初三下学期数学知识点汇总苏教版
苏科版数学九年级下册知识梳理

苏科版数学九年级下册知识梳理第五章二次函数5.1二次函数定义:一般地,形如y=ax2+bx+c(a、b、c是常数,且a≠0)的函数叫做二次函数,其中x 是自变量,y是x的函数5.2二次函数的图像和性质一、基本形式1. 二次函数基本形式:2y ax=的性质:a 的绝对值越大,抛物线的开口越小。
=+的性质:(上加下减)y ax c3. ()2y a x h =-的性质:(左加右减) 4. ()2y a x h k =-+的性质:二、二次函数图象的平移 1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.5.3用待定系数法确定二次函数表达式二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.5.4二次函数与一元二次方程1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:5.5用二次函数解决问题熟练解决实际问题第六章 图像的相似6.1图上距离与实际距离1、在四条线段中,如果两天线段的比等于另两条线段的比,那么这四条线段叫做比例线段2、比例的基本性质:如果a :b=c :d ,那么ad=bc ;反过来,如果ad=bc (b ≠0,d ≠0),那么a :b=c :d ,3、在比例式a :b=b :c 中,b 叫做a 和c 的比例中项4、比例尺:图上距离:实际距离6.2黄金分割点B 把线段AC 分成两部分,如果ACABAB BC ,那么称线段AC 被点B 黄金分割,点B 为线段AC 的黄金分割点,AB 与AC 的比称为黄金比,它们的比值为21-5,在计算时,通常取近似值0.6186.3相似图形1、形状相同的图形叫做相似形;各角分别相等、各边成比例的两个多边形,它们的形状相同,称为相似多边形2、相似多边形的对应角相等,对应边乘比例。
(完整版)苏教版九年级数学全册知识点汇总

第一章教学内容:证明(二)重点:直角三角形,线段垂直平分线与角平分线的证明难点:证明逆命题的真假,角平分线的证明及其对逆命题的理解易错点:线段的垂直平分线和角平分线的定理及逆定理的判别第二章教学内容:一元一次方程重点:用配方法,公式法,分解因式法解一元一次方程难点:黄金分割点的理解,用配方法解方程易错点:利用因式分解法和公式法解方程第三章教学内容:证明(三)重点:特殊的平行四边形的性质与判定,平行四边形的性质与判定难点:特殊的平行四边形的证明易错点:各定理之间的判别第四章教学内容:视图与投影重点:某物体的三视图与投影难点:理解平行投影与中心投影的区别易错点:三视图的理解,中心投影与平行投影的区别第五章教学内容:反比例函数重点:反比例函数的表达式,反比例函数的图像的概念与性质难点:反比例函数的运用,猜想,证明与拓展易错点:主要区别反比例函数与 x轴和与y轴无限靠近第六章教学内容:频率与概率定义和命题:频率与概率的概念难点:理解用频率去估计概率易错点:频率是样本中才出现的,概率是整体中出项的苏教版九年级数学上知识点汇总第一章图形与证明(二)1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
1.3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
九年级数学(苏教版)知识点总结

第一章图形与证明(二)定理等腰三角形的两个底角相等(简称“等边对等角”)定理等腰三角形的顶角平分线、底边上的中线,底边上的高互相重合定理如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”) 证明:两角及其中一角的对边对应相等的两个三角形全等(简写为“AAS ”) 等边三角形的每个内角都等于60o线段垂直平分线上的点到线段两端的距离相等 三个角都相等的三角形是等边三角形到线段两个端点距离相等的点在这条线段的垂直平分线上定理斜边和一条直角边对应相等的两个直角三角形全等。
(简写为“HL ”) 定理角平分线上的点到这个角的两边的距离相等定理角的内部到角的两边距离相等的点,在这个角的平分线上 定理平行四边形的对边相等 定理平行四边形的对角相等 定理平行四边形的对角线互相平分 定理矩形的4个角都是直角 定理矩形的对角线相等定理直角三角形斜边上的中线等于斜边的一半 定理菱形的4条边都相等定理菱形的对角线互相垂直,并且每一条对角线平分一组对角 定理一组对边平行且相等的四边形是平行四边形 定理对角线互相平分的四边形是平行四边形 不是从已知条件出发直接证明命题的结论成立,而是先提出与结论相反的假设,然后由这个“假设”出发推导出了矛盾的结果,从而证明了命题的结论一定成立。
这种证明的方法称为反证法。
证明:两组对边分别相等的四边形是平行四边形。
定理对角线相等的平行四边形是矩形 定理有3个角是直角的四边形是矩形 定理对角线互相垂直的平行四边形是菱形 定理四边都相等的四边形是菱形 证明:有一组邻边相等的矩形是正方形 有一个角是直角的菱形是正方形定理在同一底上的两个角相等的梯形是等腰梯形 定理等腰梯形同一底上的两底角相等 定理等腰梯形的两条对角线相等定理三角形的中位线平行于第三边,并且等于第三边的一半第二章数据的离散程度一组数据中最大值与最小值的差,能反映这组数据的变化范围,我们就把这样的差叫做极差(range )。
苏教版九年级数学下册知识点总结(苏科版)

知识点总结第五章二次函数一、二次函数概念:1.二次函数的概念:一般地,形如的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2. 二次函数的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵是常数,是二次项系数,是一次项系数,是常数项.二、二次函数的基本形式1. 二次函数基本形式:的性质:a 的绝对值越大,抛物线的开口越小。
的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.2. 的性质:上加下减。
的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.3. 的性质:左加右减。
1. 平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.六、二次函数的性质1. 当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.七、二次函数解析式的表示方法1. 一般式:(,,为常数,);2. 顶点式:(,,为常数,);3. 两根式:(,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2. 一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”总结:3. 常数项⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;2. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;3. 关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是;4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.5. 关于点对称关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.②当时,图象与轴只有一个交点;③当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.2. 抛物线的图象与轴一定相交,交点坐标为,;3. 二次函数常用解题方法总结:⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用十二、二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以为自变量的二次函数的图像经过原点,则的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是()y yy y110 x o-1 x 0 x 0 -1 xA BC D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。
苏教版九年级数学知识点归纳总结

苏教版九年级数学知识点归纳总结九年级下册数学知识点归纳一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
初三数学复习资料因式分解的方法1.十字相乘法(1)把二次项系数和常数项分别分解因数;(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;(3)确定合适的十字图并写出因式分解的结果;(4)检验。
2.提公因式法(1)找出公因式;(2)提公因式并确定另一个因式;①找公因式可按照确定公因式的方法先确定系数再确定字母;②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
3.待定系数法(1)确定所求问题含待定系数的一般解析式;(2)根据恒等条件,列出一组含待定系数的方程;(3)解方程或消去待定系数,从而使问题得到解决。
苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]
![苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/9decc50b10661ed9ac51f305.png)
苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,b =【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan 60b a B ==⨯=° 由cos a B c =知,48cos cos 60a c B ===°.(2)由tan bB a==B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2c ==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【课程名称:解直角三角形及其应用 395952 :例1(1)-(3)】【变式】(1)已知∠C=90°,,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ;【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=2.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【课程名称:解直角三角形及其应用395952:例2】【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为i =i =铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==.(2)在Rt △DEC 中,∵ tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=55FB =+,解得5 3.66(m)FB ==. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.11.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52,CE =AC ·cos ∠ACE =5×cos 30在Rt △BCE 中,∵ ∠BCE =45°,∴ 551)22AB AE BE =+=+=≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。
苏教版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习待定系数法求二次函数的解析式—知识讲解(基础)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1.(2014秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c , 把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ; ∴抛物线的对称轴x=﹣=﹣=﹣.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0). 举一反三:【课程名称:待定系数法求二次函数的解析式 356565 :例1】【变式】已知:抛物线2y ax bx c =++经过A (0,5-),B (1,3-),C (1-,11-)三点,求它的顶点坐标及对称轴.【答案】设52-+=bx ax y (a ≠0),据题意列⎩⎨⎧--=--+=-51153b a b a ,解得⎩⎨⎧=-=42b a ,所得函数为5422-+-=x x y 对称轴方程:1=x ,顶点()31-,.2.(2015•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2), 设此二次函数的解析式为y=a (x ﹣1)2﹣2, 把点(2,3)代入解析式,得: a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2. 【总结升华】本题已知顶点,可设顶点式. 举一反三:【课程名称:待定系数法求二次函数的解析式 356565 :例2】【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点. 平移后所得图象与x 轴的另一个交点坐标为(40),.3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为2y ax bx c =++(a ≠0),由图象知函数图象经过点(3,0),(0,3).则有930,3,1,2a b c c ba⎧⎪++=⎪=⎨⎪⎪-=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩∴ 抛物线解析式为223y x x =-++.解法二:设抛物线解析式为12()()y a x x x x =--(a ≠0). 由图象知,抛物线与x 轴两交点为(-1,0),(3,0). 则有(1)(3)y a x x =+-,即223y ax ax a =--. 又33a -=,∴ 1a =-.∴ 抛抛物物解析式为223y x x =-++.解法三:设二次函数解析式为2()y a x h k =-+(a ≠0). 则有2(1)y a x k =-+,将点(3,0),(0,3)代入得40,3,a k a k +=⎧⎨+=⎩ 解得1,4.a k =-⎧⎨=⎩∴ 二次函数解析式为2(1)4y x =--+,即223y x x =-++.【总结升华】二次函数的解析式有三种不同的形式,它们是相互联系、并可相互转化的,在实际解题时,一定要根据已知条件的特点,灵活选择不同形式的解析式求解.类型二、用待定系数法解题4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y 轴交于点C .(1)求二次函数解析式; (2)求△ABC 的面积. 【答案与解析】(1)设抛物线解析式为(2)(4)y a x x =+-(a ≠0),将(3,5)代入得5(32)(34)a =+-,∴ 1a =-.∴ (2)(4)y x x =-+-. 即228y x x =-++.(2)由(1)知C(0,8), ∴ 1(42)8242ABC S =+⨯=△. 【总结升华】此题容易误将(3,5)当成抛物线顶点.将抛物线解析式设成顶点式.苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习待定系数法求二次函数的解析式—巩固练习(基础)【巩固练习】一、选择题1.(2014秋•招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为( )A .y=﹣6x 2+3x+4 B . y=﹣2x 2+3x ﹣4 C . y=x 2+2x ﹣4D . y=2x 2+3x ﹣42.二次函数225y x x =+-有( )A .最小值-5B .最大值-5C .最小值-6D .最大值-63.把抛物线y=3x 2先向上平移2个单位再向右平移3个单位,所得的抛物线是( )A . y=3(x -3)2+2B .y=3(x+3)2+2C .y=3(x -3)2-2D . y=3(x+3)2-24.如图所示,已知抛物线y =2x bx c ++的对称轴为x =2,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数2y x x =+的图象向右平移a(a >0)个单位,得到函数232y x x =-+的图象,则a 的值为( )A .1B .2C .3D .46.若二次函数2y ax bx c =++的x 与y 的部分对应值如下表:x -7 -6 -5 -4 -3 -2 Y-27-13-3353则当x =1时,y 的值为 ( )A .5B .-3C .-13D .-27二、填空题7.抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为____ ____.第7题 第10题8.(2014秋•江宁区校级月考)已知二次函数图象经过点(2,﹣3).对称轴为x=1,抛物线与x 轴两交点距离为4.则这个二次函数的解析式为 .9.已知抛物线222y x x =-++.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数2y x bx c =++的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是____ ____.11.已知二次函数2y ax bx c =++ (a ≠0)中自变量x 和函数值y 的部分对应值如下表:x (3)2- -1 12- 0 12 1 32 … y…54- -294- -254- 074…则该二次函数的解析式为_____ ___.12.已知抛物线2y ax bx c =++的顶点坐标为(3,-2),且与x 轴两交点间的距离为4,则抛物线的解析式为___ _____.三、解答题13.根据下列条件,分别求出对应的二次函数解析式. (1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点; (3)已知抛物线与x 轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y =-2x+2分别与x 轴、y 轴交于点A ,B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,∠BAC =90°,求过A 、B 、C 三点的抛物线的解析式.15.(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.【答案与解析】 一、选择题 1.【答案】D ;【解析】设抛物线的解析式为2y ax bx c =++(a ≠0),将A 、B 、C 三点代入解得a=2,b=3,c=-4.故所求的函数的解析式为y=2x 2+3x ﹣4.故选D .2.【答案】C ;【解析】首先将一般式通过配方化成顶点式,即2225216y x x x x =+-=++-2(1)6x =+-,∵ a =1>0,∴ x =-1时,6y =-最小. 3.【答案】A ; 4.【答案】D ;【解析】∵ 点A ,B 均在抛物线上,且AB 与x 轴平行, ∴ 点A 与点B 关于对称轴x =2对称, 又∵ A(0,3),∴ AB =4,y B =y A =3, ∴ 点B 的坐标为(4,3). 5.【答案】B ;【解析】抛物线的平移可看成顶点坐标的平移,2y x x =+的顶点坐标是11,24⎛⎫-- ⎪⎝⎭,232y x x =-+的顶点坐标是31,24⎛⎫-⎪⎝⎭,∴ 移动的距离31222a ⎛⎫=--= ⎪⎝⎭.6.【答案】D ;【解析】此题如果先用待定系数法求出二次函数解析式,再将x =1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x =-4和x =-2时,函数值均为3,由此可知对称轴为x =-3,再由对称性可知x =1的函数值必和x =-7的函数值相等,而x =-7时y =-27.∴ x =1时,y =-27. 二、填空题7.【答案】223y x x =-++;【解析】由图象知抛物线与x 轴两交点为(3,0),(-1,0),则(1)(3)y x x =-+-. 8.【答案】y=x 2﹣2x ﹣3;【解析】∵抛物线与x 轴两交点距离为4,且以x=1为对称轴∴抛物线与x 轴两交点的坐标为(﹣1,0),(3,0) 设抛物线的解析式y=a (x+1)(x ﹣3) 又∵抛物线过(2,﹣3)点 ∴﹣3=a (2+1)(2﹣3) 解得a=1∴二次函数的解析式为y=(x+1)(x ﹣3),即二次函数的解析式为y=x 2﹣2x ﹣3.9.【答案】(1)x =1;(1,3);【解析】代入对称轴公式2bx a =-和顶点公式24,24b ac b aa ⎛⎫-- ⎪⎝⎭即可.10.【答案】12x ≥; 【解析】将(-1,0),(1,-2)代入2y x bx c =++中得b =-1,∴ 对称轴为12x =,在对称轴的右侧,即12x ≥时,y 随x 的增大而增大. 11.【答案】22y x x =+-;【解析】此题以表格的形式给出x 、y 的一些对应值.要认真分析表格中的每一对x 、y 值,从中选出较简单的三对x 、y 的值即为(-1,-2),(0,-2),(1,0),再设一般式2y ax bx c =++, 用待定系数法求解.设二次函数解析式为2y ax bx c =++(a ≠0),由表知2,2,0.a b c c a b c -+=-⎧⎪=-⎨⎪++=⎩ 解得1,1,2.a b c =⎧⎪=⎨⎪=-⎩∴ 二次函数解析式为22y x x =+-. 12.【答案】21(3)22y x =--; 【解析】由题意知抛物线过点(1,0)和(5,0). 三、解答题13.【答案与解析】(1)∵ 顶点是(1,2),∴ 设2(1)2y a x =-+(a ≠0).又∵ 过点(2,3),∴ 2(21)23a -+=,∴ a =1. ∴ 2(1)2y x =-+,即223y x x =-+. (2)设二次函数解析式为2y ax bx c =++(a ≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得1,1,13,a b c c a b c ++=-⎧⎪=⎨⎪-+=⎩ 解得5,7,1.a b c =⎧⎪=-⎨⎪=⎩故所求的函数解析式为2571y x x =-+.(3)由抛物线与x 轴交于点(1,0),(3,0),∴ 设y =a(x-1)(x-3)(a ≠0),又∵ 过点(0,-3), ∴ a(0-1)(0-3)=-3,∴ a =-1,∴ y =-(x-1)(x-3),即243y x x =-+-.14.【答案与解析】过C 点作CD ⊥x 轴于D .在y =-2x+2中,分别令y =0,x =0,得点A 的坐标为(1,0),点B 的坐标为(0,2). 由AB =AC ,∠BAC =90°,得△BAO ≌△ACD , ∴ AD =OB =2,CD =AO =1, ∴ C 点的坐标为(3,1).设所求抛物线的解析式为2(0)y ax bx c a =++≠,则有0,9312,a b c a b c c ++=⎧⎪++=⎨⎪=⎩,解得5,61762.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴ 所求抛物线的解析式为2517266y x x =-+.15.【答案与解析】 解:(1)由已知得:C (0,4),B (4,4), 把B 与C 坐标代入y=﹣x 2+bx+c 得:,解得:b=2,c=4,则解析式为y=﹣x 2+2x+4;(2)∵y=﹣x 2+2x+4=﹣(x ﹣2)2+6, ∴抛物线顶点坐标为(2,6),则S 四边形ABDC =S △ABC +S △BCD =×4×4+×4×2=8+4=12.苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习用函数观点看一元二次方程—知识讲解(基础)【学习目标】1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;2.会求抛物线与x 轴交点的坐标,掌握二次函数与不等式之间的联系;3.经历探索验证二次函数2(0)y ax bx c a =++≠与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题. 【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x 轴的交点情况决定一元二次方程根的情况求二次函数2y ax bx c =++(a ≠0)的图象与x 轴的交点坐标,就是令y =0,求20ax bx c ++=中x 的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x 轴的交点的个数,它们的关系如下表: 判别式24b ac=-△二次函数2(0)y ax bx c a =++≠ 一元二次方程20(0)ax bx c a ++=≠图象与x 轴的交点坐标根的情况△>0a >抛物线2(0)y ax bx c a =++≠与x 轴交于1(,0)x ,2(,0)x 12()x x <两点,且21,242b b acx a-±-=,此时称抛物线与x 轴相交一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b ac x a-±-=a <△=0a >抛物线2(0)y ax bx c a =++≠与x 轴交切于,02b a ⎛⎫-⎪⎝⎭这一点,此时称抛物线与x 轴相切 一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-a <△<0a >抛物线2(0)y ax bx c a =++≠与x轴无交点,此时称抛物线与x 轴相离 一元二次方程20(0)ax bx c a ++=≠在实数范围内无解(或称无实数根)a <要点诠释:二次函数图象与x 轴的交点的个数由的值来确定的.(1)当二次函数的图象与x 轴有两个交点时,,方程有两个不相等的实根;(2)当二次函数的图象与x 轴有且只有一个交点时,,方程有两个相等的实根;(3)当二次函数的图象与x 轴没有交点时,,方程没有实根.2.抛物线与直线的交点问题抛物线与x 轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线2y ax bx c =++(a ≠0)与y 轴交点和二次函数与一次函数1y kx b =+(0)k ≠的交点问题.抛物线2y ax bx c =++(a ≠0)与y 轴的交点是(0,c).抛物线2y ax bx c =++(a ≠0)与一次函数1y kx b =+(k ≠0)的交点个数由方程组12,y kx b y ax bx c=+⎧⎨=++⎩的解的个数决定.当方程组有两组不同的解时⇔两函数图象有两个交点; 当方程组有两组相同的解时⇔两函数图象只有一个交点; 当方程组无解时⇔两函数图象没有交点.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题. 要点诠释:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题. 要点二、利用二次函数图象求一元二次方程的近似解 用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围.即确定抛物线与x 轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y 值.4.确定一元二次方程的近似根.在(3)中最接近0的y 值所对应的x 值即是一元二次方的近似根.要点诠释: 求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x 轴交点的横坐标就是方程的根;(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x 轴的两个交点之间的距离公式当△>0时,设抛物线2y ax bx c =++与x 轴的两个交点为A(1x ,0),B(2x ,0),则1x 、2x 是一元二次方程2=0ax bx c ++的两个根.由根与系数的关系得12b x x a +=-,12c x x a=. ∴ 22121||||()AB x x x x =-=-21212()4x x x x =+-24⎛⎫=-⨯ ⎪⎝⎭b c a a 224b ac a -=24||b ac a -= 即 ||||AB a =△(△>0)要点四、抛物线与不等式的关系二次函数2y ax bx c =++(a ≠0)与一元二次不等式20ax bx c ++>(a ≠0)及20ax bx c ++<(a ≠0)之间的关系如下12()x x <:判别式 0a >抛物线2y ax bx c =++与x 轴的交点不等式20ax bx c ++>的解集不等式20ax bx c ++<的解集△>01x x <或2x x >12x x x <<△=01x x ≠(或2x x ≠)无解△<0全体实数 无解注:a <0的情况请同学们自己完成. 要点诠释:抛物线2y ax bx c =++在x 轴上方的部分点的纵坐标都为正,所对应的x 的所有值就是不等式20ax bx c ++>的解集;在x 轴下方的部分点的纵坐标都为负,所对应的x 的所有值就是不等式20ax bx c ++<的解集.不等式中如果带有等号,其解集也相应带有等号.【典型例题】类型一、二次函数图象与坐标轴交点1.已知二次函数y=(m-2)x 2+2mx+m+1,其中m 为常数,且满足-1<m<2,试判断此抛物线的开口方向,与x 轴有无交点,与y 轴的交点在x 轴上方还是在x 轴下方. 【答案与解析】∵-1<m<2.∴m-2<0,抛物线开口向下,又m+1>0,抛物线与y 轴的交点在x 轴上方.Δ=4m 2-4(m-2)(m+1)=4m 2-4(m 2-m-2) =4m+8=4(m+1)+4>0.∴抛物线与x 轴有两个不同的交点.【总结升华】此题目也可以用数形结合方法来判断抛物线与x 轴有两个不同交点(用抛物线与y 轴的交点C 在x 轴上方,开口向下,必与x 轴有两个不同交点). 举一反三:【课程名称:用函数观点看一元二次方程 356568 :例3-4】【变式】二次函数y=mx 2+(2m-1)x+m+1的图象总在x 轴的上方,求m 的取值范围。
苏教版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习待定系数法求二次函数的解析式—知识讲解(基础)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1.(2014秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c , 把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ; ∴抛物线的对称轴x=﹣=﹣=﹣.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0). 举一反三:【课程名称:待定系数法求二次函数的解析式 356565 :例1】【变式】已知:抛物线2y ax bx c =++经过A (0,5-),B (1,3-),C (1-,11-)三点,求它的顶点坐标及对称轴.【答案】设52-+=bx ax y (a ≠0),据题意列⎩⎨⎧--=--+=-51153b a b a ,解得⎩⎨⎧=-=42b a ,所得函数为5422-+-=x x y 对称轴方程:1=x ,顶点()31-,.2.(2015•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2), 设此二次函数的解析式为y=a (x ﹣1)2﹣2, 把点(2,3)代入解析式,得: a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2. 【总结升华】本题已知顶点,可设顶点式. 举一反三:【课程名称:待定系数法求二次函数的解析式 356565 :例2】【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点. 平移后所得图象与x 轴的另一个交点坐标为(40),.3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为2y ax bx c =++(a ≠0),由图象知函数图象经过点(3,0),(0,3).则有930,3,1,2a b c c ba⎧⎪++=⎪=⎨⎪⎪-=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩∴ 抛物线解析式为223y x x =-++.解法二:设抛物线解析式为12()()y a x x x x =--(a ≠0). 由图象知,抛物线与x 轴两交点为(-1,0),(3,0). 则有(1)(3)y a x x =+-,即223y ax ax a =--. 又33a -=,∴ 1a =-.∴ 抛抛物物解析式为223y x x =-++.解法三:设二次函数解析式为2()y a x h k =-+(a ≠0). 则有2(1)y a x k =-+,将点(3,0),(0,3)代入得40,3,a k a k +=⎧⎨+=⎩ 解得1,4.a k =-⎧⎨=⎩∴ 二次函数解析式为2(1)4y x =--+,即223y x x =-++.【总结升华】二次函数的解析式有三种不同的形式,它们是相互联系、并可相互转化的,在实际解题时,一定要根据已知条件的特点,灵活选择不同形式的解析式求解.类型二、用待定系数法解题4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y 轴交于点C .(1)求二次函数解析式; (2)求△ABC 的面积. 【答案与解析】(1)设抛物线解析式为(2)(4)y a x x =+-(a ≠0),将(3,5)代入得5(32)(34)a =+-,∴ 1a =-.∴ (2)(4)y x x =-+-. 即228y x x =-++.(2)由(1)知C(0,8), ∴ 1(42)8242ABC S =+⨯=△. 【总结升华】此题容易误将(3,5)当成抛物线顶点.将抛物线解析式设成顶点式.苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习待定系数法求二次函数的解析式—巩固练习(基础)【巩固练习】一、选择题1.(2014秋•招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为( )A .y=﹣6x 2+3x+4 B . y=﹣2x 2+3x ﹣4 C . y=x 2+2x ﹣4D . y=2x 2+3x ﹣42.二次函数225y x x =+-有( )A .最小值-5B .最大值-5C .最小值-6D .最大值-63.把抛物线y=3x 2先向上平移2个单位再向右平移3个单位,所得的抛物线是( )A . y=3(x -3)2+2B .y=3(x+3)2+2C .y=3(x -3)2-2D . y=3(x+3)2-24.如图所示,已知抛物线y =2x bx c ++的对称轴为x =2,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数2y x x =+的图象向右平移a(a >0)个单位,得到函数232y x x =-+的图象,则a 的值为( )A .1B .2C .3D .46.若二次函数2y ax bx c =++的x 与y 的部分对应值如下表:x -7 -6 -5 -4 -3 -2 Y-27-13-3353则当x =1时,y 的值为 ( )A .5B .-3C .-13D .-27二、填空题7.抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为____ ____.第7题 第10题8.(2014秋•江宁区校级月考)已知二次函数图象经过点(2,﹣3).对称轴为x=1,抛物线与x 轴两交点距离为4.则这个二次函数的解析式为 .9.已知抛物线222y x x =-++.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数2y x bx c =++的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是____ ____.11.已知二次函数2y ax bx c =++ (a ≠0)中自变量x 和函数值y 的部分对应值如下表:x (3)2- -1 12- 0 12 1 32 … y…54- -294- -254- 074…则该二次函数的解析式为_____ ___.12.已知抛物线2y ax bx c =++的顶点坐标为(3,-2),且与x 轴两交点间的距离为4,则抛物线的解析式为___ _____.三、解答题13.根据下列条件,分别求出对应的二次函数解析式. (1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点; (3)已知抛物线与x 轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y =-2x+2分别与x 轴、y 轴交于点A ,B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,∠BAC =90°,求过A 、B 、C 三点的抛物线的解析式.15.(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.【答案与解析】 一、选择题 1.【答案】D ;【解析】设抛物线的解析式为2y ax bx c =++(a ≠0),将A 、B 、C 三点代入解得a=2,b=3,c=-4.故所求的函数的解析式为y=2x 2+3x ﹣4.故选D .2.【答案】C ;【解析】首先将一般式通过配方化成顶点式,即2225216y x x x x =+-=++-2(1)6x =+-,∵ a =1>0,∴ x =-1时,6y =-最小. 3.【答案】A ; 4.【答案】D ;【解析】∵ 点A ,B 均在抛物线上,且AB 与x 轴平行, ∴ 点A 与点B 关于对称轴x =2对称, 又∵ A(0,3),∴ AB =4,y B =y A =3, ∴ 点B 的坐标为(4,3). 5.【答案】B ;【解析】抛物线的平移可看成顶点坐标的平移,2y x x =+的顶点坐标是11,24⎛⎫-- ⎪⎝⎭,232y x x =-+的顶点坐标是31,24⎛⎫-⎪⎝⎭,∴ 移动的距离31222a ⎛⎫=--= ⎪⎝⎭.6.【答案】D ;【解析】此题如果先用待定系数法求出二次函数解析式,再将x =1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x =-4和x =-2时,函数值均为3,由此可知对称轴为x =-3,再由对称性可知x =1的函数值必和x =-7的函数值相等,而x =-7时y =-27.∴ x =1时,y =-27. 二、填空题7.【答案】223y x x =-++;【解析】由图象知抛物线与x 轴两交点为(3,0),(-1,0),则(1)(3)y x x =-+-. 8.【答案】y=x 2﹣2x ﹣3;【解析】∵抛物线与x 轴两交点距离为4,且以x=1为对称轴∴抛物线与x 轴两交点的坐标为(﹣1,0),(3,0) 设抛物线的解析式y=a (x+1)(x ﹣3) 又∵抛物线过(2,﹣3)点 ∴﹣3=a (2+1)(2﹣3) 解得a=1∴二次函数的解析式为y=(x+1)(x ﹣3),即二次函数的解析式为y=x 2﹣2x ﹣3.9.【答案】(1)x =1;(1,3);【解析】代入对称轴公式2bx a =-和顶点公式24,24b ac b aa ⎛⎫-- ⎪⎝⎭即可.10.【答案】12x ≥; 【解析】将(-1,0),(1,-2)代入2y x bx c =++中得b =-1,∴ 对称轴为12x =,在对称轴的右侧,即12x ≥时,y 随x 的增大而增大. 11.【答案】22y x x =+-;【解析】此题以表格的形式给出x 、y 的一些对应值.要认真分析表格中的每一对x 、y 值,从中选出较简单的三对x 、y 的值即为(-1,-2),(0,-2),(1,0),再设一般式2y ax bx c =++, 用待定系数法求解.设二次函数解析式为2y ax bx c =++(a ≠0),由表知2,2,0.a b c c a b c -+=-⎧⎪=-⎨⎪++=⎩ 解得1,1,2.a b c =⎧⎪=⎨⎪=-⎩∴ 二次函数解析式为22y x x =+-. 12.【答案】21(3)22y x =--; 【解析】由题意知抛物线过点(1,0)和(5,0). 三、解答题13.【答案与解析】(1)∵ 顶点是(1,2),∴ 设2(1)2y a x =-+(a ≠0).又∵ 过点(2,3),∴ 2(21)23a -+=,∴ a =1. ∴ 2(1)2y x =-+,即223y x x =-+. (2)设二次函数解析式为2y ax bx c =++(a ≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得1,1,13,a b c c a b c ++=-⎧⎪=⎨⎪-+=⎩ 解得5,7,1.a b c =⎧⎪=-⎨⎪=⎩故所求的函数解析式为2571y x x =-+.(3)由抛物线与x 轴交于点(1,0),(3,0),∴ 设y =a(x-1)(x-3)(a ≠0),又∵ 过点(0,-3), ∴ a(0-1)(0-3)=-3,∴ a =-1,∴ y =-(x-1)(x-3),即243y x x =-+-.14.【答案与解析】过C 点作CD ⊥x 轴于D .在y =-2x+2中,分别令y =0,x =0,得点A 的坐标为(1,0),点B 的坐标为(0,2). 由AB =AC ,∠BAC =90°,得△BAO ≌△ACD , ∴ AD =OB =2,CD =AO =1, ∴ C 点的坐标为(3,1).设所求抛物线的解析式为2(0)y ax bx c a =++≠,则有0,9312,a b c a b c c ++=⎧⎪++=⎨⎪=⎩,解得5,61762.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴ 所求抛物线的解析式为2517266y x x =-+.15.【答案与解析】 解:(1)由已知得:C (0,4),B (4,4), 把B 与C 坐标代入y=﹣x 2+bx+c 得:,解得:b=2,c=4,则解析式为y=﹣x 2+2x+4;(2)∵y=﹣x 2+2x+4=﹣(x ﹣2)2+6, ∴抛物线顶点坐标为(2,6),则S 四边形ABDC =S △ABC +S △BCD =×4×4+×4×2=8+4=12.苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习用函数观点看一元二次方程—知识讲解(基础)【学习目标】1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;2.会求抛物线与x 轴交点的坐标,掌握二次函数与不等式之间的联系;3.经历探索验证二次函数2(0)y ax bx c a =++≠与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题. 【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x 轴的交点情况决定一元二次方程根的情况求二次函数2y ax bx c =++(a ≠0)的图象与x 轴的交点坐标,就是令y =0,求20ax bx c ++=中x 的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x 轴的交点的个数,它们的关系如下表: 判别式24b ac=-△二次函数2(0)y ax bx c a =++≠ 一元二次方程20(0)ax bx c a ++=≠图象与x 轴的交点坐标根的情况△>0a >抛物线2(0)y ax bx c a =++≠与x 轴交于1(,0)x ,2(,0)x 12()x x <两点,且21,242b b acx a-±-=,此时称抛物线与x 轴相交一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b ac x a-±-=a <△=0a >抛物线2(0)y ax bx c a =++≠与x 轴交切于,02b a ⎛⎫-⎪⎝⎭这一点,此时称抛物线与x 轴相切 一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-a <△<0a >抛物线2(0)y ax bx c a =++≠与x轴无交点,此时称抛物线与x 轴相离 一元二次方程20(0)ax bx c a ++=≠在实数范围内无解(或称无实数根)a <要点诠释:二次函数图象与x 轴的交点的个数由的值来确定的.(1)当二次函数的图象与x 轴有两个交点时,,方程有两个不相等的实根;(2)当二次函数的图象与x 轴有且只有一个交点时,,方程有两个相等的实根;(3)当二次函数的图象与x 轴没有交点时,,方程没有实根.2.抛物线与直线的交点问题抛物线与x 轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线2y ax bx c =++(a ≠0)与y 轴交点和二次函数与一次函数1y kx b =+(0)k ≠的交点问题.抛物线2y ax bx c =++(a ≠0)与y 轴的交点是(0,c).抛物线2y ax bx c =++(a ≠0)与一次函数1y kx b =+(k ≠0)的交点个数由方程组12,y kx b y ax bx c=+⎧⎨=++⎩的解的个数决定.当方程组有两组不同的解时⇔两函数图象有两个交点; 当方程组有两组相同的解时⇔两函数图象只有一个交点; 当方程组无解时⇔两函数图象没有交点.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题. 要点诠释:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题. 要点二、利用二次函数图象求一元二次方程的近似解 用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围.即确定抛物线与x 轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y 值.4.确定一元二次方程的近似根.在(3)中最接近0的y 值所对应的x 值即是一元二次方的近似根.要点诠释: 求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x 轴交点的横坐标就是方程的根;(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x 轴的两个交点之间的距离公式当△>0时,设抛物线2y ax bx c =++与x 轴的两个交点为A(1x ,0),B(2x ,0),则1x 、2x 是一元二次方程2=0ax bx c ++的两个根.由根与系数的关系得12b x x a +=-,12c x x a=. ∴ 22121||||()AB x x x x =-=-21212()4x x x x =+-24⎛⎫=-⨯ ⎪⎝⎭b c a a 224b ac a -=24||b ac a -= 即 ||||AB a =△(△>0)要点四、抛物线与不等式的关系二次函数2y ax bx c =++(a ≠0)与一元二次不等式20ax bx c ++>(a ≠0)及20ax bx c ++<(a ≠0)之间的关系如下12()x x <:判别式 0a >抛物线2y ax bx c =++与x 轴的交点不等式20ax bx c ++>的解集不等式20ax bx c ++<的解集△>01x x <或2x x >12x x x <<△=01x x ≠(或2x x ≠)无解△<0全体实数 无解注:a <0的情况请同学们自己完成. 要点诠释:抛物线2y ax bx c =++在x 轴上方的部分点的纵坐标都为正,所对应的x 的所有值就是不等式20ax bx c ++>的解集;在x 轴下方的部分点的纵坐标都为负,所对应的x 的所有值就是不等式20ax bx c ++<的解集.不等式中如果带有等号,其解集也相应带有等号.【典型例题】类型一、二次函数图象与坐标轴交点1.已知二次函数y=(m-2)x 2+2mx+m+1,其中m 为常数,且满足-1<m<2,试判断此抛物线的开口方向,与x 轴有无交点,与y 轴的交点在x 轴上方还是在x 轴下方. 【答案与解析】∵-1<m<2.∴m-2<0,抛物线开口向下,又m+1>0,抛物线与y 轴的交点在x 轴上方.Δ=4m 2-4(m-2)(m+1)=4m 2-4(m 2-m-2) =4m+8=4(m+1)+4>0.∴抛物线与x 轴有两个不同的交点.【总结升华】此题目也可以用数形结合方法来判断抛物线与x 轴有两个不同交点(用抛物线与y 轴的交点C 在x 轴上方,开口向下,必与x 轴有两个不同交点). 举一反三:【课程名称:用函数观点看一元二次方程 356568 :例3-4】【变式】二次函数y=mx 2+(2m-1)x+m+1的图象总在x 轴的上方,求m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用精品文献资料分享
初三下学期数学第7章知识点汇总(苏教版)
初三下学期数学第7章知识点汇总(苏教版)
7.1正切1、定义域:{x|x∈R且x≠(π/2)+kπ,k∈Z} 2、值域:实数集R 3、奇偶性:奇函数4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数5、周期性:最小正周期π(可用T=π/|ω|来求) 7.2正弦、余弦(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系
7.3特殊角的三角函数1、勾股定理:直角三角形两直角边a、b 的平方和等于斜边c的平方。
2、如下图,在Rt△ABC中,∠C 为直角,则∠A的锐角三角函数为(∠A可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
7.4由三角函数值求锐角(1)反正弦:在闭区间上符合条件sinx=a(-1≤a≤1)的角x,叫做实数a的反正弦,记作arcsina,即x=arcsina,其中x∈,且a=sinx;注意arcsina表示一个角,这个角的正弦值为a,且这个角在内(-1≤a≤1)。
7.5解直角三角形解直角三角形一、锐角三角函数(一)、锐角三角函数定义在直角三角形ABC中,∠C=900,设BC=a,CA=b,AB=c,锐角A的四个三角函数是:(1)正弦定义:在直角三角形中ABC,锐角A 的对边与斜边的比叫做角A的正弦。
7.6锐角三角函数的简单应用 1.如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为60°和45°,则广告牌的高度BC为_____________米(结果保留根号). 2.如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?。