M ∠x 轴于点M ,在Rt ∠OMB 1中,11322OM OB ==∠1B M ==∠13(2B ,同理可得2345927(((27,0)22B B B B ---,,,6788181(,(,(0,22B B B ---,,,91011243729(,(,(729,0)22B B B ,,,12729)2B , 由此可以发现规律“每经过12次作图后点的坐标符号与第一次坐标符号相同,每次1n n OB +=,∠2021÷12=168……5,∠B 2021的纵坐标符号与B 5的相同,则B 2021在y 轴的负半轴上,又2022101120213OB ==∠B 2021的坐标为1011(3,0)-,故选A【点拨】本题考查平面直角坐标系找规律,利用菱形的性质处理条件,掌握循环规律的处理方法是解题的关键.4.D【分析】根据题意先证四边形EFGH 是平行四边形,由平行四边形的性质求出EH ∠AC ,进而由面积关系进行分析即可求解.解:连接HC 、AF 、HF 、AC ,HF 交AC 于O ,连接EG .∠四边形ABCD 是菱形,∠D =∠B ,AB =CD =AD =BC ,∠AE =AH =CG =CF ,∠DH =BF ,BE =DG ,在∠DHG 和∠BFE 中,DH BF D B BE DG =⎧⎪∠=∠⎨⎪=⎩,∠∠DHG ∠∠BFE ,∠HG =EF ,∠DHG =∠BFE,∠BC ∠AD ,∠∠BFE =∠DKF ,∠∠DHG =∠DKG ,∠HG ∠EF ,∠四边形EFGH 是平行四边形.∠AH =CF ,AH ∠CF ,∠四边形AHCF 是平行四边形,∠AC 与HF 互相平分,∠四边形EFGH 是平行四边形,∠HF 与EG 互相平分,∠HF 、AC 、EG 互相平分,相交于点O ,∠AE =AH ,DA =DC ,BE ∠DC ,∠∠EAH =∠D ,∠∠AEH =∠AHE =∠DAC =∠DCA ,∠EH ∠AC ,∠S △AEH =S △EHO =S △AHO =12S △AHC =14S 四边形EFGH =14S 四边形ABCD , ∠S △AHC =12S 四边形ABCD =S △ADC ,∠AD =AH , ∠AH AD =1. 故选:D .【点拨】本题考查菱形的性质,平行四边形的判定和性质,全等三角形的判定和性质,平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,证明EH ∠AC 是解题的关键.5.C【分析】取CD 中点H ,连接AH ,BH ,根据矩形的性质题意得出四边形AECH 是平行四边形,可知AC CE ∥,然后根据三角形中位线的性质得PH CE ∥,得出点P 在AH 上,然后判断BP 的最小值,再求出值即可.解:如图,取CD 中点H ,连接AH ,BH ,设AH 与DE 的交点为O ,∠四边形ABCD 是矩形,∠AB =CD =8,AD =BC =4,CD AB ∥,∠点E 是AB 中点,点H 是CD 中点,∠CH =AE =DH =BE =4,∠四边形AECH 是平行四边形,∠AH CE ∥,∠点P 是DF 的中点,点H 是CD 的中点,∠PH 是∠CDF 的中位线,∠PH CE ∥,∠点P 在AH 上,∠当BP ∠AH 时,此时点P 与H 重合,BP 有最小值,∠AD =DH =CH =BC =4,∠∠DHA=∠DAH =∠CBH =∠CHB =45°,AH BH ==∠∠AHB =90°,∠BP 的最小值为故选:C .【点拨】本题主要考查了矩形的性质,平行四边形的判定,中位线的性质和定义等,确定点P 的位置是解题的关键.6.C【分析】利用矩形性质及勾股定理,30所对的直角边等于斜边的一半,可知60ABO ∠=︒,进一步可得AOB 为等边三角形,得到1BO BA ==,再利用角平分线的性质可证明1BF BA ==,故∠正确;证明15CHA OAH ∠=∠=︒,即可知∠正确;求出1122DE CD ==,13222BE =-=,即可知∠正确;无法证明F 是AH 中点,故∠错误.解:∠ABCD 为矩形,1AB =,AD =,∠90DAB ∠=︒,30ADB ∠=︒,2BD =,∠AF 平分DAB ∠,∠45FAB AFB ∠=∠=︒,即1BF BA ==,∠30ADB ∠=︒,∠60ABO ∠=︒,∠OA OB =,∠AOB 为等边三角形,∠1BO BA ==,∠BF BO =,故∠正确;∠AOB 为等边三角形,且45FAB ∠=︒,∠15OAH ∠=︒,同理:COD △为等边三角形,∠CE BD ⊥,∠30ECO ∠=︒,∠15CHA ∠=︒,∠15CHA OAH ∠=∠=︒,即AC CH =,故∠正确;∠30ECO ∠=︒,∠30DCE ∠=︒,∠1CD AB ==, ∠1122DE CD ==, ∠2DB =, ∠13222BE =-=, ∠3BE DE =,故∠正确;∠AC CH =,但是无法证明F 是AH 中点,故∠错误;综上所述:正确的有∠∠∠.故选:C .【点拨】本题考查矩形性质及勾股定理,30所对的直角边等于斜边的一半,等边三角形,角平分线,三角形外角的定义及性质.解题的关键是熟练掌握以上知识点,证明1BO BA ==, 1BF BA ==;证明15CHA OAH ∠=∠=︒;求出1122DE CD ==,13222BE =-=. 7.C【分析】∠首先根据EF 垂直平分AB ,可得AN =BN ,然后根据折叠的性质,可得AB =BN ,据此判断出∠ABN 为等边三角形,即可判断出∠ABN =60°;∠首先根据∠ABN =60°,∠ABM = ∠NBM ,求出∠ABM =∠NBM =30°,然后在Rt ∠ABM 中,根据AB =6,求出AM 的大小即可;∠求出∠AMB =60°,得到∠BMG =60°,根据AD ∠BC ,求出∠BGM =60°即可;∠根据勾股定理求出EN 即可;∠根据轴对称图形的性质得到AP =PN ,PN +PH =AH ,且当AH ∠BN 时,PN +PH 最小,应用勾股定理,求出AH 的值即可.解:如图,连接AN ,∠EF 垂直平分AB ,∠AN =BN ,根据折叠的性质,可得AB =BN ,∠AN =AB =BN ,∠△ABN 为等边三角形,∠∠ABN =60°,∠PBN =12⨯60°=30°,即结论∠正确; ∠∠ABN =60°,∠ABM =∠NBM ,∠∠ABM =∠NBM =12⨯60°=30°, ∠BM =2AM ,∠AB =6,222AB AM BM +=,∠62+AM 2=(2AM )2,解得AM =∠不正确;∠∠AMB =90°-∠ABM =60°,∠∠BMG=∠AMB=60°,∠ AD∠BC,∠∠MBG=∠AMB=60°,∠∠BGM=60°,∠BMG是等边三角形;即结论∠正确;∠BN=AB=6,BN=3,∠EN=∠正确;连接AN,∠△ABM与∠NBM关于BM轴对称,∠AP=NP,∠PN+PH=AP+PH,∠当点A、P、H三点共线时,AP+PH=AH,且当AH∠BN时AH有最小值,∠AB=6,∠ABH=60°,∠∠BAH=30°,∠BH=3,∠AH=∠PN+PH的最小值是∠正确;【点拨】此题考查了矩形的性质,轴对称的性质,全等三角形的判定及性质,等边三角形的判定及性质,直角三角形30度角的性质,熟记等边三角形的判定及性质是解题的关键.8.B【分析】由折叠的性质可得DM=MN,CM=MN,即M是CD的中点;故∠正确;∠B=∠AMP,∠DAM=∠MAP=∠P AB,∠DMA=∠AMN,∠CMP=∠PMN,∠D=∠ANM,∠C=∠MNP,由平角的性质可得∠D+∠C=180°,∠AMP=90°,可证AD∠BC,由平行线的性质可得∠DAB=90°,由平行四边形和折叠的性质可得AN=PN,由直角三角形的性质可得ABMN.解:由折叠的性质可得:DM=MN,CM=MN,∠DM=CM,即M是CD的中点;故A正确;由折叠的性质可得:∠B=∠AMP,∠DAM=∠MAP=∠P AB,∠DMA=∠AMN,∠CMP =∠PMN,∠D=∠ANM,∠C=∠MNP,∠∠MNA+∠MNP=180°,∠∠D+∠C=180°,∠AD∥BC,故D正确;∠∠B+∠DAB=180°,∠∠DMN+∠CMN=180°,∠∠DMA+∠CMP=90°,∠∠AMP=90°,∠∠B=∠AMP=90°,∠∠DAB=90°,若MN∠AP,则∠ADM=∠MNA=∠C=90°,则四边形ABCD为矩形及AB∥CD,而题目中无条件证明此结论,故B不正确;∠∠DAB=90°,∠∠DAM=∠MAP=∠P AB=30°,由折叠的性质可得:AD=AN,CP=PN,∠四边形APCD是平行四边形,∠AD=PC,∠AN=PN,又∠∠AMP=90°,AP,∠MN=12∠∠P AB=30°,∠B=90°,AP,∠PB=12∠PB=MN∠AB,故C正确;故选:B .【点拨】本题考查了翻折变换,平行四边形的性质及直角三角形的性质等知识,熟练掌握相关知识点并灵活运用这些性质是解题的关键.9.A【分析】连接AD 交EC 于点M ,连接BF 交CG 于点N ,设,AC a BC b ==,分别求出EC ,AD =,DM =,,CG FN ==,)EG a b =+,)HG EH a b ==+,)CH b a =-,分别求得1S ,2S ,由126S S -=得,2224a b +=,由勾股定理可得结论. 解:连接AD 交EC 于点M ,连接BF 交CG 于点N ,∠四边形ACDE ,BCFG 是正方形,∠,,,AD EC BF CG AD EC BF CG ⊥⊥==,1122DM AD FN BF ==,, 设,AC a BC b ==,∠∠90,=EAC AE AC a =︒=,∠EC ∠AD =,∠1122DM AD ===,同理可证:,CG FN ==, ∠EG EC CG =+,∠)EG a b =+,∠H 为EG 的中点,∠1))2HG EH a b a b ==+=+,∠)CH EH EC b a =-=-, ∠121124FG H ab b S S HG FN ∆+==⋅⋅=,22(124DH ab a S S CH DM ∆-=== 又∠126S S -=,∠22644ab b ab a +--=, 整理得,2224a b +=,∠∠90ACB =︒,∠AB ,故选:A .【点拨】本题主要考查了正方形的性质,勾股定理等知识,正确作出辅助线是解答本题的关键.10.D【分析】连接AC ,作PG BE ⊥,证明当12AP BP +取最小值时,A ,P ,G 三点共线,且AG BE ⊥,此时最小值为AG ,再利用勾股定理,30所对的直角边等于斜边的一半即可求出结果.解:连接AC ,作PG BE ⊥∠ABCD 是正方形且边长为4,∠45ABO ∠=︒,AC BD ⊥,AO =∠75ABE ∠=︒,∠30PBG ∠=︒,∠12PG BP =, ∠当12AP BP +取最小值时,A ,P ,G 三点共线,且AG BE ⊥,此时最小值为AG ,∠75ABE ∠=︒,AG BE ⊥,∠15BAG ∠=︒,∠45BAO ∠=︒,∠30PAO ∠=︒,设OP b =,则2AP b =,∠(()222=2b b +,解得:b 设PG a =,则2BP a =,∠BO =∠2a b +=a∠2AG AP PG b a =+=+=故选:D【点拨】本题考查正方形的性质,动点问题,勾股定理,30所对的直角边等于斜边的一半,解题的关键是证明当12AP BP +取最小值时,A ,P ,G 三点共线,且AG BE ⊥,此时最小值为AG .11.C【分析】由该纸片以О为旋转中心进行逆时针旋转,每次旋转45°,可得旋转一周360458︒÷︒=次,由2988372÷=⋅⋅⋅,可得第298次旋转后,实际是将纸片逆时针旋转37周后再转90°,由正方形纸片ABCD 对角线中点位于原点,可求点C (1,-3)由11A B =根据勾股定理,2221111+2OA OB A B ==求出B 1(-1,0),连结OD 与OC ,过D 作ED ∠x 轴于E ,CF ∠y 轴于F ,可证△FOC ∠△EOD (AAS ),可求点D (3,1),与点C 1(0,-1)即可.解:∠该纸片以О为旋转中心进行逆时针旋转,每次旋转45°,∠旋转一周360458︒÷︒=次,∠2988372÷=⋅⋅⋅,∠第298次旋转后,实际是将纸片逆时针旋转37周后再转90°,∠正方形纸片ABCD 对角线中点位于原点,∠点A 与点C 关于点O 成中心对称,∠点A (-1,3),∠点C (1,-3),∠11A B又∠11OA OB =,根据勾股定理,2221111+2OA OB A B ==,∠111OA OB ==,∠B 1(-1,0),连结OD 与OC ,过D 作ED ∠x 轴于E ,CF ∠y 轴于F ,绕点O 逆时针旋转90°后点C 位置转到点D 位置,∠四边形ABCD 为正方形,OD OC =,90FOE COD ∠==︒,∠∠FOC +∠COE =∠COE +∠EOD =90°,∠∠FOC =∠EOD ,在△FOC 和△EOD 中,90FOC EOD CFO DEO OC OD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∠∠FOC ∠∠EOD (AAS ),∠CF =DE =1,OF =OE =3,∠点D (3,1),∠点B 1转到C 1位置,点C 1(0,-1),∠第298次旋转后,点C 和点1B 的坐标分别为(3,1)与(0,-1).故选:C .【点拨】本题主要考查坐标与旋转规律问题,涉及了正方形性质、中心对称性质、勾股定理应用、三角形全等判定与性质等知识,熟练掌握正方形旋转性质、中心对称性质、勾股定理应用、三角形全等判定与性质,根据旋转一周8次,确定旋转37周再转90°是解题关键.12.B【分析】根据折叠的性质,90EPG EBC ∠∠==,EB EP =,从而得到EPB EBP ∠=∠,根据直角三角形两锐角互余,得到APB BPG ∠=∠,即可判定∠;过点B 作BQ ∠PH ,利用全等三角形的判定与性质,得到CH QH =,AP PQ =,即可判定∠;通过证明BMP 为等腰直角三角形,即可判定∠;根据BEP BMP BEPM S S S =+△△四边形求得对应三角形的面积,即可判定∠.解:由题意可得:90EPG EBC ∠∠==,EB EP =,∠90EPG EPB BPG ∠∠∠=+=,EPB EBP ∠=∠,∠90EBP BPG ∠∠+=,由题意可得:1801809090EBP APB A ∠∠∠+=-=-=,∠APB BPG ∠=∠,∠PB 平分∠APG ;∠正确;过点B 作BQ ∠PH ,如下图:∠90BQP A ∠∠==在APB 和QPB 中,A BQP APB QPB BP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩∠(AAS)APB QPB ≌∠AP PQ AB BQ ==,∠四边形ABCD 为正方形∠AB BC BQ ==,又∠BH BH=∠Rt Rt (HL)BCH BQH ≌,∠CH QH =∠PH PQ QH AP CH =+=+,∠正确;由折叠的性质可得:EF 是PB 的中垂线,∠PM BM =由题意可得:BAP BQP ≌,BCH BQH △≌△,∠,ABP PBQ CBH QBH ∠∠∠∠==, ∠1452PBQ QBH ABP CBH ABC ∠∠∠∠∠+=+==, ∠45PBM ∠=,∠45BPM PBM ∠∠==,∠BMP 为等腰直角三角形,∠222BM PM BP +=,即222BM BP =,∠BM ,∠正确; 若BE =53,AP =1,则53PE BE ==, 在Rt APE 中,222AE AP PE +=∠43AE ==,3AB AE BE ,∠PB =∠BM BP == 21110223BEP BMP BEPM S S S BE AP BM =+=⨯⨯+⨯=△△四边形,∠错误, 故选B ,【点拨】此题考查了正方形与折叠问题,涉及了折叠的性质,正方形的性质,直角三角形的性质,垂直平分线的性质,全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,综合性比较性,解题的关键是灵活运用相关性质进行求解.13【分析】连接AC ,CE ,则CE 的长即为AP +PE 的最小值,再根据菱形ABCD 中,120BCD ∠=︒得出∠ABC 的度数,进而判断出∠ABC 是等边三角形,故∠BCE是直角三角形,根据勾股定理即可得出CE 的长.解:连接AC ,CE ,∠四边形ABCD 是菱形,∠A 、C 关于直线BD 对称,∠CE 的长即为AP +PE 的最小值,∠120BCD ∠=︒,∠60ABC ∠=︒,∠∠ABC 是等边三角形,∠E 是AB 的中点,∠CE AB ⊥,112122BE BC ==⨯=∠CE ==【点拨】本题考查了轴对称-最短路线问题,熟知菱形的性质及两点之间线段最短是解答此题的关键.14.258或5或8 【分析】∠ADE 是等腰三角形,所以可以分3种情况讨论:∠当AD =AE 时,∠ADE 是等腰三角形.作AM ∠BC ,垂足为M ,利用勾股定理列方程可得结论;∠当AD =DE 时,四边形ABED 是菱形,可得m =5;∠当AE =DE 时,此时C 与E 重合,m =8.解:分3种情况讨论:∠当AD =AE 时,如图1,过A作AM∠BC于M,∠AB=AC=5,BM=12BC=4,∠AM=3,由平移性质可得AD=BE=m,∠AE=m,EM=4−m,在Rt∠AEM中,由勾股定理得:AE2=AM2+EM2,∠m2=32+(4−m)2,m=258,∠当DE=AD时,如图2,由平移的性质得AB DE∥,AB DE,∠四边形ABED是菱形,∠AD=BE=ED=AB=5,即m=5;∠当AC=DE时,如图3,此时C与E重合,m=8;综上所述:当m=258或5或8时,∠ADE是等腰三角形.故答案为:258或5或8.【点拨】本题考查了等腰三角形的性质、勾股定理、平移的性质,解题的关键是分三种情况求出BE的长;本题属于基础题,难度不大,但在解决该题时,部分同学会落掉两种情况,故在解决该题型题目时,全面考虑等腰三角形的三种情况是关键.15.1【分析】取OB中点E',连接PE',作射线FE'交AC于点P'.则PE=PE',当P与P'重合,P'、E'、F三点在同一直线上时,PF﹣PE'有最大值,即为FE'的长.解:如图,取OB中点E',连接PE',作射线FE'交AC于点P'.则PE=PE',∠PF﹣PE=PF﹣PE'≤FE',当P与P'重合,P'、E'、F三点在同一直线上时,PF﹣PE'有最大值,即为FE'的长,∠在菱形ABCD中,∠ABC=120°,∠∠ABD=60°,∠DAB=60°,∠∠ABD为等边三角形.∠AB=BD=AD=4.∠OD=OB=2.∠点E'为OB的中点,E'B=1,AF=3BF,∠BF1AB=1,4∠∠ABD=60°,∠∠BE'F为等边三角形,∠E'F=FB=1.故PF﹣PE的最大值为1.故答案为:1.【点拨】本题考查了轴对称﹣最大值问题、菱形的性质、等边三角形的判定与性质,熟练运用轴对称的性质和三角形三边关系是解题的关键.16.【分析】根据菱形ABCD 中,∠BAD =60°可知∠ABD 是等边三角形,结合三线合一可得∠BAB '=30°,求出∠ABB '=75°,可得∠EB 'B =∠EBB '=45°,则∠BEB '是直角三角形,借助勾股定理求出BB '的长即可.解:∠菱形ABCD ,∠AB =AD ,AD //BC ,∠∠BAD =60°,∠∠ABC =120°,∠AB ′∠BD ,∠∠BAB '1302BAD =∠=︒, ∠将∠ABE 沿直线AE 翻折180°,得到∠AB ′E ,∠BE =B 'E ,AB =AB ',∠∠ABB '()118030752=⨯︒-︒=︒, ∠∠EBB '=∠ABE ﹣∠ABB '=120°﹣75°=45°,∠∠EB 'B =∠EBB '=45°,∠∠BEB '=90°,在Rt∠BEB '中,由勾股定理得:BB '==故答案为:.【点拨】本题考查了翻折的性质、菱形的性质、等腰三角形的性质、以及勾股定理等知识,明确翻折前后对应线段相等是解题的关键.17. 43##113 32 【分析】连接GE ,根据点E 是BC 的中点以及翻折的性质可以求出BE =EF =EC ,然后利用“HL ”证明GFE 和GCE 全等,根据全等三角形对应边相等即可得证FG =CG ,设GC =x ,表示出AG 、DG ,然后在Rt ADG 中,利用勾股定理列式进行计算即可得解;先判断出EF AC ⊥时,GEF △的周长最小,最后用勾股定理即可得出结论.解:∠如图,连接GE ,∠E 是BC 的中点,∠BE =EC ,∠ABE △沿AE 折叠后得到AFE △,∠BE =EF ,∠EF =EC ,∠在矩形ABCD 中,∠∠C =90°,∠∠EFG =90°,∠在Rt GFE 和Rt GCE 中,EG EG EF EC =⎧⎨=⎩∠()GFE GCE HL ≌△△, ∠GF =GC ;设GC x =,则3AG x =+,3DG x =-,在Rt ADG 中,2224(3)(3)x x +-=+,解得x =43,即43GC =; ∠如图:由折叠知,∠AFE =∠B =90°,EF =BE ,∠4EF CE BE CE BC AD +=+===,∠当CF 最小时,CEF △的周长最小,∠CF AC AF ≥-,∠当点A ,F ,C 在同一条直线上时,CF 最小,由折叠知,AF =AB =3,在Rt ABC 中,AB =3,BC =AD =4,∠AC =5,∠2CF AC AF =-=,在Rt CEF 中,222EF CF CE +=,∠222(4)BE CF BE +=-,∠2222(4)BE BE +=-, ∠3=2BE . 【点拨】此题是四边形综合题,主要考查了矩形的性质,折叠的性质,全等三角形的判定和性质,勾股定理,解题的关键是构造出直角三角形,利用勾股定理解决问题.18.6【分析】设点M 是PD 的中点,过点M 作直线P D ''与射线CA 、CB 分别交于点,P D '',得到当点M 是PD 的中点时,CPD △的面积最小,再根据直角三角形的性质及三角形的面积公式求解即可.解:设点M 是PD 的中点,过点M 作直线P D ''与射线CA 、CB 分别交于点,P D '',则点M 不是P D ''的中点当MD MP ''>时,在MD '上截取ME MP '=,连接DEPMP DME'∠=∠()PMP DME SAS '∴≅=P CD PCD P CDE S S S '''∴>四边形当MD MP ''<时,同理可得P CD PCD S S ''>∴当点M 是PD 的中点时,CPD △的面积最小如图,作DH AB ⊥于H则DHM PAM ≌,90,AM MH DHM PAM AP DH ∴=∠=∠=︒=90BHD =∴∠︒1AM =,3BM =1AM MH ∴==2BH ∴=在等腰Rt ABC △中,314CA BA ==+=45B C ∴∠=︒=∠45B BDH ∴∠=∠=︒2BH DH AP ∴===426CP AC AP ∴=+=+=过点D 作DK PC ⊥交于K∴四边形AKDH 是矩形2DK AH AM HM ∴==+=1162622CDP S CP DK ∴=⋅=⨯⨯= 故答案为:6 【点拨】本题考查了全等三角形的判定和性质、矩形的判定和性质、直角三角形的性质,熟练掌握知识点是解题的关键.19.【分析】过点E作EH∠BF于H,利用三角形的中位线定理以及直角三角形斜边中线定理证明∠BFE是顶角为120°的等腰三角形即可解决问题.解:过点E作EH∠BF于H.∠AD=AC,∠DAC=90°,CD=8,∠AD=AC∠DF=FC,AE=EC,∠EF=1AD,EF//AD,2∠∠FEC=∠DAC=90°,∠∠ABC=90°,AE=EC,∠BE=AE=EC∠EF=BE∠∠BAD=105°,∠DAC=90°,∠∠BAE=105°-90°=15°,∠∠EAB=∠EBA=15° ,∠∠CEB=∠EAB+∠EBA=30°,∠∠FEB=90°+30°=120°,∠∠EFB=∠EBF=30°,∠EH∠BF,EF,FH∠EH=1∠ BF=2FH,S △EFB =11··22BF EH =⨯=故答案为【点拨】本题考查三角形中位线定理,直角三角形斜边中线的性质,等腰三角形的判定和性质,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.94或1 【分析】分∠CFE =90°和∠CEF =90°两种情况根据矩形的性质、勾股定理、全等三角形的判定及性质求解.解:∠如图,当∠CFE =90°时,∠四边形ABCD 是矩形,点E 是矩形ABCD 的边AB 的中点,AB =6,AD =4,∠∠P AE =∠PFE =∠EBC = 90°,AE =EF =BE =3,∠∠PFE +∠CFE =180°,∠P 、F 、C 三点一线,∠△EFC ∠△EBC ,∠FC =BC =4,EC ,∠FEC =∠BEC ,∠∠PEF +∠FEC =90°,设AP =x ,则PC =x +4,∠2222(4)35x x +=++,解得x =94; ∠如图,当∠CEF =90°∠∠CEB+2∠PEA =90°,∠∠CEB+∠PEA =90°-∠PEA,延长PE、CB,二线交于点G,∠AE=BE,∠P AE=∠GBE =90°,∠AEP=∠BEG,∠△P AE∠△GBE,∠P A=BG,∠AEP=∠BEG,∠∠G =90°-∠GEB= 90°-∠PEA,∠CEB+∠PEA =90°-∠PEA,∠∠G =∠CEB+∠PEA=∠CEB+∠GEB=∠CEG,∠CE=CBC+BG=BC+AP,∠5=4+AP,解得P A=1,故答案为:94或1.【点拨】本题考查了矩形的性质,折叠的性质,勾股定理,三角形全等的判定和性质,等腰三角形的判定和性质,熟练掌握矩形的性质,勾股定理是解题的关键.21.4【分析】将△DAF绕点A顺时针旋转90度到△BAF′位置,根据旋转的性质得出∠EAF′=45°,进而得出∠F AE∠∠EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=2BC=8,求出BC即可.解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF ∠∠BAF ′,∠DF =BF ′,∠DAF =∠BAF ′,∠∠EAF ′=45°,在△F AE 和△EAF ′中,AF AF FAE EAF AE AE ''=⎧⎪∠=∠⎨⎪=⎩, ∠∠F AE ∠∠EAF ′(SAS ),∠EF =EF ′,∠∠ECF 的周长为8,∠EF +EC +FC =FC +CE +EF ′=FC +BC +BF ′=DF +FC +BC =2BC =8,∠BC =4,即正方形的边长为4.故答案为:4.【点拨】此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△F AE ∠∠EAF ′是解题关键.22.3【分析】根据翻折的性质和已知条件可得点F 和点A 重合,过点D 作DH BC ⊥,DG AB ⊥,垂足分别为H ,G ,得四边形BHDG 是正方形,设DG DH x ==,1x x +=,求出x 的值,进而可以解决问题.解:如图,由折叠可知:30E C ∠=∠=︒,FE FD ∴=,当30ADE ∠=︒时,260BFD E ∠=∠=︒,在Rt ABC 中,90ABC ∠=︒,30C ∠=︒,60A ∴∠=︒,∴点F 和点A 重合,如图,过点D 作DH BC ⊥,DG AB ⊥,垂足分别为H ,G ,由折叠可知:45CBD EBD ∠=∠=︒,DG DH ∴=,∴四边形BHDG 是正方形,设DG DH x ==,AG DG ∴==,AB AG BG AG GD x ∴=+=++,1x x +=,解得x =DG ∴=, 30C ∠=︒,CD DH∴==.23故答案为:3.【点拨】本题考查翻折变换,正方形的判定与性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.23.【分析】过点H作HG∠CD于点G,连接DE,DE交FH于点Q,得到∠HGF=∠HGD=90°,推出∠HFG+∠FHG=90°,根据正方形ABCD中,AD=CD=BC=4,∠A=∠ADC=∠C=90°,得到四边形DAHG中,∠AHG=90°,推出四边形DAHG是矩形,得到GH=AD,GH=CD,根据折叠知,FH∠DE,得到∠DQF=90°,推出∠QFD+∠QDF=90°,得到∠GHF=∠CDE,根据∠HGF=∠C=90°,推出△DCE∠∠HGF(ASA),得到FH=DE,根据E是BC中点,得到CE=12BC=2,推出DE FH=解:过点H作HG∠CD于点G,连接DE,DE交FH于点Q,则∠HGF=∠HGD=90°,∠∠HFG+∠FHG=90°,∠正方形ABCD中,AD=CD=BC=4,∠A=∠ADC=∠C=90°,∠四边形DAHG中,∠AHG=90°,∠四边形DAHG是矩形,∠GH=AD,∠GH=CD,由折叠知,FH∠DE,∠∠DQF=90°,∠∠QFD+∠QDF=90°,∠∠GHF=∠CDE,∠∠HGF=∠C=90°,∠∠DCE∠∠HGF(ASA),∠FH=DE,∠E是BC中点,∠CE =12BC=2,∠DE ==,∠FH=故答案为【点拨】本题主要考查了正方形,折叠,矩形,全等三角形,勾股定理.解决问题的关键是熟练掌握正方形的性质,折叠的性质,矩形的判定和性质,全等三角形的判定和性质,勾股定理解直角三角形.24.【分析】延长BA 到点G ,使AG CF =,连接DG ,EF ,利用SAS 证明ADG CDF ≌,得ADG CDF ∠=∠,DG DF =,再证明()GDE FDE SAS △≌△,得=GE FE ,设AE x =,则6BE x =-,3EF x =+,再利用勾股定理即可解决问题.解::如图,延长BA 到点G ,使AG CF =,连接DG ,EF ,∠ 四边形ABCD 是正方形,∠AD CD =,90DAG DCF ∠=∠=︒,90ADC BAD ABC ∠=∠=∠=︒,在ADG 和CDF 中,AD CD DAG DCF AG CF =⎧⎪∠=∠⎨⎪=⎩∠()ADG CDF SAS △≌△,∠ADG CDF ∠=∠,DG DF =,∠45EDF ∠=︒,。
北师大版数学九年级上学期期末备考压轴题培优:反比例函数(含答案)

期末备考压轴题培优:反比例函数1.如图,在直角坐标系xOy中,直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.(3)点P在双曲线上,且△POC的面积等于△ABC面积的,求点P的坐标.2.如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;并直接写出不等式≤﹣+的解集.(2)在x轴上求一点P,使|P A﹣PB|的值最大,并求出其最大值和P点坐标.(3)连接OB,求三角形AOB的面积.3.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)直接写出不等式﹣x+3<的解集.4.已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.5.如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x>的解集;(3)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.6.如图所示,双曲线y=(x>0,k>0)与直线y=ax+b(a≠0,b为常数)交于A(2,4),B(m,2)两点.(1)求m的值;(2)若C点坐标为(n,0),当AC+BC的值最小时,求出n的值;(3)求△AOB的面积.7.如图,在平面直角坐标系xOy内,点P在直线y=x上(点P在第一象限),过点P作P A⊥x轴,垂足为点A,且OP=2.(1)求点P的坐标;=6,求点Q的坐标;(2)如果点Q在直线OP上,且S△APQ(3)如果点M和点P都在反比例函数y=(k≠0)图象上,过点M作MN⊥x轴,垂足为点N,如果△MNA和△OAP全等(点M、N、A分别和点O、A、P对应),求点M 的坐标.8.如图,在平面直角坐标系xOy中,反比例函数y=(k≠0)的图象经过等边三角形BOC 的顶点B,OC=2,点A在反比例函数图象上,连接AC,OA.(1)求反比例函数y=(k≠0)的表达式;(2)若四边形ACBO的面积是3,求点A的坐标.9.如图,反比例函数y1=的图象与一次函数y2=ax+b的图象相交于点A(1,4)和B(﹣2,n).(1)求反比例函数与一次函数的解析式;(2)请根据图象直接写出y1<y2时,x的取值范围.10.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)当t=4时,求△BMA面积;(3)若MA⊥AB,求t的值.12(1)求A、B两点的坐标和反比例函数的解析式;(2)求△AOB的面积.12.如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.12两点.(1)求反比例函数的解析式;(2)观察图象,直接写出使一次函数值不大于反比例函数值的x的取值范围;(3)求△AOB的面积.14.如图,一次函数y=k1x﹣3(k1>0)的图象与x轴、y轴分别交于A,B两点,与反比例函y=(k2>0)的图象交于C,D两点,作CE⊥y轴,垂足为点E,作DF⊥y轴,垂足为点F,已知CE=1.(1)①直接写出点C的坐标(用k1来表示)②k2﹣k1=;(2)若B为AC的中点,求反比例函数的表达式;(3)在(2)的条件下,设点M是x轴负半轴上一点,将线段MF绕点M旋转90°,得到线段MN,当点M滑动时,点N能否在反比例函数的图象上?如果能,求出点N的坐标;如果不能,请说明理由.15.对于一个函数给出如下定义:对于函数y,当a≤x≤b,函数值y满足c≤y≤d,且满足k(b﹣a)=d﹣c,则称此函数为“k属函数”.例如:正比例函数y=﹣3x,当1≤x≤3,﹣9≤y≤﹣3,则k(3﹣1)=﹣3﹣(﹣9),求得:k=3,所以函数y=﹣3x为“3属函数”.(1)反比例函数y=(1≤x≤5)为“k属函数”,求k的值;(2)若一次函数y=ax﹣1(1≤x≤5)为“2属函数”,求a的值.16.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出使一次函数值大于反比例函数值的x的范围.17.如图,在平面直角坐标系中,直线y=k1x(x≥0)与双曲线y=(x>0)相交于P (2,4),已知点A、B的坐标分别为(4,0)、(0,3),连结AB.将Rt△AOB沿OP方向平移,得到△A′PB′,点O与点P是对应点.过点A′作A′C∥y轴交双曲线于点C.(1)求k1、k2的值;(2)求点C的坐标;(3)判断四边形PCA′B′是否为平行四边形,请说明理由.18.探索函数y=x+(x>0)的图象和性质.已知正比例函数y=x与反比例函数y=在第一象限内的图象如图所示.若P为函数y=x+(其中x>0)图象上任意一点,过P作PC垂直于x轴且与已知函数的图象、x轴分别交于点A、B、C,则PC=x+=AC+BC,从而发现下述结论:“点P可以看作点A沿竖直方向向上平移BC个长度单位(P A=BC)而得到”.(1)根据该结论,在图中作出函数y=x+(x>0)图象上的一些点,并画出该函数的图象;(2)观察图象,写出函数y=x+(x>0)两条不同类型的性质.19.如图,在平面直角坐标系xOy中,函数的图象经过点A(﹣1,6),直线y =mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx﹣2于点C,交函数的图象于点D.①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由;②若PD≥2PC,结合函数的图象,直接写出n的取值范围.参考答案1.解:(1)∵直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,∴B点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(﹣1,2),将A(﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;(2)设直线AC的解析式为y=kx+b,∵y=kx+b经过点A(﹣1,2)、C(1,0)∴,解得k=﹣1,b=1,∴直线AC的解析式为y=﹣x+1;(3)∵A(﹣1,2),C(1,0),∴B(1,﹣2),∴S=×2×2=2,△ABC∵△POC的面积等于△ABC面积的,=,∴S△POC=OC•|y P|,∵S△POC∴=•|y P|,解得y P=±1,∴P(﹣2,1)或(2,﹣1).2.解:(1)∵反比例函数y=(k>0)的图象过点A,过A点作x轴的垂线,垂足为M,△AOM面积为1,∴|k|=1,∵k>0,∴k=2,故反比例函数的解析式为:y=,由,解得或,∴A(1,2),B(4,),∴不等式≤﹣+的解集为1≤x≤4或x≤0;(2)一次函数y=﹣x+的图象与x轴的交点即为P点,此时|P A﹣PB|的值最大,最大值为AB的长.∵A(1,2),B(4,),∴AB==,∴|P A﹣PB|的最大值为;∵一次函数y=﹣x+,令y=0,则﹣x+=0,解得x=5,∴P点坐标为(5,0);(3)∵P (5,0),∴OP =5,∴S △AOB =S △AOP ﹣S △BOP =×5×2﹣=.3.解:(1)把点A (1,a )代入y =﹣x +3,得a =2,∴A (1,2)把A (1,2)代入反比例函数y =,∴k =1×2=2;∴反比例函数的表达式为y =;(2)∵一次函数y =﹣x +3的图象与x 轴交于点C ,∴C (3,0),设P (x ,0),∴PC =|3﹣x |,∴S △APC =|3﹣x |×2=5,∴x =﹣2或x =8,∴P 的坐标为(﹣2,0)或(8,0);(3)解得或,∴B (2,1),由图象可知:不等式﹣x +3<的解集是0<x <1或x >2.4.解:(1)∵A (a ,﹣2a )、B (﹣2,a )两点在反比例函数y =的图象上, ∴m =﹣2a •a =﹣2a ,解得a =1,m =﹣2,∴A (1,﹣2),B (﹣2,1),反比例函数的解析式为y =﹣.将点A (1,﹣2)、点B (﹣2,1)代入到y =kx +b 中, 得:,解得:,∴一次函数的解析式为y =﹣x ﹣1.(2)在直线y =﹣x ﹣1中,令y =0,则﹣x ﹣1=0,解得x =﹣1,∴C (﹣1,0),∴S △AOB =S △AOC +S △BOC =×1×2+×1=;(3)观察函数图象,发现:当x <﹣2或0<x <1时,反比例函数图象在一次函数图象的上方,∴不等式kx +b ﹣>0的解集为x <﹣2或0<x <1.5.解:(1)∵直线l 1:y =﹣x 经过点A ,A 点的纵坐标是2,∴当y =2时,x =﹣4,∴A (﹣4,2),∵反比例函数y =的图象经过点A ,∴k =﹣4×2=﹣8,∴反比例函数的表达式为y =﹣;(2)∵直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点, ∴B (4,﹣2),∴不等式﹣x >的解集为x <﹣4或0<x <4;(3)如图,设平移后的直线l 2与x 轴交于点D ,连接AD ,BD ,∵CD ∥AB ,∴△ABC 的面积与△ABD 的面积相等,∵△ABC 的面积为30,∴S △AOD +S △BOD =30,即OD (|y A |+|y B |)=30,∴×OD ×4=30,∴OD =15,∴D(15,0),设平移后的直线l2的函数表达式为y=﹣x+b,把D(15,0)代入,可得0=﹣×15+b,解得b=,∴平移后的直线l2的函数表达式为y=﹣x+.6.解:(1)把A(2,4)代入y=(x>0,k>0),∴k=2×4=8,∴反比例函数的解析式为y=,把B(m,2)代入y=得,2=,解得m=4;(2)由(1)可知:A(2,4),B(4,2),∴B点关于x轴的对称点B′(4,﹣2),连接AB′,交x轴与C,此时AC+BC=AB′,AC+BC的值最小,设直线AB′的解析式为y=mx+t,把A(2,4),B′(4,﹣2)代入得,解得:,∴直线AB′的解析式为y=﹣3x+10,把(n,0)代入得y=﹣3n+10,∴n=;(3)把A(2,4),B(4,2)代入y=ax+b得,解得,∴直线AB的解析式为y=﹣x+6,∴直线AB 与x 轴的交点C (6,0),∴S △AOB =S △AOC ﹣S △BOC =×6×4﹣×6×2=6.7.解:(1)设AP =h ,则OA =2h ,由勾股定理得,OP 2=AP 2+OA 2,即(2)2=h 2+(2h )2, 解得,h =2,∴AP =h =2,则OA =2h =4,∴点P 的坐标为(4,2);(2)设点Q 到AP 的距离为a ,由题意得,×2×a =6,解得,a =6,∴点Q 的横坐标为4﹣6或4+6,当x =4﹣6时,y =2﹣3,当x =4+6,y =2+3,综上所述,点Q 的坐标为(4﹣6,2﹣3)或(4+6,2+3);(3))∵点P (4,2)在反比例函数y =的图象上,∴2=,解得,k =8,∴y =,在Rt △P AO 中,∠P AO =90°,P A =2,AO =4,∵∠MNA =90°,∴当△MNA 和△APO 全等时,分以下两种情况:①点N 在点A 的左侧时,MN =AO =4,AN =AP =2,∴ON =OA ﹣AN =4﹣2=2,∴M(2,4),且点M在反比例函数y=的图象上.②点N在点A的右侧时,AO=MN=4,AN=AP=2,∴ON=AN+AO=4+2=6.∴M(6,4),但点M不在反比例函数y=的图象上,综合①②,满足条件的点M的坐标为(2,4).8.解:(1)作BD⊥OC于D,∵△BOC是等边三角形,∴OB=OC=2,OD=OC=1,∴BD==,=OD×BD=,∴S△OBDS=|k|,△OBD∴|k|=,∵反比例函数y=(k≠0)的图象在一三象限,∴k=,∴反比例函数的表达式为y=;=OC•BD==,(2)∵S△OBC∴S=3﹣=2,△AOC=OC•y A=2,∵S△AOC∴y A=2,把y=2代入y=,求得x=,∴点A的坐标为(,2).9.解:(1)∵反比例函数y1=的图过点A(1,4),∴4=,即k=4,∴反比例函数的解析式为:y1=,∵反比例函数y1=的图象过点B(﹣2,n),∴n==﹣2,∴B(﹣2,﹣2),∵一次函数y2=ax+b的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得:∴一次函数的解析式为:y2=2x+2;(2)由图象可知:当﹣2<x<0或x>1.10.解:(1)∵反比例函数(x>0)的图象经过点A,∴1=,解得k=8;(2)设直线AB 的解析式为y =kx +b ,把点A (8,1),B (0,﹣3)代入得, 解得,∴直线AB 的解析式为y =x ﹣3,当t =4时,则M (4,2),N (4,﹣1),∴MN =2﹣(﹣1)=3,∴S △BMA =×3×8=12;(3)由题意可知M (t ,),∵A (8,1),B (0,﹣3),∴MA 2=(t ﹣8)2+(﹣1)2,MB 2=t 2+(+3)2,AB 2=82+(1+3)2=80, ∵MA ⊥AB ,∴MB 2=MA 2+AB 2,即t 2+(+3)2=(t ﹣8)2+(﹣1)2+80,整理得:2t +=17,解得t =或t =8(舍去),故若MA ⊥AB ,t 的值为.11.解:(1)分别把A (1,m )、B (4,n )代入y 1=﹣x +5,得m =﹣1+5=4,n =﹣4+5=1,所以A 点坐标为(1,4),B 点坐标为(4,1),把A (1,4)代入y 2=,得k =1×4=4,所以反比例函数解析式为y 2=;(2)如图,设一次函数图象与x 轴交于点C ,当y =0时,﹣x +5=0,解得x =5,则C 点坐标为(5,0),所以S △AOB =S △AOC ﹣S △BOC=×5×4﹣×5×1=7.5.12.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)代入反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,);②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),∵△BCD是以BC为腰的等腰三形,当BC=CD时,BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,当BC=BD时,B(2,4),C(m,8),∴BC=,∴=m,∴m=5,当BD=AB时,m=AB==2,综上所述,△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5或2.13.解:(1)∵点A(2,4)在反比例函数y2=的图象上,∴k=2×4=8,∴反比例函数的解析式为y2=.(2)∵点B(﹣4,n)在反比例函数y2=的图象上,∴n==﹣2,∴点B的坐标为(﹣4,﹣2).观察函数图象,发现:使一次函数值不大于反比例函数值的x的取值范围为x≤﹣4或0<x≤2.(3)将点A(2,4)、B(﹣4,﹣2)代入到y1=ax+b中,得:解得:,∴一次函数的解析式为y=x+2,令y=0,求得x=﹣2,∴S△AOB=S△AOC+S△BOC=×2×2+2×4=6.14.解:(1)如图1,∵CE⊥y轴于点E且CE=1,∴C的横坐标为1,当x=﹣1时,y=﹣k1﹣3∴C(﹣1,﹣k1﹣3),∵C在反比例函数的图象上,∴﹣1×(﹣k1﹣3)=k2,∴k2﹣k1=3;故答案为(﹣1,﹣k1﹣3),3;(2)如图1,∵CE⊥y轴,DF⊥y轴,∴CE∥DF,∵B为AC的中点,∴AB=BC,∵∠AOB=∠BEC=90°,∠ABO=∠CBE,∴△ABO≌△CBE(AAS),∴AO=CE=1,∴A(1,0),当x=1时,y=k1+3=0,∴k1=3,由(1)得:k2﹣k1=3,∴k2=6;∴反比例函数的解析式:y=;(3)当点M滑动时,点N能在反比例函数的图象上如图2,MF=MN,∠FMN=90°过N作NH⊥x轴于H,易得:△MNH≌△FMO,∴FO=MH,OM=NH,由(2)知:反比例函数的解析式:y=;设D(m,),∵tan∠ABO===,∴=,解得:m=2,m=﹣1(舍去),∴N(2,3),∴OF=MH=3,设M(x,0),∴N(x+3,x),当点N落在反比例函数的图象上时,x(x+3)=6,x2+3x﹣6=0,解得x=(舍去),x=,∴点N的坐标为(,).15.解:(1)∵反比例函数y=中,k=5>0,∴y随x的增大而减小,当1≤x≤5时,1≤y≤5,∴k(5﹣1)=5﹣1,∴k=1;(2)①a>0时,对于一次函数y=ax﹣1,y随x增大而增大,当1≤x≤5时,a﹣1≤y≤5a﹣1,∴k(5﹣1)=4a,∵k=2,∴a=2;②当a<0时,y随x增大而减小,当1≤x≤5时,a﹣1≤y≤5a﹣1,∴k(5﹣1)=﹣4a,∵k=2,∴a=﹣2.16.解:(1)把A(2,﹣4)的坐标代入得:,∴4﹣2m=﹣8,反比例函数的表达式是;把B(n,﹣2)的坐标代入得,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,一次函数值大于反比例函数值的x的范围为0<x<2或x>4.17.解:(1)∵直线y=k1x过点P(2,4),∴4=2k1,∴k1=2,∵双曲线y=(x>0)过点P(2,4),∴k2=2×4=8;(2)由平移知,点O(0,2)向右平移2个单位,再向上平移4个单位得到点P(2,4),∴点A(4,0)也向右平移2个单位,再向上平移4个单位得到点A'(6,4),∵A'C∥y轴,∴点C的横坐标为6,由(1)知,k2=8,双曲线的解析式为y=,∵点C在双曲线y=上,∴y==,∴C(6,);(3)四边形PCA′B′不是平行四边形,理由:∵B(0,3),∴OB=3,由平移知,PB'=OB=3,PB'∥y轴,∵A'C∥y轴,∴PB'∥A'C,由(2)知,A'(6,4),C(6,),∴A'C=4﹣=≠PB',∴四边形PCA′B′不是平行四边形.18.解:(1)如图所示:(2)函数两条不同类型的性质是:①图象是轴对称图形:②当0<x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大;③当x=1时,函数y=x+(x>0)的最小值是2;19.解:(1)∵函数的图象经过点A(﹣1,6),∴k=﹣6.∵直线y=mx﹣2与x轴交于点B(﹣1,0),∴m=﹣2.(2)①判断:PD=2PC.理由如下:当n=﹣1时,点P的坐标为(﹣1,2),∵y=﹣2x﹣2交于于点C,且点P(﹣1,2)作平行于x轴的直线,∴点C的坐标为(﹣2,2),∵函数的图象于点D,且点P(﹣1,2)作平行于x轴的直线,点D的坐标为(﹣3,2).∴PC=1,PD=2.∴PD=2PC.②当PD=2PC时,有两种情况,分别为:y=2,或者y=6.若PD≥2PC,0<y≤2,或y≥6即0<﹣2n≤2,或﹣2n≤6解得﹣1≤n<0.或n≤﹣3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下学期九年级数学上册期末复习压轴题专题训练试题
1.如图,在△ABC 中,∠ACB =90°,D 、E 分别是BC 、BA 的中点,连接DE 并延长至F ,使AF =AE .(1)证明:四边形ACEF 是平行四边形;(2)若四边形ACEF 是菱形,求∠B 的度数.
2.已知:如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 中点,连接OE.过点C 作CF ∥BD 交线段OE 的延长线于点F ,连接DF.求证: (1)△ODE ≌△FCE;(2)四边形ODFC 是菱形.
3.已知关于x 的方程2(3)(2)0x x p ---=.
(1)求证:无论p 取何值时,方程总有两个不相等的实数根.
(2)设方程两实数根分别为1x ,2x ,且满足22
12
123x x x x +=,求实数p 的值.
4.如图,高高的路灯挂在学校操场旁边上方.王刚同学拿起一根2 m 长的竹竿去
测量路灯的高度,他走到路灯旁的一个地方点A 竖起竹竿(AE),这时他量了一下竹竿的影长AC 正好是1 m ,他沿着影子的方向走,向远处走出两个竹竿的长度(即4 m )到点B ,他又竖起竹竿(BF 表示),这时竹竿的影长BD 正好是一根竹竿的长度(即2 m ),此时,王刚同学抬头若有所思地说道:“噢,原来路灯有10 m 高
呀.”你觉得王刚同学的判断对吗?若对,请给出解答,若不对,请说明理由.
5.如图,已知点A(1,a)是反比例函数y=−3
x
的图象上一点,直线y=
−1
2x+1
2
与反比例函数y=−3
x
的图象在第四象限的交点为B.
(1)求直线AB的表达式;
(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
6.如图,一次函数y
1=kx+b(k≠0)的图象与反比例函数y
2
=
m
x
(m≠0,x<0)的图
象交于点A(-3,1)和点C,与y轴交于点B,△AOB的面积是6;
(1)求一次函数与反比例函数的表达式;(2)当x<0时,比较y
1与y
2
的大小.
7.如图,一次函数y
1=kx+b(k≠0)和反比例函数y
2
=
m
x
(m≠0)的图象交
点A(-1,6),B(a,-2)
(1)求一次函数和反比例函数的表达式;
(2)根据图象直接写出y
1>y
2
时x的取值范围.
8.如图,已知直线y=1
2
x与双曲线y=
k
x
(k>0)交于A,B两点,且点A的横坐
标为4.
(1)求k的值及B点的坐标;
(2)若双曲线y=k
x
(k>0)上一点C的横坐标为8,求△AOC的面积.
9.如图,在矩形ABCD中,对角线AC,BD相交于点0,B是CD的中点,连接OE 过点C作CF∥BD交线段OE的延长线于点F,连接DF.
(1)求证:CF=OD
(2)求证:四边形OCFD是菱形.
10.如图,在平行四边形ABCD中,EF垂直平分AC交BC于E,交AD于F.
(1)求证:四边形AECF 菱形.
(2)若AC CD ⊥.6AB =,10BC =,求四边形AECF 的面积.
11.如图,一次函数y =kx+b 与反比例函数y =
m
x
的图象交于点A(1,4),B(4,n)两点.
(1)求反比例函数的表达式;(2)求一次函数的表达式;
(3)点P 是x 轴上的一动点,试确定点P 并求出它的坐标,使PA+PB 最小.
12.如图,四边形 ABCD 中,AD ∥BC ,∠A =90∘,AD =1 cm ,AB =3 cm ,BC =5 cm ,动点 P 从点 B 出发以 1 cm/s 的速度沿 BC 的方向运动,动点 Q 从点 C 出发以 2 cm/s 的速度沿 CD 方向运动,P ,Q 两点同时出发,当 Q 到达点 D 时停止运动,点 P 也随之停止,设运动的时间为 t s (t >0).
(1)求线段 CD 的长;
(2)t 为何值时,线段 PQ 将四边形 ABCD 的面积分为 1:2 两部分? 13.如图,AB ⊥BC ,DC ⊥BC ,E 是BC 上一点,使得AE ⊥DE ;
D
A B
C
E
F
(1)求证:△ABE∽△ECD;
(2)若AB=4,AE=BC=5,求CD的长;
(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.
14.如图,在四边形ABCD中,∠ACB=∠ADB,BC,AD的延长线相交于点E.求证:
(1)△ACE∽△BDE;
(2) BE.DC=AB.DE
15.如图,一次函数y=-x+4的图象与反比例函数y=k
x
(k为常数,且k≠0)的
图象交于A(1,a),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB 的面积.
16.如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.
(1)求证:OM=ON;
(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.
17.如图,四边形ABCD的四个顶点分别在反比例函数y=m
x
与y=
n
x
(x>0,0<m<n)
的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式;
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由;
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
18.已知函数y=6
x
−1与函数y=kx交于点A(2,b)、B(−3,m)两点(点A在第一象限),
(1)求b,m,k的值;
(2)函数 y =6
x −1 与 x 轴交于点 C ,求 △ABC 的面积.
19.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x 轴所在的直线绕着原点O 逆时针旋转α
度角后的图形.若它与反比例函数y 的图象分别交于第一、三象限的点B 、D ,已知点(,0)A m -、 (,0)C m .
(1)直接判断并填写:不论α取何值,四边形ABCD 的形状一定是__________.
(2)①当点B 为(,1)p 时,四边形ABCD 是矩形,试求p 和m 的值. ②观察猜想:对①中的m 值,直接写出能使四边形ABCD 为矩形的点B 坐标. (3)试探究四边形ABCD 能不能是菱形?若能,直接写出B 点的坐标,若不能,说明理由.
20.如图,在口ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△CFC (1)求证:BE =DG
(2)若∠B =60°当AB 与BC 满足什么数量关系时,四边形 ABFC 是菱形?证明你的结论.
21.已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE+∠CBE =90°.
(1)如图1,当四边形ABCD和EFCG均为正方形时,连接BF
①求证:△CAEC∽△CBF;
②若BE=1,AE=2,求CE的长;
(2)如图2,当四边形ABCD和EFCG均为矩形,且AB
BC
=
EF
FC
=k时,若BE=1,AE
=2,CE=3,求K的值.
(3)如图3,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE =m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程).
22.如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N 为线段AM上的点,且MB=MN.
(1)求证:BN平分∠ABE;
(2)若BD=1,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;
(3)如图②,若点F为AB的中点,连接FN,FM,求证:△MFN∽△BDC.
23.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D,M分别在边AB,OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=m
x
的图象经过点D,与BC的交点为N.
(1)求反比例函数和一次函数的表达式;
(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.
24.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=点P是BD上的一个动点,求PG+PC 的最小值.
25.如图, ABCD在平面直角坐标系中,AD=6,若OA,OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)由已知,AB=_______;(直接写出结果)
(2)若点E为x轴上的点,且S
△AOE =
16
3
.
①E点坐标为_____________;(直接写出结果)
②证明:△AOE∽△DAO;
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A,C,F,M
为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.。