(完整word版)2015年考研数学真题(数二)
(完整word版)考研数学历年真题(2008-2017年)年数学一

(完整word 版)考研数学历年真题(2008-2017年)年数学一2017年全国硕士研究生入学统一考试数学(一)试卷一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =- (C)0ab = (D)2ab =(2)设函数()f x 可导,且()()0f x f x '>则( ) (A)()()11f f >- (B) ()()11f f <- (C )()()11f f >-(D )()()11f f <-(3)函数()22,,f x y z x y z =+在点()1,2,0处沿向量()1,2,2n 的方向导数为( ) (A )12(B )6(C)4(D)2(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,如下图中,实线表示甲的速度曲线()1v v t = (单位:m/s )虚线表示乙的速度曲线()2v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( ) (A )010t = (B)01520t <<(C)025t = (D )025t >()s(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则( ) (A ) T E αα-不可逆 (B ) T E αα+不可逆 (C) 2T E αα+不可逆(D )2T E αα-不可逆(6)已知矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦100020002C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则( )(A ) A 与C 相似,B 与C 相似 (B ) A 与C 相似,B 与C 不相似(完整word 版)考研数学历年真题(2008-2017年)年数学一 (C ) A 与C 不相似,B 与C 相似(D) A 与C 不相似,B 与C 不相似(7)设,A B 为随机事件,若0()1,0()1P A P B <<<<,则()()P A B P A B >的充分必要条件是( ) A 。
1989-2015考研数学二历年真题word版

2015年考研数学二真题一、选择题 1—8小题.每小题4分,共32分. 1.下列反常积分收敛的是( )(A )21dx x+∞⎰(B )2ln x dx x +∞⎰(C )21ln dx x x+∞⎰ (D )2x x dx e +∞⎰2.函数201sin ()lim x tt t f x x →⎛⎫=+⎪⎝⎭在(,)-∞+∞内( ) (A )连续 (B )有可去间断点(C )有跳跃间断点 (D )有无穷间断点3.设函数 100000cos ,(),(,),x x f x xx αβαβ⎧>⎪=>>⎨⎪≤⎩,若()f x '在0x =处连续,则( ) (A )1αβ-> (B )01αβ<-≤ (C )2αβ-> (D )02αβ<-≤4.设函数()f x 在(,)-∞+∞上连续,其二阶导数()f x ''的图形如右图所示,则曲线()y f x =在(,)-∞+∞的拐点个数为(A )0 (B )1 (C )2 (D )3 5.设函数(,)f u v 满足22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则1111|,|u u v v f f u v ====∂∂∂∂依次为( ) (A)102, (B)102, (C)102,- (D)102,- 6.设D 是第一象限中由曲线2141,xy xy ==与直线3,y x y x ==所围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰( )(A)1321422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰(B)1231422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰(C)1321422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰(D)1231422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰7.设矩阵2211111214,A a b d a d ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若集合{}12,Ω=,则线性方程组Ax b =有无穷多解的充分必要条件是(A ),a d ∉Ω∉Ω (B ),a d ∉Ω∈Ω (C ),a d ∈Ω∉Ω (D ),a d ∈Ω∈Ω8.设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中()123,,P e e e =,若()132,,Q e e e =-,则123(,,)f x x x 在x Qy =下的标准形为(A )2221232y y y -+ (B )2221232y y y +- (C )2221232y y y -- (D ) 2221232y y y ++9.设33arctan x t y t t=⎧⎨=+⎩,则212|t d ydx == . 10.函数22()xf x x =在0x =处的n 阶导数0()()n f = .11.设函数()f x 连续,2()()x x xf t dt ϕ=⎰,若1115(),()ϕϕ'==,则1()f = .12.设函数()y y x =是微分方程20y y y '''+-=的解,且在0x =处()y x 取极值3,则()y x = .13.若函数(,)z z x y =由方程231x y zexyz +++=确定,则00(,)|dz = .14.设三阶矩阵A 的特征值为221,,-,2B A A E =-+,其中E 为三阶单位矩阵,则行列式B = .三、解答题15.(本题满分10分)设函数1()ln()sin f x x a x bx x =+++,3()g x kx =在0x →时为等价无穷小,求常数,,a b k 的取值. 16.(本题满分10分)设0A >,D 是由曲线弧02sin ()y A x x π=≤≤及直线02,y x π==所围成的平面区域,12,V V 分别表示D 绕,x y 旋转一周所围成的旋转体的体积,若12V V =,求A 的值.17.(本题满分10分)已知(,)f x y 满足21(,)(),x xy f x y y e ''=+01(,)(),x x f x x e '=+202(,)f y y y =+,求(,)f x y 的极值.18.(本题满分10分)计算二重积分()dxdy Dx x y -⎰⎰,其中{}2222(,)|,D x y xy y x =+≤≥19.(本题满分10分)已知212111()x xf x t dt tdt =+++⎰⎰,求()f x 的零点个数.20.(本题满分11分)已知高温物体置于低温介质中,任一时刻物体温度对时间的变化率与该时刻物体和介质的温差成正比,现将一初始温度为120C ︒,物体在20C ︒恒温介质中冷却,30分钟后该物体的温度降到30C ︒.若要将物体的温度继续降至21C ︒,还需要冷却多长时间?21.(本题满分11分)已知函数()f x 在区间[,)a +∞上具有二阶导数,000(),(),()f a f x f x '''=>>.设b a >,曲线()y f x =在点(,())b f b 的切线与x 轴的交点是00(,)x ,证明:0.a x b <<22.(本题满分11分)设矩阵101101a A a a ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,且30A =.(1)求a 的值;(2)若矩阵X 满足22X XA AX AXA E ---=,其中E 为三阶单位矩阵,求X . 23.(本题满分11分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000031B b -⎛⎫⎪= ⎪ ⎪⎝⎭.(1)求,a b 的值;(2)求可逆矩阵P ,使1P AP -为对角矩阵.2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8题,每题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 (A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -=(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d ydx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ .(11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y==的解为y = .(13) 曲线()20y x x x =+<上曲率为22的点的坐标是 .(14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = . 三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积. (18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=,(I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<.(21)(本题满分10 分)(I)证明方程1x x x ++=n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限.(22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解. (23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a 的值;(II) 求正交变换x Qy =将f 化为标准形.2011年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1.已知当0x →时,函数是等价无穷小,则与kcx x x x f 3sin sin 3)(-= A k=1,c=4 B k=a, c=-4 C k=3,c=4 D k=3,c=-4 A )0(2f '- B )0(f '- C )0(f ' D 0 2.函数)3)(2)(1(ln )(---=x x x x f 的驻点个数为 A 0 B 1 C 2 D 33.微分方程的特解形式为)0(2>+=-'-λλλλx x e e y y A)(x x e e a λλ-+ B )(x x e e ax λλ-+ C )(x x be ae x λλ-+ D )(2x x be ae x λλ-+5设函数)(x f 具有二阶连续导数,且0)0(,0)(>'>f x f ,则函数)(ln )(y f x f z =在点(0,0)处取得极小值的一个充分条件A 0)0(,1)0(>''>f fB 0)0(,1)0(<''>f fC 0)0(,1)0(>''<f f D0)0(,1)0(<''<f f6.设⎰⎰⎰===44400cos ln ,cot ln ,sin ln πππxdx K xdx J xdx I 的大小关系是、、则K J IA I<J<KB I<K<JC J<I<KD K<J<I7.设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第一行得单位矩阵。
2015年考研真题数学二

1 (!"$0#/ 5 6{|$p (!"$0#3"30 & 5
#
%
/)0!%
* * !,# 3% (!212/%$2/)0%#232!
#
'
!/)0!%
#
%
/)0!%
* * !-# 3% (!212/%$2/)0%#32!
#
'
!/)0!%
* * %
!&# 3%
槡/#)0!%(!212/%$2/)0%#232!
( !:#z
" 0
&&%73<1#=730%3$p33"!0!
3&#
&
!
!#"#st(!"#&"!!" /" &"uD1 ~xt(!1#!"#&
!
"!
* !###zst(!"#{|$'!"#& "(!3#33$o'!##&#$'+!##&4$p(!##& "
(完整word)2015年各校333考研真题

2015北京师范大学333教育综合真题一、名词解释1。
教育2.苏湖教法3。
进步主义教育4。
赫尔巴特的教育目的论二、简述1、德育的基本途径2、活动课程的主要特征3、教师专业素养的主要内容4、社会规范学习的心理过程5、最近发展区6、奥苏贝尔的有意义接受学习三、论述题1、陶行知生活教育的主要内容2、夸美纽斯关于班级授课制的基本观点3、促进知识迁移的措施4、教育的社会功能2015华东师范大学教育综合333考研真题一、名词解释1、《师说》2、三舍法3、生计教育4、有意义学习5、自我效能感6、设计教学法二、问答题1、简述陈鹤琴活教育思想2、班主任素质要求是什么3、《学记》中的说喻是什么意思三、论述题1、评述布鲁纳结构主义教育2、请比较博比特活动分析法和泰勒目标课程模式对课程开发的影响3、从创造性的心理结构分析在教学过程中应该如何有效的培养学生的创造性?4、教师素养与当代教师角色的变迁解释德育过程是教师引导下学生能动的道德活动过2015华东中范大学教育综合333真题一、名词解释1、教育2、修养3、学园4、活动课程5、心理发展二.简答题1 教育独立性及其表现2 直观性原则含义及特点3 教师劳动的特点4 梁启超教育思想5 青少年心理健康培养的途径三.论述题1 论述掌握知识和发展智力的关系2 论述德育过程中教师引导下学生能动的道德活动课程3 论述创造性的培养措施4 实验教育学评述2015华南师范大学333教育综合真题一、名词解释1、广义教育2、德育3、学校管理4、教育目的5、心理发展6、品德不良二、简答题1、简述教育在我国社会主义建设中的地位和作用2、简述教学工作的基本环节3、简述卢梭的自然教育理论4、孔子教育思想的历史影响三、论述题1、张之洞“中体西用”思想的历史意义和局限性2、培养和提高教师素养的主要途径3、影响学习动机的因素4、简述基督教教育的特点2015年首都师范大学333教育综合真题1。
教育2。
价值性教育目的3.智育4。
保定市2014—2015学年度第一学期高三期末考研考试数学试题(理科)(word版,含详细解答)

保定市2014—2015学年度第一学期高三期末考研考试数学试题(理科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若复数z =,则z =( )A .12BC .1D .2 2、若集合2{0,1},{1,}A B a ==-,则“{}1A B =”是“1a =”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件3、已知函数()sin()(0)4f x wx w π=+>的最小正周期为π,则()8f π=( ) A .1 B .12 C .-1 D .12- 4、在区间[]5,5-内随机取出一个实数a ,则()0,1a ∈的概率为( )A .0.5B .0.3C .0.2D .0.15、运行如图所示的程序框图,则输出的结果S 为( )A .2014B .2013C .1008D .10076、已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则24z x y =+的最大值是( )A .2B .0C .-10D .-1 57、如图12,e e 为互相垂直的两个单位向量,则a b +=( )A .20 B C.8、湖面上飘着一个小球,湖水结冰后讲球取出,冰面上留下一个半径为6cm ,深2cm 的空穴,则取出该球前,球面上的点到冰面的最大距离为( )A .20cmB .18cmC .10cmD .8cm9、设n S 是等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于( ) A .1 B .1或2 C .1或3 D .310、已知函数()()322,2,03a f x x ax cx g x ax ax c a =++=++≠,则它们的图象可能是( )11、已知0,2b a ab >>=,则22a b a b+-的取值范围是( ) A .(],4-∞- B .(),4-∞-C .(],2-∞-D .(),2-∞-12、在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且BC,则c b b c +取得最大值时,内角A 的值为( )A .2π B .6π C .23π D .3π第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
1990-2012考研数学二历年真题word版

2004年全国硕士研究生入学统一考试数学二试题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为_______.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A*为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量20cos xtdt α=⎰, 20x β=⎰,30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是[](A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα (8)设()(1)f x x x =-, 则[](A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(9)22lim (1)n nn→∞+等于[](A )221ln xdx ⎰. (B ) 212ln xdx ⎰.(C ) 212ln(1)x dx +⎰. (D ) 221ln(1)x dx +⎰(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得 [](A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >. (D )对任意的(,0)x δ∈-有()(0)f x f >.(11)微分方程21sin y y x x ''+=++的特解形式可设为 [](A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于[](A)11()dx f xy dy -⎰⎰.(B)2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰. (D )2sin 200(sin cos )d f r rdr πθθθθ⎰⎰(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为[](A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有[](A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上,2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.(17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形.该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim ()t S t F t →+∞(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. (20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.(21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A是否可相似对角化.2003年全国硕士研究生入学统一考试数学二试题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,T α是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________. 二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有[ ](A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e .[ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为 [ ](A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有[ ](A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点. (D) 三个极小值点和一个极大值点.(5)01xdx x 02tan , 则 [ ](A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则[ ](A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点? 四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xex⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min/33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2002年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分)1.设函数0)(2arcsin 12tan ≤<⎪⎩⎪⎨⎧=-x x aex f xe xx在0=x 处连续,则=a ( ). 2.位于曲线xxe y -=(+∞<≤x 0)下方,x 轴上方的无界图形的面积为( ).3.02='+''y y y 满足初始条件21)0(,1)0(='=y y 的特解是( ). 4.1lim 1cos n n →∞++=( ).5.矩阵⎪⎪⎪⎭⎫⎝⎛-----222222220的非零特征值是( ).二、单项选择题(本题共5小题,每小题3分,满分15分.)1.函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为0.1,则)1(f '= (A)-1; (B)0.1;(C)1; (D)0.5.2.函数)(x f 连续,则下列函数中,必为偶函数的是 (A)⎰x dt t f 02)(; (B)⎰x dt t f 02)(;(C)⎰--x dt t f t f t 0)]()([; (D)⎰-+xdt t f t f t 0)]()([.3.设)(x f y =是二阶常系数微分方程xe qy y p y 3=+'+''满足初始条件0)0()0(='=y y 的特解,则极限)()1ln(lim 20x y x x +→(A)不存在; (B)等于1; (C)等于2; (D) 等于3. 4.设函数)(x f 在+R 上有界且可导,则(A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x ;(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x ;(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x ;(D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .5.设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k 必有(A)21321,,,ββααα+k 线性无关;(B) 21321,,,ββααα+k 线性相关; (C)21321,,,ββαααk +线性无关; (D) 21321,,,ββαααk +线性相关.三、(本题满分6分)已知曲线的极坐标方程为θcos 1-=r ,求该曲线对应于6πθ=处的切线与法线的直角坐标方程.四、(本题满分7分)设函数10012)(2)1(223≤≤<≤-⎪⎩⎪⎨⎧+==+x x xx x f y x x e xe ,求函数⎰-=x dt t f x F 1)()(的表达式.五、(本题满分7分)已知函数)(x f 在+R 上可导,0)(>x f ,1)(lim =+∞→x f x ,且满足x he xf hx x f h 11))()((lim 0=+→,求)(x f . 六、(本题满分7分)求微分方程0)2(=-+dx y x xdy 的一个解)(x y y =,使得由曲线)(x y y =与直线2,1==x x 以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体的体积最小. 七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD,下部由二次曲线与线段 AB所围成.当水面与闸门的上断相平时,欲使闸门矩形部分与 承受的水压与闸门下部承受的水压之比为5:4,闸门矩形部分 的高h 应为多少? 八、(本题满分8分)设30<<n x ,)3(1n n n x x x -=+(n =1,2,3,…). 证明:数列{n x }的极限存在,并求此极限.九、(本题满分8分)设0>>a b ,证明不等式aba b a b b a a 1ln ln 222<--<+.十、(本题满分8分)设函数)(x f 在x =0的某邻域具有二阶连续导数,且0)0()0()0(≠'''f f f .证明:存在惟一的一组实数c b a ,,,使得当0→h 时,)()0()3()2()(2h o f h cf h bf h af =-++.十一、(本题满分6分)已知A,B为三阶方阵,且满足E B B A 421-=-.⑴证明:矩阵E A 2-可逆;⑵若⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求矩阵A. 十二、(本题满分6分)已知四阶方阵),,,(4321αααα=A , 4321,,,αααα均为四维列向量,其中432,,ααα线性无关,3212ααα-=.若4321ααααβ+++=,求线性方程组β=Ax 的通解.2001年全国硕士研究生入学统一考试数学(二)试题一、填空题(本题共5小题,每小题3分,满分15分) 1、213lim21-++--→x x xx x =( ).2、曲线1)cos(2-=-+e xy eyx 在点(0,1)处 的切线方程为 :( ). 3、xdx x x 223cos )sin (22⎰-+ππ=( ). 4、微分方程11arcsin 2=-+'x y x y 满足)(21y =0的特解为:( ).5、方程组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多解,则a =( ).二、单项选择题(本题共5小题,每小题3分,满分15分.) 1、1101)(>≤⎩⎨⎧=x x x f 则)]}([{x f f f =( A ) 0;(B )1;(C )1101>≤⎩⎨⎧x x ; (D )111>≤⎩⎨⎧x x .2、0→x 时,)1ln()cos 1(2x x +-是比n x x sin 高阶的无穷小,而nx x sin 是比12-x e 高阶的无穷小,则正整数n 等于( A )1;(B )2;(C )3;(D )4. 3、曲线22)3()1(--=x x y 的拐点的个数为 ( A )0;(B )1;(C )2;(D )3.4、函数)(x f 在区间(1-δ,1+δ)内二阶可导,)(x f ' 严格单调减小,且)1(f =)1(f '=1,则(A )在(1-δ,1)和(1,1+δ)内均有)(x f x <; (B )在(1-δ,1)和(1,1+δ)内均有)(x f x >;(C )在(1-δ,1)内有)(x f x <,在(1,1+δ)内有)(x f x >; (D )在(1-δ,1)内有)(x f x >,在(1,1+δ)内有)(x f x <. 5、设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示: 则)(x f y '=的图形为 ( )三、(本题满分6分)求⎰++221)12(xxdx.四、(本题满分7分)求函数)(x f =sin sin sin lim()sin xt x t x t x-→的表达式,并指出函数)(x f 的间断点及其类型.五、(本题满分7分)设)(x ρρ=是抛物线x y =上任意一点M (y x ,)(1≥x )处的曲率半径,)(x s s =是该抛物线上介于点A (1,1)与M 之间的弧长,计算222)(3ds d ds d ρρρ-的值(曲率K =23)1(2y y '+''). 六、(本题满分7分))(x f 在[0,+∞)可导,)0(f =0,且其反函数为)(x g . 若x x f e x dt t g 2)(0)(=⎰,求)(x f .七、(本题满分7分)设函数)(x f ,)(x g 满足)(x f '=)(x g , )(x g '=2xe -)(x f且)0(f =0,(0)g =2,求dx x x f x x g ⎰+-+π2])1()(1)([八、(本题满分9分)设L 为一平面曲线,其上任意点P (y x ,)(0>x )到原点的距离,恒等于该点处 的切线在y 轴上的截距,且L 过点(0.5,0).1、 求L 的方程2、 求L 的位于第一象限部分的一条切线,使该切线与L 以及两坐标轴所围成的图形的面积最小.九、(本题满分7分)一个半球型的雪堆,其体积的融化的速率与半球面积S 成正比比例系数K>0.假设在融化过程中雪堆始终保持半球形状,已知半径为 r 0 的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少时间?十、(本题满分8分))(x f 在[-a ,a]上具有二阶连续导数,且)0(f =01、 写出)(x f 的带拉格朗日余项的一阶麦克劳林公式;2、 证明在[-a ,a]上至少存在一点η,使⎰-=''a adx x f f a )(3)(3η十一、(本题满分6分)已知⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=011101110,111011001B A 且满足AXA+BXB=AXB+BXA+E ,求X .十二、(本题满分6分)设4321,,,αααα为线性方程组AX=O 的一个基础解系, 144433322211,,,ααβααβααβααβt t t t +=+=+=+=,其中t 为实常数试问t 满足什么条件时4321,,,ββββ也为AX=O 的一个基础解系.2000 年全国硕士研究生入学统一考试一、 填空题1.2.3.4.5.二、选择题6. 7.8.9.10.三、解答题11.12.13.14.15.16. 17.18.19.20.21.1999 年全国硕士研究生入学统一考试(数学二)1998 年全国硕士研究生入学统一考试(数学二)1997 年全国硕士研究生入学统一考试(数学二)1996 年全国硕士研究生入学统一考试(数学二)1995 年全国硕士研究生入学统一考试(数学二)1994 年全国硕士研究生入学统一考试(数学二)1993 年全国硕士研究生入学统一考试(数学二)1992 年全国硕士研究生入学统一考试(数学二)1991 年全国硕士研究生入学统一考试(数学二)1990 年全国硕士研究生入学统一考试(数学二)。
(完整word版)华中科技大学年高等代数考研试题

(完整word 版)华中科技大学2011年高等代数考研试题
11
11111234512451
2345123451 0
.
............
0 (003230330)
,,,().
()().
n n n a a b x b x x x x x x x x x x x x x x x x x x x x A B m n C n n A BC rank B n rank A rank C ----++-=⎧⎪+++=⎪⎨-++-=⎪⎪++++=⎩⨯⨯===一、计算行列式二、求齐次线性方程组的一组基础解系.三、设都是的矩阵,是矩阵且证明:四2112.
(1)Im ker .
(2).
0 1.
(1).
(2)()().
()()0,(1)().
(2).
,T T T n V T I V T T T A n A A I A I A A I A I I f x x f x A f A A I A m n B --==⊕++⇔+++=>+⨯、设是维线性空间的线性变换,且是单位变换证明:试求的最小多项式五、设是阶实矩阵,的特征值为或证明:及可逆为正交矩阵六、设是正的多项式,即对任意的有又设是实对称阵,
证明:是正定的可逆七、设是矩阵是.det()det().
,((),)(,()).
(1)Im (ker ).
(2).n m n m m n E BA E AB f V V f f f f W f W f λλλλαβαβαβ-⊥⊥⨯≠≤-=-==矩阵,0且证明:八、设是线性空间的线性变换,对中任意的有证明:是的不变子空间,则也是的不变子空间。
考研数学二历年真题word版

2010年考研数学二真题一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. (3)设函数(),zf x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A 、B 均为2阶矩阵,**AB,分别为A 、B 的伴随矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年全国硕士研究生入学统一考试数学二试题
一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)下列反常积分中收敛的是()
(A )
2
dx x
+∞
⎰
(B )2
ln x
dx x
+∞
⎰
(C)2
1
ln dx x x
+∞
⎰
(D)2
x
x dx e +∞
⎰
(2)函数2
0sin ()lim(1)x t
t t f x x
→=+
在(,)-∞+∞内() (A )连续 (B )有可去间断点 (C )有跳跃间断点 (D)有无穷间断点
(3)设函数1cos ,0
()0,0x x f x x
x α
β⎧>⎪=⎨⎪≤⎩
(0,0)αβ>>,若()f x '在0x =处连续,则() (A )1αβ-> (B)01αβ<-≤ (C)2αβ-> (D)02αβ<-≤
(4) 设函数()f x 在(,)-∞+∞连续,其二阶导函数()f x ''的图形如右图所示,则曲线()y f x =的拐点个数为()
(A )0 (B)1 (C)2 (D)3
(5).设函数(u v)f ,满足22
(,)y
f x y x y x
+=-,则
11
u v f
u ==∂∂与11
u v f v
==∂∂依次是()
(A )
12,0 (B)0,12(C )-12,0 (D)0 ,-12
(6). 设D 是第一象限中曲线21,41xy xy ==与直线,3y x y x ==围成的平面区域,函数
(,)f x y 在D 上连续,则(,)D
f x y dxdy ⎰⎰=()
(A )
12sin 214
2sin 2(cos ,sin )d f r r dr π
θπθ
θθθ⎰⎰
(B
)24
(cos ,sin )d f r r dr π
πθθθ⎰
(C )
13sin 214
2sin 2(cos ,sin )d f r r dr π
θπθ
θθθ⎰⎰
(D
)34
(cos ,sin )d f r r dr π
πθθθ⎰
(7).设矩阵A=211112a 14a ⎛⎫ ⎪ ⎪ ⎪⎝⎭,b=21d d ⎛⎫ ⎪
⎪
⎪
⎝⎭
,若集合Ω=}{1,2,则线性方程组Ax b =有无穷多个解的
充分必要条件为()
(A ),a d ∉Ω∉Ω (B),a d ∉Ω∈Ω (C),a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω
(8)设二次型123(,,)f x x x 在正交变换x Py =下的标准形为222
1232,y y y +-其中123P=(e ,e ,e ),若
132(,,)Q e e e =-,则123(,,)f x x x 在正交变换x Py =下的标准形为( )
(A):2221232y y y -+ (B) 2221232y y y +- (C) 2221232y y y -- (D) 222
1232y y y ++
二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...
指定位置上. (9) 设223
1
arctan ,3t x t d y
dx y t t ==⎧=⎨=+⎩则 (10)函数2
()2x
f x x =在0x =处的n 阶导数()
(0)n f =
(11)设函数()f x 连续,2
0()(),x x xf t dt ϕ=
⎰
若(1)ϕ1=,'(1)5ϕ=,则(1)f =
(12)设函数()y y x =是微分方程''
'
20y y y +-=的解,且在0x =处()y x 取值3,则()y x = (13)若函数(,)z z x y =由方程231x y z
e
xyz +++=确定,则(0,0)dz =
(14)设3阶矩阵A 的特征值为2,-2,1,2
B A A E =-+,其中E 为3阶单位矩阵,则行列式B = 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.
15、(本题满分10分)
设函数()ln(1)sin f x x x bx x α=+++,2
()g x kx =,若()f x 与()g x 在0x →是等价无穷小,
求,,a b k 的值。
16、(本题满分10分)
设0A >,D 是由曲线段sin (0)2
y A x x π
=≤≤
及直线,2
y o x π
==
所形成的平面区域, 1V ,
2V 分别表示D 绕X 轴与绕Y 轴旋转所成旋转体的体积,若12V V =,求A 的值。
17、(本题满分10分)
已知函数(,)f x y 满足"(,)2(1)x xy f x y y e =+,'(,0)(1)x
x f x x e =+,2
(0,)2f y y y =+,求
(,)f x y 的极值。
18、(本题满分10分) 计算二重积分
()D
x x y dxdy +⎰⎰
,其中{}
222
(,)2,D x y x y y x =+≤≥。
19、(本题满分10分)
已知函数2
1
()x f x =
+⎰
⎰
,求()f x 零点的个数。
20、(本题满分11分)
已知高温物体置于低温介质中,任一时刻物体温度对时间的关系的变化与该时刻物体和介质的温差成正比,现将一初始温度为1200
C 的物体在200
C 恒温介质中冷却,30min 后该物体温度降至300
C ,若要使物体的温度继续降至210
C ,还需冷却多长时间? 21、(本题满分11分)
已知函数()f x 在区间[]+a ∞,上具有2阶导数,()0f a =,()0f x '>,()''0f x >,设b a >,曲线()y f x =在点()()
,b f b 处的切线与x 轴的交点是()00x ,,证明0a x b <<。
22、(本题满分11分)
设矩阵101101a A a a ⎛⎫
⎪
=- ⎪ ⎪⎝⎭
且3A O =.
(1) 求a 的值;
(2) 若矩阵X 满足22X XA AX AXA E --+=,E 为3阶单位阵,求X . 23、(本题满分11分)
设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭,相似于矩阵12000031B b -⎛⎫
⎪
= ⎪ ⎪⎝⎭
,
(1)求a,b 的值(2)求可逆矩阵P ,使1P AP -为对角矩阵。