全国2019年4月高等教育自学考试概率论与数理统计(经管类)试题

合集下载

全国2019年4月自考概率论与数理统计(经管类)试题和答案

全国2019年4月自考概率论与数理统计(经管类)试题和答案

自考概率论与数理统计(经管类)试题和答案高等教育自学考试统一命题考试概率论与数理统计(经管类)试题和答案评分标准第一部分选择题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸"的相应代码涂黑。

错涂、多涂或未涂均无分。

1.掷一颗骰子,观察出现的点数。

A 表示“出现3点”,B 表示“出现偶数点”,则A.A B ⊂B.A B ⊂C.A B ⊂D.A B ⊂正确答案:B (2分)2.设随机变量x 的分布律为 ,F(x)为X 的分布函数,则F(0)=A.0.1B.0.3C.0.4D.0.6 正确答案:C (2分)3.设二维随机变量(X ,Y )的概率密度为,11,02,(,)0,≤≤≤≤其它,c x y f x y -⎧=⎨⎩则常数c=A.14 B.12 C.2 D.4 正确答案:A (2分)4.设随机变量X 服从参数为2的泊松分布,则D(9—2X )=A.1B.4C.5D.8 正确答案:D (2分)5.设(X ,Y )为二维随机变量,则与Cov(X ,Y )=0不等价...的是 A.X 与Y 相互独立B.()()()D X Y D X D Y -=+C.E(XY)=E(X)E(Y)D.()()()D X Y D X D Y +=+正确答案:A (2分)6.设X 为随机变量,E(x)=0.1,D(X )=0.01,则由切比雪夫不等式可得A.{}0.110.01≥≤P X -B.{}0.110.99≥≥P X -C.{}0.110.99≤P X -<D.{}0.110.01≤P X -<)B=_______.14.设随机变量X 服从区间[1,5]上的均匀分布,F (x )为X 的分布函数,当1≤x ≤5时,F(x)=_______.正确答案:)(121-x (2分) 15.设随机变量X 的概率密度为2,01,1()20,则P 其他,x x f x X ≤≤⎧⎧⎫=>⎨⎨⎬⎩⎭⎩=_______. 正确答案:3/4(2分)16.已知随机变量X ~N (4,9),{}{}≤P X c P X c >=,则常数c =_______. 正确答案:4(2分)17.设二维随机变量(X ,Y )的分布律为则常数a =_______.正确答案:0.2(2分)18.设随机变量X 与Y 相互独立,且X ~N (0,1),Y ~N(-1,1),记Z =X -Y ,则Z ~_______. 正确答案:N (1,2)(2分)19.设随机变量X 服从参数为2的指数分布,则E (X 2)=_______. 正确答案:1/2(2分)20.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D(Y )=5,0.8XY ρ=,则E (XY )=_______. 正确答案:5(2分)21.设随机变量X ~B (100,0.2),Φ(x)为标准正态分布函数,Φ(2.5)=0.9938,应用中心极限定理,可得P {20≤X ≤30)≈_______. 正确答案:0.4938(2分)22.设总体X ~N (0,1),1234,,,x x x x 为来自总体X 的样本,则统计量22221234x x x x +++~_______.正确答案:)4(2x (2分)23.设样本的频数分布为 则样本均值x =_______. 正确答案:1.4(2分)24.设总体X ~N (μ,16),μ未知,1216,,,x x x 为来自该总体的样本,x 为样本均值,u α为标准正态分布的上侧α分位数.当μ的置信区间是0.050.05,x u x u ⎡⎤-+⎣⎦时,则置信度为_______.正确答案:0.9(2分)25.某假设检验的拒绝域为W ,当原假设H 0成立时,样本值(12,,,n x x x )落入W 的概率为0.1,则犯第一类错误的概率为_______. 正确答案:0.1(2分)三、计算题(本大题共2小题,每小题8分,共16分) 26.设二维随机变量(X ,Y )的概率密度为26,01,01,(,)0,≤≤≤≤其他x y x y f x y ⎧⎪=⎨⎪⎩求:(1)(X ,Y )关于X 的边缘概率密度f x (x);(2){}P X Y >. 正确答案:(8分)27.设二维随机变量(X ,Y )的分布律为求:(1)E (Y ),D (X );(2)E (X +Y ).正确答案:(8分)四、综合题(本大题共2小题,每小题12分,共24分)28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球.从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)己知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率. 正确答案:(12分)29.设随机变量X ~N (0,1),记Y =2X ,求:(1)P{X<-1}; (2)P{|X |<1};(3)Y 的概率密度.(:(1)0.8413附Φ=) 正确答案:(12分)五、应用题(10分)30.某项经济指标X ~N(μ,2),将随机调查的11个地区的该项指标1211,,,x x x 作为样本,算得样本方差S 2=3.问可否认为该项指标的方差仍为2?(显著水平α=0.05)(附:220.0250.975(10)20.5,(10) 3.2X X ==) 正确答案:(10分)。

2019年4月全国自考《概率论与数理统计(二)》考前试题和答案02197

2019年4月全国自考《概率论与数理统计(二)》考前试题和答案02197
【正确答案】 F(x)=0,x<1 12,1≤x<3 56,3≤x<5 1,x≥5
本题分数 8 分
修改分数
你的得分 第 2 题 在电压不超过 200V,200~240V,超过 240V 三种情况下,某种电子元件损坏的概率分别为 0.1,0.001 和 0.2,若电源电压 X~N(220,252), 求:(1)元件损坏的概率 α;
修改分数
你的得分 第 4 题 设连续型随机变量 X 的概率密度为(如下图)则 k分数 2 分
修改分数
你的得分 第 5 题 设 X 的分布列为(如下图)则 D(1-2X)=___.
【正确答案】
本题分数 2 分
你的得分 第 6 题 图中空白处答案应为:___
修改分数
【正确答案】
【正确答案】
五、应用题(10 分) 第1题
【正确答案】
本题分数 2 分
你的得分 第 2 题 图中空白处答案应为:___
修改分数
【正确答案】
本题分数 2 分
修改分数
你的得分 第 3 题 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为 0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为___.
【正确答案】 0.496
本题分数 2 分
【正确答案】 D
本题分数 2 分 第 7 题 f(x)=1b-aa≤x≤b 0 其他是()分布的密度函数. A. 指数
B. 二项 C. 均匀 D. 泊松
【正确答案】 C
本题分数 2 分 第 8 题 设 x1,x2,…,xn 是来自总体 X 的样本,X~N(0,1),则∑ni=1x2i 服从() A. χ2(n-1) B. χ2(n) C. N(0,1) D. N(0,n)

2019年4月自考概率论与数理统计(二)考前试题和答案02197

2019年4月自考概率论与数理统计(二)考前试题和答案02197

2019年4月自考《概率论与数理统计(二)》考前试题和答案02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

第1题若随机变量X的方差存在,由切比雪夫不等式可得P{|X-E(X)|>1}≤()【正确答案】 A【你的答案】本题分数2分第2题若D(X),D(Y)都存在,则下面命题中错误的是()A. X与Y独立时,D(X+Y)=D(X)+D(Y)B. X与Y独立时,D(X-Y)=D(X)+D(Y)C. X与Y独立时,D(XY)=D(X)D(Y)D. D(6X)=36D(X)【正确答案】 C【你的答案】本题分数2分第3题设F(x)=P{X≤x}是连续型随机变量X的分布函数,则下列结论中不正确的是()A. F(x)不是不减函数B. F(x)是不减函数C. F(x)是右连续的D. F(-∞)=0,F(+∞)=1【正确答案】 A【你的答案】本题分数2分【正确答案】 D【你的答案】本题分数2分第5题从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm,标准方差为1.6cm,若想知这批零件的直径是否符合标准直径5cm,因此采用了t-检验法,那么,在显著性水平α下,接受域为()【正确答案】 A【你的答案】本题分数2分第6题设μ0是n次重复试验中事件A出现的次数,p是事件A在每次试验中出现的概率,则对任意ε>0,均有limn→∞Pμ0n-p≥ε()A. =0B. =1C. >0D. 不存在【正确答案】 A【你的答案】本题分数2分第7题设X的分布列为X0123P0.10.30.40.2F(x)为其分布函数,则F(2)=()A. 0.2B. 0.4D. 1【正确答案】 C【你的答案】本题分数2分第8题做假设检验时,在()情况下,采用t-检验法.A. 对单个正态总体,已知总体方差,检验假设H0∶μ=μ0B. 对单个正态总体,未知总体方差,检验假设H0∶μ=μ0C. 对单个正态总体,未知总体均值,检验假设H0∶σ2=σ20D. 对两个正态总体,检验假设H0∶σ21=σ22【正确答案】 B【你的答案】本题分数2分第9题已知E(X)=-1,D(X)=3,则E[3(X2-2)]=()A. 9B. 6C. 30D. 36【正确答案】 B【你的答案】本题分数2分第10题 X~N(μ,σ2),则P{μ-kσ≤X≤μ+kσ}=()A. Φ(k)+Φ(-k)B. 2Φ(k)C. 2Φ(k-1)D. 2Φ(k)-1【正确答案】 D二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。

学历类《自考》自考专业(国贸)《概率论与数理统计经管类》考试试题及答案解析

学历类《自考》自考专业(国贸)《概率论与数理统计经管类》考试试题及答案解析

学历类《自考》自考专业(国贸)《概率论与数理统计经管类》考试试题及答案解析姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分1、设 x1,x2,xn为样本观测值,经计算知nx 2 =64,正确答案:36答案解析:2、设 x1,x2,, , xn为来自总体X的样本,且 X~N( 0,1 ),则统计量_________.正确答案:答案解析:3、设X1,X2,,,Xn,,是独立同分布的随机变量序列,E(Xn)=μ,D(Xn)=σ2,n=1,2,,,则=_________.正确答案:0.5答案解析:4、设随机变量X~N(0,1),Y~N(0,1),Cov(X,Y)=0.5,则D(X+Y)=_________.正确答案:3答案解析:5、设随机变量X~N(0,4),则E(X2)=_________.正确答案:4答案解析:6、设随机变量X的分布律为则 X 的数学期望 E(X)= _________.正确答案:答案解析:7、设二维随机变量(X,Y)的概率密度为 f (x,y)=则 P{ X+Y≤1} = _________. 正确答案:1/4答案解析:8、若随机变量 X~B(4,1/3),则 P{ X≥1} = _________.正确答案:65/81答案解析:9、设随机变量 X的分布函数为 F(x)=则当 x>0 时,X的概率密度 f (x)=_________.正确答案:答案解析:10、设随机变量X的分布函数为F(x),已知F(2)=0.5,F(-3)=0.1,则P{-3X≤2} = _________.正确答案:0.4答案解析:11、设X是连续型随机变量,则P{X=5}=_________.正确答案:答案解析:12、设随机变量 X的分布律为. 记 Y=X2,则 P{ Y=4} =_________.正确答案:0.5答案解析:13、设A为随机事件,P(A)=0.3,则_________.正确答案:0.7答案解析:暂无解析14、设袋内有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为_________.正确答案:1/4答案解析:暂无解析15、设随机事件A与B相互独立,且P(A)=P(B)=1/3,则=_______.正确答案:7/9答案解析:暂无解析16、设随机事件A与B互不相容,且P(A)0,P(B)0,则( )A、P(B|A)=0B、P(A|B)>0C、P(A|B)=P(A)D、P(AB)=P(A)P(B)正确答案:答案解析:17、设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=( )A、Φ(05)B、Φ(075)C、Φ(1)D、Φ(3)正确答案:答案解析:18、设随机变量X的概率密度为f(x)=则P{0≤X≤}=( )A、1/4B、1/3C、1/2D、3/4正确答案:答案解析:19、设随机变量X的概率密度为f(x)=则常数c=()A、-3B、-1C、-1/2D、1正确答案:答案解析:20、设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()A、B、C、D、正确答案:答案解析:21、设二维随机变量(X,Y)~N(μ1,μ2,),则Y~()A、B、C、D、正确答案:答案解析:22、已知随机变量X的概率密度为f(x)=则E(X)=()A、6B、3C、1D、1/2正确答案:答案解析:23、设随机变量X与Y相互独立,且X~B(16,0.5),Y服从参数为9的泊松分布,则D(X-2Y+3)=( )A、-14B、-11C、40D、43正确答案:答案解析:24、设随机变量Zn~B(n,p),n=1,2,其中0p1,=( )A、B、C、D、正确答案:答案解析:25、设x1,x2,x3,x4为来自总体X的样本,=()A、B、C、D、正确答案:答案解析:26、设随机事件A与B相互独立,且P(A)=P(B)=1/3,则=_______.正确答案:答案解析:27、设袋内有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为_________.正确答案:答案解析:28、设A为随机事件,P(A)=0.3,则_________.正确答案:答案解析:29、设X是连续型随机变量,则P{X=5}=_________.正确答案:答案解析:30、设随机变量X的分布律为.记Y=X2,则P{Y=4}=_________.正确答案:答案解析:。

自考_概率论与数理统计(经管类)__真题及答案详解分析

自考_概率论与数理统计(经管类)__真题及答案详解分析

1【解析】因为,所以,而,所以,即;又由集合的加法公式P(AB)=P(A)+P(B)-P(A∪B)=0.5+0.4-0.6=0.3,所以=0.5-0.3=0.2,故选择B.[快解] 用Venn图可以很快得到答案:【提示】1. 本题涉及集合的运算性质:(i)交换律:A∪B=B∪A,AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C),(AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C),(A∩B)∪C=(A∪C)∩(B∪C);(iv)摩根律(对偶律),.2.本题涉及互不相容事件的概念和性质:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为A∩B=,且P(A∪B)=P(A)+P(B).2.【答案】C【解析】根据分布函数的性质,选择C。

【提示】分布函数的性质:① 0≤F(x)≤1;② 对任意x1,x2(x1<x2),都有P{x1<X≤x2}=F(x2)-F(x1);③ F(x)是单调非减函数;④ ,;⑤ F(x)右连续;⑥ 设x为f(x)的连续点,则F‘(x)存在,且F’(x)=f(x).3【答案】D【解析】由课本p68,定义3-6:设D为平面上的有界区域,其面积为S且S>0. 如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布.本题x2+y2≤1为圆心在原点、半径为1的圆,包括边界,属于有界区域,其面积S=π,故选择D.【提示】课本介绍了两种二维连续型随机变量的分布:均匀分布和正态分布,注意它们的定义。

若(X,Y)服从二维正态分布,表示为(X,Y)~.4.【答案】A【解析】因为随机变量X服从参数为2的指数分布,即λ=2,所以;又根据数学期望的性质有 E(2X-1)=2E(X)-1=1-1=0,故选择A.【提示】1.常用的六种分布(1)常用离散型随机变量的分布:A. 两点分布① 分布列② 数学期望:E(X)=P③ 方差:D(X)=pq。

自考备考:04183 概率论与数理统计(经管类)习题集及答案

自考备考:04183 概率论与数理统计(经管类)习题集及答案

成都理工大学自学考试省考课程习题集课程名称:《概率论与数理统计(经管类)》课程代码:04183第一部分 习题一、选择题1. 对于事件A 、B ,下列命题正确的是()A. 如果A 、B 互不相容,则A 、B 也互不相容B. 如果A B ⊂,则A B ⊂C. 如果A B ⊃,则A B ⊃D. 如果A 、B 对立,则A 、B 也对立 2. 设A 、B 为任意两个事件,则有()A. ()AB B A -= B. ()A B B A -= C. ()A B B A -⊂ D. ()A B B A -⊂3.设事件A 与B 互不相容,且()0P A >,()0P B >,则有()A. ()1P AB =B. ()1()P A P B =-C. ()()()P AB P A P B =D. ()1P AB =4.设随机事件A 与B 互不相容,()0.2P A =,()0.4P B =,则(|)P B A =()A. 0B. 0.2C. 0.4D. 15.若A 与B 互为对立事件,则下式成立的是( )A. ()P AB =Ω B. ()()()P AB P A P B = C. ()1()P A P B =- D. ()P AB φ=6.设事件A 与B 相互独立,且1()5P A =,3()5P B =,则()P A B =( )A.325B.1725C. 45D. 23257.设A 、B 相互独立,且()0P A >,()0P B >,则下列等式成立的是()A. ()0P AB =B. ()()()P A B P A P B -=C. ()()1P A P B +=D. (|)0P A B =8.设事件A 、B 相互独立,且1()3P A =,()0P B >,则(|)P A B =( )A.115B.15C. 415D. 139.设A 、B 为两件事件,已知()0.3P A =,则有()A. (|)(|)1P B A P B A +=B. (|)(|)1P B A P B A +=C. (|)(|)1P B A P B A +=D. ()0.7P B =10.设A 、B 为两个随机事件,且B A ⊂,()0P B >,则(|)P A B =( )A. 1B. ()P AC. ()P BD. ()P AB11.设A 、B 为两事件,已知1()3P A =,2(|)3P A B =,3(|)5P B A =,则()P B =() A.15B.25C.35D. 4512.已知()0.4P A =,()0.5P B =,且A B ⊂,则(|)P A B =()A. 0B. 0.4C. 0.8D. 113.设A 与B 相互独立,()0.2P A =,()0.4P B =,则(|)P A B =()A. 0.2B. 0.4C. 0.6D. 0.814.设随机事件A 与B 互不相容,()0.4P A =,()0.5P B =,则()P AB =()A. 0.1B. 0.4C. 0.9D. 115.某人每次射击命中目标的概率为(01)p p <<,他向目标连续射击,则第一次未中第二次命中的概率为( )A. 2pB. 2(1)p -C. 12p -D. (1)p p -16.同时抛掷3枚均匀的硬币,则恰好有三枚均为正面朝上的概率为( ) A. 0.125 B. 0.25 C. 0.375 D. 0.5017.一批产品中有5%的不合格品,且合格品中一等品占60%,从这批产品中任取1件,则该产品是一等品的概率为( ) A. 0.20 B. 0.30 C. 0.38 D. 0.5718设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为1927,则事件A 在一次试验中出现的概率为( ) A. 16 B. 14C. 13D.1219.下列函数中可作为随机变量分布函数的是()A. 1,01()0,x F x ≤≤⎧=⎨⎩其他B. -1,0(),010,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩C. 0,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩D. 0,0(),012,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩20.已知随机变量X 的分布函数为0,01,012()2,1331,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩,则{1}P X ==()A.16B.12C.23D. 121.下列各函数中,可作为某随机变量概率密度的是()A. 2,01()0,x x f x <<⎧=⎨⎩其他B. 1,01()20,x f x ⎧<<⎪=⎨⎪⎩其他C. 23,01()1,x x f x ⎧<<=⎨-⎩其他D. 34,11()0,x x f x ⎧-<<=⎨⎩其他22.设随机变量X 的概率密度为3,01()0,ax x f x ⎧≤≤=⎨⎩其他,则常数a =()A.14B.13C. 3D. 423.设随机变量X 的概率密度为,01()2,120,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其他,则{0.2 1.2}P X <<=() A. 0.5B. 0.6C. 0.66D. 0.724.设随机变量X 在[1,2]-上服从均匀分布,则随机变量X 的概率密度为()f x 为()A. 1,12()30,x f x ⎧-≤≤⎪=⎨⎪⎩其他B. 3,12()0,x f x -≤≤⎧=⎨⎩其他C. 1,12()0,x f x -≤≤⎧=⎨⎩其他D. 1,12()30,x f x ⎧--≤≤⎪=⎨⎪⎩其他25.设随机变量(1,4)XN ,()x Φ为标准正态分布函数,已知(1)0.8413Φ=,(0)0.5Φ=,则事件{13}X ≤≤的概率为()A. 0.1385B.0.2413C. 0.2934D. 0.341326.设随机变量X 的概率密度为()f x ,且()()f x f x -=,()F x 是X 的分布函数,则对任意的实数a ,有()A. 0()1()aF a f x dx -=-⎰B. 01()()2aF a f x dx -=-⎰ C. ()()F a F a -=D. ()2()1F a F a -=-27.设随机变量(,)X Y 只取如下数组中的值:1(0,0),(1,1),(1,),(2,0)3--,且相应的概率依次为12c 、1c 、14c 、54c ,则c 的值为( )A. 2B. 3C. 4D. 528.设二维随机变量(,)X Y 的联合分布为则{0}P XY ==()A.14B.512C.34D. 129.设随机变量X则有()A. 12,99αβ== B. 21,99αβ== C. 12,33αβ== D. 21,33αβ== 30.设二维随机变量(,)X Y 的概率密度为,02,02(,)0,c x y f x y ≤≤≤≤⎧=⎨⎩其他,则常数c =()A.14B.12C. 2D. 431设二维随机变量(,)X Y 的概率密度为1,02,02(,)40,x y f x y ⎧<<<<⎪=⎨⎪⎩其他,则{01,01}P X Y <<<<=() A.14B.12C.34D. 132.设二维随机变量(,)X Y 的概率密度为4,01,01(,)0,xy x y f x y ≤≤≤≤⎧=⎨⎩其他,则当01y ≤≤时,(,)X Y 关于Y 的边缘概率密度()Y f y =() A.12xB. 2xC.12yD. 2y33.设随机变量X 与Y 独立同分布,它们取-1、1两个值的概率分别为14、34,则{1}P XY =-=()A.116B.316C.14D.3834.设随机变量X 的概率密度为2(3)4()x f x --=,则()E X 、()D X 分别为( )A. -B. 3,2-C. D. 3,2 35.设随机变量X 服从参数为12的指数分布,则()E X =( ) A.14B.12C. 2D. 436.已知随机变量X 的分布函数为21,0()0,x e x F x -⎧->=⎨⎩其他,则X 的均值和方差为()A. ()2,()4E X D X ==B. ()4,()2E X D X ==C. 11(),()42E X D X ==D. 11(),()24E X D X == 37.设随机变量110,3XB ⎛⎫⎪⎝⎭,则()()D X E X =()A.13B.23C. 1D. 10338.设随机变量()21,3X N ,则下列选项中,不成立的是()A. ()1E X =B. ()3D X =C. {1}0P X ==D. {1}0.5P X <=39.设二维随机变量(,)X Y 的分布律为则()E XY =()A. 19-B. 0C.19D.1340.且()1E X =,则常数x =( ) A. 2B. 4C. 6D. 841.设随机变量X 与Y 相互独立,且(0,9)X N ,(0,1)YN ,令2Z X Y =-,则()D Z =() A. 5B. 7C. 11D. 1342.设()E X ,()E Y 、()D X 、()D Y 及(,)Cov X Y ,则()D X Y -=() A. ()()D X D Y +B. ()()D X D Y -C. ()()2(,)D X D Y Cov X Y +-D. ()()2(,)D X D Y Cov X Y -+43.设1(10,)2XB 、(2,10)YN ,又()14E XY =,则X 与Y 的相关系数XY ρ=( )A. -0.8B. -0.16C. 0.16D. 0.844.设随机变量X 服从参数为0.5的指数分布,利用切比雪夫不等式估算概率{}|2|3P X -≥≤() A.16B.13C.49D.1245.设12100,,,x x x 为来自总体2(0,4)XN 的一个样本,以x 表示样本均值,则x()A. (0,16)NB. (0,0.16)NC. (0,0.04)ND. (0,1.6)N46.设总体2(,)XN μσ,其中μ未知,1234,,,x x x x 为来自总体X 的一个样本,则以下关于μ的四个估计:112341ˆ()4x x x x μ=+++,2123111ˆ555x x x μ=++,31212ˆ66x x μ=+,411ˆ7x μ=中,哪一个是无偏估计?()A. 1ˆμB. 2ˆμC. 3ˆμD. 4ˆμ47.在假设检验中,0H 为原假设,则显著性水平α的意义是()A. 00{|}P H H 拒绝为真B. 00{|}P H H 接受为真C. 00{|}P H H 接受不真D. 00{|}P H H 拒绝不真48.设总体2(,)XN μσ,其中2σ未知,12,,,n x x x 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验00:H μμ=,10:H μμ≠,则检验统计量为()A.x B.x C.01()x μ-D.0)x μ-49.设总体2(,)XN μσ,其中2σ未知,12,,,n x x x 为来自该总体的样本,2211()1ni i s x x n ==--∑,检验假设2200:H σσ=时采用的统计量为()A. (1)x t t n =-B. ()x t t n =C.22220(1)(1)n s n χχσ-=-D.22220(1)()n s n χχσ-=50.设有一组观测数据(,),1,2,,i i x y i n =,其散点图呈线性趋势,若要拟合一元线性回归方程01ˆˆˆy x ββ=+,且01ˆˆˆ,1,2,,i iy x i n ββ=+=,则估计参数0β、1β时应使( )A. 1ˆ()niii y y=-∑最小 B.1ˆ()niii y y=-∑最大 C.21ˆ()niii y y=-∑最小 D.21ˆ()niii y y=-∑最大二、填空题51. 盒中有10个球,分别编有1至10的号码,设A ={取得球的号码是偶数},B ={取得球的号码小于5},则AB =__________.52. 设随机事件A 与B 互不相容,且()0.2P A =,()0.6P A B =,则()P B =__________. 53.设A 、B 为两事件,已知1()3P A =,2()3P A B =,若事件A 与B 相互独立,则()P B =__________.54.设随机事件A 与B 相互独立,且()0.7P A =,()0.6P A B -=,则()P B =__________.55.设事件A 与B 相互独立,且()0.6P A B =,()0.2P A =,则()P B =__________.56.设A 、B 为两个随机事件,且A 与B 相互独立,()0.3P A =,()0.4P B =,则()P AB =__________.57.设事件A 、B 相互独立,且()0.5P A =,()0.2P B =,则()P A B =__________. 58.设事件A 、B 相互独立,且()0.3P A =,()0.4P B =,则()P A B =__________59.设事件A 、B 相互独立,()0.6P AB =,()0.4P A =,则()P B =__________.60.设A 、B 为两个随机事件,若A 发生必然导致B 发生,且()0.6P A =,则()P AB =__________.61.设A 、B 为随机事件,()0.6P A =,(|)0.3P B A =,则()P AB =__________. 62.设A 、B 为随机事件,且()0.8P A =,()0.4P B =,(|)0.25P B A =,则(|)P A B =__________.63.设1(|)6P A B =,1()2P B =,1(|)4P B A =,则()P A =__________. 64.设随机事件A 、B 互不相容,()0.6P A =,()0.8P AB =,则()P B =__________.65.已知()0.7P A =,()0.3P A B -=,则()P AB =__________. 66.设()0.4P A =,()0.3P B =,()0.4P AB =,则()P AB =__________.67.设A 、B 相互独立且都不发生的概率为19,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则()P A =__________.68.设()0.3P A =,(|)0.6P B A =,则()P AB =__________.69.已知事件A 、B 满足:()()P AB P AB =,且()P A p =,则()P B =__________. 70.设事件A 、B 互不相容,已知()0.3P A =,()0.6P B =,则=)/(B A P __________。

(完整版)自考概率论与数理统计经管类

(完整版)自考概率论与数理统计经管类

Ⅱ、综合测试题概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列选项正确的是 ( B ).A. A B A B +=+B.()A B B A B +-=-C. (A -B )+B =AD. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是( D ).A.P (A -B )=P (A )-P (B )B.P (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A.18 B. 16 C. 14 D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15D. 12 5.设随机事件A ,B 满足B A ⊂,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足( C ). A. 0()1f x ≤≤ B. f (x )连续C.()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2,...2kbP X k k ===,且0b >,则参数b的值为( D ).A.12 B. 13 C. 15D. 1 8.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)X N X X X μσ:是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ).A. 1B.14 C. 12 D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

04183概率论与数理统计(经管类)(有答案)

04183概率论与数理统计(经管类)(有答案)

1 / 1204183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,以下结论错误的是D 。

A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。

A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++=CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=与2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为则(0,1)F =C 。

A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则B 。

A .21)0(=≤+Y X PB .21)1(=≤+Y X P2 / 12C .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年4月高等教育自学考试全国统一命题考试
概率论与数理统计(经管类)04183
一、单项选择题:本大题共10小题,每小题2分,共20分。

1.设()0.6P B =,()0.5P A B =,则()P A B -=
A. 0.1
B.0.2
C.0.3
D.0.4
2.设事件A 与B 相互独立,且()0.6P A =,()0.8P A B =,则()P B =
A. 0.2
B.0.4
C.0.5
D.0.6
3.甲袋中有3个红球1个白球,乙袋中有1个红球2个白球,从两袋中分别取出一个球,则两个球颜色相同的概率的概率是 A. 16 B. 14 C. 13 D. 512
4.设随机变量X
则P{X>0}=
A. 14
B. 12
C. 34
D. 1 5.设随机变量X 的概率为,02()0,cx x f x ≤≤⎧=⎨⎩
其他,则P{X ≤1}= A.
14 B. 12 C. 23 D. 34
6.已知随机变量X~N(-2,2),则下列随机变量中,服从N(0,1)分布的是 A. 1(2)
2X - B. 1(2)2X + C. 2)X - D. 2)X +
A. 0.1
B.0.4
C.0.5
D.0.7
8.设随机变量X 与Y 相互独立,且D(X)=4,D(Y)=2,则D(3X-2Y)=
A. 8
B.16
C.28
D.44
9.设123,,x x x 是来自总体X 的样本,若E(X)=μ(未知),123132
x ax ax μ=-+是μ的无偏估计,则常数a=
A. 16
B. 14
C. 13
D. 12
10.设12,,,(1)n x x x n >为来自正态总体2(,)N μσ的样本,其中2,μσ均未知,x 和2s 分别是样本均值和样本方差,对于检验假设0000=H H μμμμ≠:,:,则显著性水平为α的检验拒绝域为 A.
02(1)x n αμ⎧⎫->-⎨⎬⎩⎭ B. 02x αμ⎧⎫->⎨⎬⎩
⎭ C.
02(1)x n αμ⎧⎫-≤-⎨⎬⎩⎭ D. 02x αμ⎧⎫-≤⎨⎬⎩
⎭ 二、填空题:本大题共15小题,每小题2分,共30分。

11.设A,B,C 是随机事件,则“A,B,C 至少有一个发生”可以表示为 .
12.设P(A)=0.3,P(B)=0.6,P(A|B)=0.4,则P(B|A)= .
13.袋中有3个黄球和2个白球,今有2人依次随机地从袋中各取一球,取后不放回,则第2个人取得黄球的概率为 .
14.已知随机变量X 服从参数为λ的泊松分布,且P{X=1}=P{X=2},则λ= .
15.设随机变量X 服从参数为1的指数分布,则P{X ≥1}= .
P{X=Y}= .
17.设二维随机变量(X,Y)的概率密度为,01,02,(,)0,,
c x y f x y ≤≤≤≤⎧=⎨⎩其他 则常数c= .
18.设随机变量X 服从区间[1,3]上的均匀分布,Y 服从参数为2的指数分布,X,Y 相互独立,f(x,y)是(X,Y)的概率密度,则f(2,1)= .
19.设随机变量X,Y 相互独立,且X~B(12,0.5),Y 服从参数为2的泊松分布,则E(XY)= .
20.设X~B(100,0.2), 204
X Y -=,由中心极限定理知Y 近似服从的分布是 . 21.已知总体X 的方差D(X)=6, 123,,x x x 为来自总体X 的样本,x 是样本均值,则D(x )= .
22.设总体X 服从参数是λ的指数分布,12,,
,n x x x 为来自总体X 的样本,x 为样本
均值,则E(x )= .
23.设1216,,
,x x x 为来自正态总体N(0,1)的样本,则2221216x x x +++服从的分布是 .
24.设12,,,n x x x 为来自总体X 的样本,x 为样本均值,若X 服从[0,4θ]上的均匀分布,θ>0,则未知参数θ的矩估计θ= .
25.设1225,,,x x x 为来自正态总体N(μ,5²)的样本,x 样本均值,欲检验假设00=0,0H H μμ≠::,则应采用的检验统计量的表达式为 .
三、计算题:本大题共2小题,每小题8分,共16分。

26.两台车床加工同一种零件,第一台出现次品的概率是0.03,第二台出现次品的概率是0.06,加工出来的零件混放在一起,第一台加工的零件数是第二台加工的零件数的两倍.求:
(1)从中任取一个零件是次品的概率;
(2)若取得的零件是次品,它是由第一台加工的概率.
27.设随机变量X 的概率密度为2,01,()0,ax bx x f x ⎧+≤≤=⎨⎩其他,
且E(X)= 12. 求:(1)常数a,b ;(2)D(X).
四、综合题:本大题共2小题,每小题12分,共24分。

求:(1)常数a,b ;(2)(X,Y)关于Y 的边缘分布律;(3)P{X+Y ≤0}.
29.设随机变量X~N(1,9),Y~N(0,16),且X 与Y 的相关系数为0.5XY ρ=,Z=1132
X Y +. 求:(1)Cov(X,Y);(2)E(Z),D(Z);(3)Cov(X,Z).
五、应用题:10分。

30.某厂生产的一种金属丝,其折断力X(单位:kg)服从正态分布N(2,μσ),以往的平均折断力μ=570,今更换材料生产一批金属丝,并从中抽出9个样本检测折断力,算得样本均值576.6x =,样本标准差s=7.2.试问更换原材料后,金属丝的平均折断力是否有显著变化?(附:0.0250.0250.05, 1.96,(8) 2.306u t α===)。

相关文档
最新文档