小学奥数精讲 换元法

合集下载

小学奥数教程-换元法.教师版 (10) 全国通用(含答案)

小学奥数教程-换元法.教师版 (10)  全国通用(含答案)

对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,例题精讲教学目标换元法1-3-5.换元法.题库教师版page 1 of原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯= 【答案】9【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。

换元法(Word可编辑版)

换元法(Word可编辑版)

换元法(Word可编辑版)
解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用。

换元法又称变量替换法,是我们解题常用的方法之一。

利用换元法,可以化繁为简,化难为易,从而找到解题的捷径。

概述
亦称辅助未知数法,又称变元代换法.解方程组的一种重要方法。

它是普遍应用的一种方法,其一般意义是将由一个或几个变元构成的数学表达式中的一部分用新的变元表示,以利于问题的解决.这里仅给出在解方程(组)和解不等式(组)中的应用。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

分类
换元法是指引入一个或几个新的变量代替原来的某些变量的变
量求出结果之后,返回去求原变量的结果.换元法通过引入新的元素
将分散的条件联系起来,或者把隐含的条件显示出来,或者把条件与结论联系起来,或者变为熟悉的问题.其理论根据是等量代换.
高中数学中换元法主要有以下两类:
(1)整体换元:以“元”换“式”。

(2)三角换元,以“式”换“元”。

(3)此外,还有对称换元、均值换元、万能换元等.换元法应用比较广泛。

如解方程,解不等式,证明不等式,求函数的值域,求数列的通项与和等,另外在解析几何中也有广泛的应用。

小学思维数学:换元法-带答案解析

小学思维数学:换元法-带答案解析

换元法对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】 计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+ 【考点】换元法 【难度】2星 【题型】计算【解析】 令1111246a +++=,111246b ++=,则:原式11()()66a b a b =-⨯-⨯-1166ab b ab a =--+1()6a b =-11166=⨯= 【答案】16【巩固】 11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++ 【考点】换元法 【难度】2星 【题型】计算【解析】 设111234a =++,则原式化简为:1111(1555a a a a +(+)(+)-+)=【答案】15【巩固】 计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 令621739458126358947a ++=;739458358947b +=,原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯= 【答案】9【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++) 例题精讲教学目标【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。

换元法

换元法

换元法运用换元法解题时,要引入什么样的“新元”和怎样引入“新元”,不同的问题有不同的方法和技巧。

换元的方法有:局部换元、三角换元、均值换元等。

换元的种类有:等参量换元、非等量换元。

局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。

例如:解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式:2t +t-2≥0求解得:t ≥1,t ≤-2指数函数的单调性求解2x ≥1, 2x ≤-2的问题。

x ≥0,x ≤14三角换元:应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。

如求函数y=21x -的值域时,若x ∈[-1,1],设x=sin α ,sin α∈[-1,1 ],问题变成了熟悉的求三角函数值域。

如变量x 、y 适合条件222x y r +=时(r>0),则可作三角代换x=rcos θ、y=rsin θ化为三角问题。

均值换元:如遇到x+y=2S 形式时,设x= S+t ,y= S -t 等等。

例1. 分解因式分析:从式子的特征来看,可把各看作一个整体使问题简化,事实上,本题解法较多,下面提供三种方法,供同学们学习参考。

解:法一:对和换元,用换元法解 设则原式法二:用换元法来解设,则原式法三:将原式整理成关于x的二次三项式原式在函数中的应用1、求函数的定义域例2、设函数y=f(x)的定义域是[2,3],求函数y=f(x²)的定义域。

解:设x²=t,则y=f(t)的定义域上[2,3],即2≦t≦3,因此2≦x²≦3,所以-√3≦x≦-√2或√2≦x≦√3,所求定义域是[-√3,-√2]∪[√2,√3]2、求函数的解析式例3、已知f(x+1)=x²-2x,求f(x)的解析式解:设x+1=t,则x=t-1, 所以f(t)=(t-1)²-2(t-1)=t -4t-1,即f(x)=x²-4x-1。

函数方程和函数迭代问题(奥数)

函数方程和函数迭代问题(奥数)

函数方程和函数迭代问题(奥数)第四讲函在国内外数学竞赛中函数方程和函数迭代问题备受命题者的青睐形式灵活多变,结构变化无穷,大致可分为如下三类:⑴探求函数的解析式;⑵探求函数的值⑶讨论函数的性质.一. 探求函数的解析式函数方程的求解事实上也是一个探求函数解析式的过程,而函数方程常见的初等解法有许多,下面对其作进一步详尽的介绍.1,换元法换元法的解题基本思想是:将函数方程中自变量适当代换成别的自变量(应注意力求不改变函数的定义域),得到一个或几个新的函数方程,然后将它们与原方程联立,通过消元求得原函数方程的解.例1 解函数方程 f(x)+f(xx 1-)=1+x (x ≠0,x ≠1) f(x)=x+1/x+1/(1-x) 例2 设f(x)是定义在实数集上的实值函数,且满足af(x-1)+bf(1-x)=cx,其中a,b,c 为实常数,求f(x) f(x)=c/(a-b)x+c/(a+b)2.赋值法赋值法基本思想是:对自变量多于一个的函数方程,将其中一个或几个自变量用一些特殊值赋进去代入原方程,从而简化函数方程,以达到求解的目的.例3 已知定义在R 的函数满足⑴ f(x 1+x 2)+f(x 1-x 2)=2f(x 1)cos2x 2+4asin 2x 2 (x 1,x 2∈R,a 为常数) f(x)=(a-1)(sin2x-cos2x)+a⑵ f(0)=f(4π)=1 ⑶ 当x ∈[0, 4π]时,f(x)≤2 试求⑴函数f(x)的解析式;⑵常数a 的取值范围.例4 f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x)⑴ f[xf(y)]f(y)=f(x+y);⑵ f(2)=0⑶ 当0≤x <2 f(x)≠0 f(x)= 0,x>=22/(2-x),x<23递推法这一方法的其本思想是:当f(x)是定义在自然数集上的函数(实际上就是通项为a n =f(n)的数列)时,可根据题中所给函数方程,通过持殊值得到关于f(n)的递推关系,然后根据递推关系求出(即数列{a n}的通项表达式)例5已知f(x)是定义在自然数集上的函数,满足f(1)=23,且对任意x,y ∈N,有 f(x+y)=(1+1+x y )f(x)+(1+1+y x )f(y)+x 2y+xy+xy 2,求f(x) 4. 柯西法柯西首先讨论了一个很重要的函数方程f(x+y)=f(x)+f(y)的解法,由此解决了一系列其他函数方程.他的方法是,依次求出所有自然数值,整数值,有理数值,直至所有实数值的函数方程的解例6 设f(x) 是定义在有理数集上的函数,且对任意的有理数x,y 有f(x+y)=f(x)+f(y),试求f(x)5, 待定系数法这一方法的其本思想是:当f(x)是多顸式时,可设f(x)=a 0x n +a 1x n-1+….+a n (a 0≠0),代入函数方程的两端,然后比较方程两端x 最高次幂的指数和x 同次幂的系数,便可得出关于n 及a 0 a 1…a n .的方程组,解这个方程组便可确定n 及a 0 a 1…a n 的值,从而得到函数方程的解例7确定符合下列条件的所有多项式f(x) f(x+1)=21f[f(x)]+23 6 , 利用不等式夹逼利用不等式夹逼求解函数方程,主要是利用下列几个明显的结论:⑴ 若对任意x ∈I, 有f(x)≥g(x) 及f(x)≤g(x)则对任意x ∈I,有f(x)=g(x)⑵ 若对任意x,y ∈I,有f(x)≤g(y)则交换x,y 得f(y)≤g(x)于是对任意的x,y ∈I 有f(x)=g(y)由此可得f(x)=常数(x ∈I).⑶ 若f:N →N 满足m ≤f(n)<m+1或m-1<f(n)≤m 或m-1<f(n)<m+1(m,n ∈N)则f(n)=m,例8 设f(x) 是具有下列性质的函数⑴ f(n)对每一正整数n 有定义;⑵ f(n)是正整数;⑶ f(2)=2⑷ f(mn)=f(m)f(n),对一切m,n 成立;⑸ f(m)>f(n),当m >n 时试证: f(m)=f(n)例9 设f(n )是定义在自然数集N 上的函数,它的值域也是全体自然数所成的集N,并且对任意两个自然m 与n,只要m ≥n 就有f(m) ≥n, 试证: f(m)= m 对任意的自然数m 成立.例10 设f(n )是定义在自然数集N 上的函数,满足: ⑴f(n )的值域为整数;⑵当m <n 时,f(m)<f(n);⑶当m,n 互素时,f(mn)=f(m)f(n),试求符合上述条件的一切函数f(x).二. 探求函数的值在各级各类数学竞赛中除了求函数方程的解以外,还经常遇到由函数方程给出的特殊定义的抽象函数,要求参赛者探求其函数的特殊的函数值.例11. 设N 是自然数集, f(x)是定义在N 上并在N 内取值的函数,且对x,y ∈N,有f[f(x)+y]=x+y,求f(1988)的所有可能的值例12. 设f(n )对所有正整数有定义,取非负整数值,并且对所有正整数m,n 有f(m+n)-f(m)-f(n)=0或1.又f(2)=0.f(3)>0,f(9999)=3333,求f(1982).例13. 设f(x),g(x)是定义在正整数集Z +上并取整数的严格递增函数,如果它们满足:⑴f(Z +) ∪ g ( Z +) = Z +(⑵f(Z +) ∩ g ( Z +) =⑶g(n)=f(f(n))+1试求f(240).三.讨论函数的性质探求讨论函数的有关性质,历年来都是数学竞赛的命题热点之一,例如探求函数的周期性,函数的不等式证明,以及解反函数的不等式等问题。

奥数换元法

奥数换元法

单个换元
主要是根据方程的特点进行换元,换元后一般只留下单个未知数
换元法解方程:部分换元
系数对称方程换元
高次方程的平均值换元
解方程
换元法解方程(多元换元)
多元换元
解方程
分析:观察发现
换元法解方程(数字换元)
数字换元
例10.解方程
分析:这是三次方程,且系数中含有无理数,不易求解,若反过来看吧x看做已知数,把根号下3设为t,则方程就变为关于t的一元二次方程。

小学数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。

通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。

或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

换元的方法有:局部换元、三角换元、均值换元等。

局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。

例如解不等式:4+2-2≥0,先变形为设2=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。

小学奥数教师版-1-3-5 换元法

小学奥数教师版-1-3-5 换元法

换元法教学目标对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.例题精讲【例1】计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a +++=,111246b ++=,则:原式11()()66a b a b =-⨯-⨯-1166ab b ab a=--+1()6a b =-16611=⨯=【答案】16【巩固】11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a =++,则原式化简为:1111(1555a a a a +(+)(+)-+)=【答案】15【巩固】计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a ++=;739458358947b +=,原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯=【答案】【巩固】9计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法【难度】2星【题型】计算【解析】设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】【巩固】0.054321计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法【难度】2星【题型】计算【关键词】希望杯,2试【解析】换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -)10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】(10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____。

换元法是什么:将复杂的式子化成简单明了的形式(化繁为简)

换元法是什么:将复杂的式子化成简单明了的形式(化繁为简)

换元法讲解:将复杂的式子化繁为简
换元法是数学学习中的一种常见方法。

对结构比较复杂的多项式,把其中某些部分看成一个整体,用新字母代替,从而将复杂的式子化成简单明了的形式。

实质就是,
用一个符号代表一堆复杂的东西,计算起来比较省力。

来看下面这个例题
【例1】计算3+9+27+81+243+729+2187
分析:这题是等比数列求和,公比是3,共有7项。

采用错位相减法,让等式乘以它的公比。

令A=3+9+27+81+243+729+2187;
则 3A=9+27+81+243+729+2187+6561;
两式相减,
3A-A=2A=6561-3
2A=6558
A=6558÷2=3279
所以,
3+9+27+81+243+729+2187=3279
在计算【例1】中,
细心的你会发现,
G老师令A=3+9+27+81+243+729+2187;
这一步,
就叫做换元。

用字母A代表3+9+27+81+243+729+2187的和。

当然,
也可以不用A,
用B、C、D、E、F、G……都行,
喜欢哪个字母就用哪个。

注意:用换元法解答,在解题的最后一定要记得把元还回来,就像G老师在【例1】中写的最后一步“所以,3+9+27+81+243+729+2187=3279”。

更多小学数学重难点知识讲解,来和“G老师讲奥数”一起学习吧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,原式378378207207a b a b⎛⎫⎛⎫=⨯+-+⨯⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b=-⨯=⨯=【答案】9例题精讲教学目标换元法【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。

【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,六年级,二试 【解析】 设0.120.23a +=,0.120.230.34b ++= 原式()()110.34a b b a b a =+⨯-+⨯=-=【答案】0.34【巩固】 计算:⑴ (10.450.56++)⨯(0.450.560.67++)-(10.450.560.67+++)⨯(0.450.56+)⑵621739458739458378621739458378126358947358947207126358947207⎛⎫⎛⎫⎛⎫++⨯++-+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭739458358947⎛⎫+ ⎪⎝⎭【考点】换元法 【难度】2星 【题型】计算 【关键词】迎春杯 【解析】 ⑴ 该题相对简单,尽量凑相同的部分,即能简化运算.设0.450.56a =+,0.450.560.67b =++,有原式=(1a +)b ⨯-(1b +)0.67a b ab a ab b a ⨯=+--=-=⑵ 设621739458126358947a ⎛⎫=++ ⎪⎝⎭,739458358947b ⎛⎫=+ ⎪⎝⎭ 原式378378378621378()9207207207126207a b a b a b ⎛⎫⎛⎫=⨯+-+⨯=-⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【答案】⑴0.67 ⑵9【巩固】 计算: 573734573473()123217321713123217133217⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= 。

【考点】换元法 【难度】2星 【题型】计算 【关键词】走美杯,初赛,六年级【解析】 设573123217a =++、733217b =+,则有441313444()131313455131239a b a ba b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭=-=-=⨯=原式【答案】539【例 2】 计算:1111111111112200723200822008232007⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-+++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】3星 【题型】计算【解析】 令111232007a =+++,111232008b =+++,原式()()1112008a b b a b ab a ab b a =+⨯-+⨯=+--=-=【答案】12008【巩固】 111111111111111111213141213141511121314151213141⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-++++⨯++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 设111111213141a +++=,111213141b ++=,原式115151a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭115151ab a ab b =+--1()51a b =-1115111561=⨯=【答案】1561【巩固】 计算1111111111111111())()5791179111357911137911+++⨯+++-++++⨯++()(【考点】换元法 【难度】2星 【题型】计算 【关键词】清华附中【解析】 设111157911A +++=,1117911B ++=,原式111313A B A B ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭111313A B A A B B =⨯+-⨯- ()113A B =-11113565=⨯= 【答案】165【巩固】 计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫++++⨯++++-+++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 设111112345A ++++=,11112345B +++=原式=1166A B A B ⎛⎫⎛⎫⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭=1166A B A A B B ⨯+⨯-⨯-⨯=1166A B ⨯-⨯ 16=⨯(A B -)16=【答案】16【例 3】 计算:212391239112923912341023410223103410⎛⎫⎛⎫⎛⎫⎛⎫+++++++++⨯-++++⨯+++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算 【关键词】迎春杯【解析】 设123923410t =++++,则有22211111(1)222222t t t t t t t t t ⎛⎫⎛⎫+⨯-+-=+-+--= ⎪ ⎪⎝⎭⎝⎭【答案】【例 4】 计算11112111311143114120092009++++++++++【考点】换元法 【难度】4星 【题型】计算 【解析】 设3N =+11412009++. 原式=112N++11111N++=121N N ++111N N ++ =112121N N N N ++=++. 【答案】1【例 5】 计算:22222811811811111118118118811⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-+÷++⨯-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎣⎦【考点】换元法 【难度】3星 【题型】计算 【解析】 (法一)设811x =,则原式2211881111288x x x x x x x x +--==⎛⎫⎛⎫++⨯-+⨯⎪ ⎪⎝⎭⎝⎭. (法二)设811118x =+,那么222228112118x =++,所以222228112118x +=-.而2222211112811811111228118118118118888x x ⨯⨯⎛⎫⎛⎫⎛⎫-=+-=+-⨯=+-⨯ ⎪ ⎪ ⎪⨯⎝⎭⎝⎭⎝⎭. 这样原式转化为()()222228888121288x x x x x x x x ----=⨯=--+-⨯. 在这里需要老师对于()()()()a b c d a b c a b d ac bc ad bd +⨯+=+⨯++⨯=+++的计算进行简单的说明.【答案】88【例 6】计算:22010 200920111⨯+【考点】换元法【难度】2星【题型】计算【解析】设a=2009,原式2221)211 +2121a a aa a a a+++===+++(()【答案】1【巩固】计算200820092007 200820091+⨯⨯-(4级)【考点】换元法【难度】2星【题型】计算【解析】设2008a=原式(1)(1)(1)1a a aa a++-=+-22111a aa a+-=+-=【答案】1。

相关文档
最新文档