章二次函数单元测试题
第一章-二次函数单元测试卷(二)及答案

第一章 二次函数单元测试卷(二)(本试卷共三大题,26个小题 试卷分值:150分 考试时间:120分钟) 姓名: 班级: 得分:一、填空题(本题有10个小题,每小题4分,共40分) 1.抛物线2(1)3y x =-+的对称轴是( ) A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-2.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 ( ) A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+3.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为( ) A .8、-1 B .8、1 C .6、-1 D .6、1 4.二次函数y =2(x -1)2+3的图像的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)5.已知二次函数2y 3=-+x x m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230-+=x x m 的两实数根是( )A .x 1=1,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=3 6.二次函数2(1)2y x =-+的最小值是( ) A .2-B .2C .1-D .17.抛物线24y x x =-的对称轴是 ( ) A .x =-2B .x =4C .x =2D .x =-48.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x <3,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个9.已知二次函数y =ax 2+bx +c 的图象如图,①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m ≠1),其中结论正确的有( )A . ③④B . ③⑤C . ③④⑤D . ②③④⑤ 10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 的图象与反比例函数的图象在同一坐标系中大致是( )O O O O O y y yy y xxxxx-11A .B .C .D .二、认真填一填 (本题有8个小题, 每小题4分, 共32分) 11.抛物线22(1)2y x =-++的顶点的坐标是12.进价为30元/件的商品,当售价为40元/件时,每天可销售40件,售价每涨1元,每天少销售1件,当售价为 元时每天销售该商品获得利润最大,最大利润是 ___________元.13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m .14.请你写出一个抛物线的表达式,此抛物线满足对称轴是y 轴,且在y 轴的左侧部分是上升的,那么这个抛物线表达式可以是 .15.将抛物线y =(x +2)2-3的图像向上平移5个单位,得到函数解析式为 . 16.若函数y =a (x -h )2+k 的图象经过原点,最小值为8,且形状与抛物线y =-2x 2-2x +3相 同,则此函数关系式______.17.周长为16cm 的矩形的最大面积为____,此时矩形边长为____,实际上此时矩形是 18.如图,抛物线y =ax 2+1与双曲线y =xm的交点A 的横坐标是2,则关于x 的不等式xm +ax 2+1<0的解集是 .三、解答题(本题有8个小题,共78分.解答应写出文字说明,证明过程或推演步骤.) 19.(6分)已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.20.(8分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点, 且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.21.(8分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。
人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】

人教新版九年级上册数学第22章《二次函数》单元测试卷一.选择题1.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.函数y=(m﹣n)x2+mx+n是二次函数的条件是()A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任何常数3.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或34.若y=2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定5.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点6.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>a>c7.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)8.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣79.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.二.填空题11.若y=(2﹣m)是二次函数,且开口向上,则m的值为.12.如果函数是关于x的二次函数,那么k的值是.13.当m=时,函数y=(m﹣1)是关于x的二次函数.14.如果y=(m﹣2)是关于x的二次函数,则m=.15.抛物线y=ax2﹣3x+a2﹣1如图所示,则a=.16.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.17.已知抛物线y=x2+4x+5的对称轴是直线x=.18.在正方形的网格中,抛物线y1=x2+bx+c与直线y2=kx+m的图象如图所示,请你观察图象并回答:当﹣1<x<2时,y1y2(填“>”或“<”或“=”号).19.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是.20.抛物线y=(x﹣2)2+3的顶点坐标是.三.解答题21.画出函数y=x2﹣2x﹣8的图象.(1)先求顶点坐标:(,);(2)列表x……y……(3)画图.22.函数是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?24.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?25.已知是x的二次函数,求出它的解析式.26.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.27.下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.答案与试题解析一.选择题1.解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.2.解:根据二次函数的定义可得:m﹣n≠0,即m≠n.故选:B.3.解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.4.解:由y=2是二次函数,得m2﹣2=2,解得m=±2,故选:C.5.解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.6.解:由函数图象已知a>0,c<0,∵﹣=﹣1,∴b=2a,∴b>a,∴b>a>c,故选:D.7.解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是直线x=﹣1,故选:D.8.解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选:D.9.解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A 选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故D选项不合题意;故选:C.10.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.二.填空题11.解:根据题意得,m2﹣3=2,解得m=±,∵开口向上,∴2﹣m>0,解得m<2,∴m=﹣.故﹣.12.解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故0.13.解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.14.解:根据二次函数的定义:m2﹣m=2,m﹣2≠0,解得:m=﹣1,故﹣1.15.解:∵二次函数的图象过原点(0,0),代入抛物线解析式,得a2﹣1=0,解得a=1或a=﹣1,又∵抛物线的开口向下,故a<0,∴a=﹣1.16.解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.17.解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故﹣2.18.解:根据图示知,①当x≤﹣1时,y2≤y1;②当﹣1<x<2时,y2<y1;③当x≥2时,y2≥y1;故<.19.解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).20.解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故(2,3)三.解答题21.解:(1)y=x2﹣2x﹣8=(x﹣1)2﹣9∴其顶点坐标为(1,﹣9)故1,﹣9(2)列表x…﹣2﹣101234…y…0﹣5﹣8﹣9﹣8﹣50…(3)画图:22.解:由题意可知解得:m=2.23.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.24.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.25.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.26.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,利用函数对称性列表如下:x…﹣10123…y…41014…在给定的坐标中描点,画出图象如下.(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.27.解:(1)当0≤x≤4时,y=x+3;当x>4时,由图表可知y=(x﹣6)2+k,由函数图象可知,当x=4时,y=x+3=6,此时(4﹣6)2+k=6,解得k=2,所以,当x>4时,y=(x﹣6)2+2;(2)他说的错误.把y=3代入y=x+3中,得x+3=3,解得x=0,把y=3代入y=(x﹣6)2+2中,得(x﹣6)2+2=3,解得x=5或7,正确说法是:所输出y的值为3时,输入x的值为0或5或7.。
北师大版九年级下册数学《第2章 二次函数》单元测试题(有答案)

2020-2021学年北师大新版九年级下册数学《第2章二次函数》单元测试题一.选择题1.抛物线y=x2﹣6x+24的顶点是()A.(﹣6,﹣6)B.(﹣6,6)C.(6,6)D.(6,﹣6)2.二次函数y=ax2+bx+c的图象如图所示,则点P(a,)所在的象限是()A.一B.二C.三D.四3.若直线y=ax+b(a≠0)在第一、二、三象限,则抛物线y=ax2+bx+c的图象()A.开口向下,对称轴在y轴左侧B.开口向上,对称轴在y轴左侧C.开口向上,对称轴在y轴右侧D.开口向下,对称轴在y轴右侧4.将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的表达式为()A.y=4(x+2)2+3B.y=4(x+2)2﹣3C.y=4(x﹣2)2+3D.y=4(x﹣2)2﹣35.如图,一次函数y=﹣2x+3的图象与x、y轴分别相交于A、C两点,二次函数y=x2+bx+c 的图象过点C且与一次函数在第二象限交于另一点B,若AC:CB=1:2,那么,这个二次函数的顶点坐标为()A.(﹣,)B.(﹣,﹣)C.(,)D.(,﹣)6.二次函数y=x2﹣x﹣2的图象如图所示,则不等式x2﹣x﹣2<0的解集是()A.x<﹣1B.x>2C.﹣1<x<2D.x<﹣1或x>2 7.下面给出了6个函数:①y=3x2﹣1;②y=﹣x2﹣3x;③y=;④y=x(x2+x+1);⑤y=;⑥y=.其中是二次函数的有()A.1个B.2个C.3个D.4个8.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成()A.1.5m,1m B.1m,0.5m C.2m,1m D.2m,0.5m9.已知抛物线y=x2+bx+c与y轴交于A,与x轴的正半轴交于B、C,且BC=2,S=△ABC 3,则c的值为()A.1B.2C.3D.410.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3和x2=()A.﹣1.3B.﹣2.3C.﹣0.3D.﹣3.3二.填空题11.利用函数图象求得方程x2+x﹣12=0的解是x1=,x2=.12.汽车刹车后行驶的距离s(单位:m)与行驶的时间t(单位:s)的函数关系式是s=12t ﹣4t2,汽车刹车后到停下来前进了m.13.圆的面积y(cm2)与圆的半径x(cm)之间的函数关系式是.14.用配方法将二次函数y=4x2﹣24x+26写成y=a(x﹣h)2+k的形式是,对称轴为,顶点坐标为.15.已知点(m+1,m2)在函数y=x2+2x的图象上,则m=.16.函数y=x2中,自变量x的取值范围是,函数值y的取值范围是.17.已知二次函数y=x2﹣2x﹣3的函数值y<0,则x的取值范围为.18.已知抛物线与x轴有两个交点(﹣1,0),(3,0),并且与y轴交点的纵坐标为﹣6,则这个二次函数的解析式为.19.抛物线y=x2﹣k的顶点为P,与x轴交于A、B两点,如果△ABP是正三角形,那么k =.20.将抛物线y=﹣2x2+4x向上平移3个单位,再向左平移2个单位得到抛物线的解析式为.三.解答题21.用配方法求出下列二次函数y=x2﹣2x﹣3图象的顶点坐标和对称轴.22.已知(m,n)是抛物线y=ax2上的点,求证:点(﹣m,n)也在抛物线y=ax2上.23.在平面直角坐标系中画出y=5x2的草图,并且作出将其向右移动2个单位,向上移动1个单位后的抛物线的图象.24.到姜堰观光旅游的客人越来越多,某景点每天都吸引大量的游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采用浮动门票价格的方法来控制游览人数.已知每张门票原价为40元,现设浮动门票为每张x元,且40<x<70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.(1)根据图象,求y与x之间的函数关系式;(2)设该景点一天的门票收入为w元.①试用x的代数式表示w;②试问:当门票定为多少时,该景点一天的门票收入最高?最高门票收入是多少?25.在平面直角坐标系xOy中,已知关于x的二次函数y=x2+(k﹣1)x+2k﹣1的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣3).求这个二次函数的解析式及A,B两点的坐标.26.(1)在同一直角坐标系中画抛物线y=x2﹣2x﹣3与双曲线y=;(2)观察图形,方程组的解的近似值为.27.已知抛物线y=x2﹣2x,求抛物线的顶点坐标和对称轴.参考答案与试题解析一.选择题1.解:抛物线y=x2﹣6x+24=(x﹣6)2+6,所以抛物线y=x2﹣6x+24的顶点是(6,6).故选:C.2.解:由函数图象可得各系数的关系:a>0,b<0,c>0,则a>0,<0,因此P(a,)位于第四象限.故选:D.3.解:∵直线y=ax+b(a≠0)在第一、二、三象限,∴a>0,b>0,则抛物线y=ax2+bx+c开口方向向上,对称轴x=﹣<0,在y轴左侧.故选:B.4.解:原抛物线的顶点为(0,0),向上平移3个单位,再向左平移2个单位,那么新抛物线的顶点为(﹣2,3).)可设新抛物线的解析式为:y=4(x﹣h)2+k,代入得:y =4(x+2)2+3.故选:A.5.解:由图象y=﹣2x+3知:C(0,3),A(1.5,0)即c=3,因为y=x2+bx+3,可设B(a,a2+ba+3),又∵B在函数y=﹣2x+3的图象上则有a2+ba+3=﹣2a+3…(1),又∵AC:CB=1:2,…(2),则由(1)和(2)解得:a=﹣3,b=1(负值已舍).由顶点坐标(﹣,)得(﹣).故选:A.6.解:由图可知,抛物线与x轴的交点为(﹣1,0)、(2,0),所以,不等式x2﹣x﹣2<0的解集是﹣1<x<2.故选:C.7.解:①符合二次函数的定义;②符合二次函数的定义;③不是整式,不符合二次函数的定义;④整理后x的最高次数为3,不符合二次函数的定义;⑤不是整式,不符合二次函数的定义;⑥不是整式,不符合二次函数的定义;所以是二次函数的共有2个,故选B.8.解:设长为x,则宽为,S=x,即S=﹣x2+2x,要使做成的窗框的透光面积最大,则x=﹣=﹣==1.5m.于是宽为==1m,所以要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成1.5m,1m.故选:A.9.解:∵BC=2,S=3,△ABC∴×c×2=3,解得c=3,故选:C.10.解:方法一:∵二次函数y=ax2+bx+c的顶点坐标(﹣1,﹣3.2)∴﹣=﹣1则﹣=﹣2∵x1x2是一元二次方程ax2+bx+c=0的两根∴x1+x2=﹣又∵x1=1.3∴x1+x2=1.3+x2=﹣2解得x2=﹣3.3.方法二:根据对称轴为;x=﹣1,关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3,则=﹣1,即=﹣1,解得:x2=﹣3.3,故选:D.二.填空题11.解:∵方程x2+x﹣12=0的解就是函数y=x2+x﹣12的图象与x轴的交点的横坐标,而y=x2+x﹣12的图象如图所示:∴y=x2+x﹣12的图象与x轴的交点坐标为(﹣4,0)、(3,0),∴方程x2+x﹣12=0的解是x1=﹣4,x2=3.12.解:∵s=12t﹣4t2=﹣4(t﹣)2+9,∴汽车刹车后到停下来前进了9m.故答案为9.13.解:由圆的面积计算公式,得y=πx2.14.解:y=4x2﹣24x+26=4(x2﹣6x)+26=4(x2﹣6x+9﹣9)+26=4(x﹣3)2﹣10∴对称轴是x=3,顶点坐标是(3,﹣10)故本题答案为:y=4(x﹣3)2﹣10;x=3;(3,﹣10).15.解:依题意,得(m+1)2+2(m+1)=m2,解得m=﹣.16.解:函数y=x2中,自变量x的取值范围是全体实数,函数值y的取值范围是非负数.17.解:当y=0时,即x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3.故填空答案:﹣1<x<3.18.解:设抛物线解析式为y=a(x+1)(x﹣3),把(0,﹣6)代入得a•(﹣3)=﹣6,解得a=2.所以抛物线解析式为y=2(x+1)(x﹣3),即y=2x2﹣4x﹣6.故答案为y=2x2﹣4x﹣619.解:∵抛物线y=x2﹣k的顶点为P,∴P点的坐标为:(0,﹣k),∴PO=K,∵抛物线y=x2﹣k与x轴交于A、B两点,且△ABP是正三角形,∴OA=OB,∠OPB=30°,∴tan30°==,∴OB=k,∴点B的坐标为:(k,0),点B在抛物线y=x2﹣k上,∴将B点代入y=x2﹣k,得:0=(k)2﹣k,整理得:﹣k=0,解方程得:k1=0(不合题意舍去),k2=3.故答案为:3.20.解:抛物线y=﹣2x2+4x=﹣2(x﹣1)2+2的顶点坐标为(1,2),向上平移3个单位,再向左平移2个单位得到抛物线的顶点坐标为(﹣1,5),得到新抛物线的解析式是y=﹣2(x+1)2+5.故答案为:y=﹣2(x+1)2+5.三.解答题21.解:y=x2﹣2x﹣3=(x2﹣2x+1)﹣1﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4),对称轴为x=1.22.证明:∵抛物线y=ax2的对称轴是y轴,而点(m,n)与点(﹣m,n)也关于y轴对称,∴当点(m,n)在抛物线y=ax2上时,点(﹣m,n)也在抛物线y=ax2上.23.解:原抛物线的顶点为(0,0),分别右移动2个单位,向上移动1个单位后,那么新抛物线的顶点为(2,1);可设新抛物线的解析式为y=5(x﹣h)2+k,代入得:y=5(x﹣2)2+1.24.解:(1)设y与x的函数关系式为y=kx+b(k≠0),∵函数图象经过点(50,3500),(60,3000),∴,解得.∴y与x之间的函数关系式为y=﹣50x+6000;(2)①w=xy=x(﹣50x+6000)=﹣50x2+6000x,即w=﹣50x2+6000x;②w=﹣50x2+6000x=﹣50(x﹣120x+3600)+180000=﹣50(x﹣60)2+180000,∵a=﹣50<0,=180000.∴当x=60时,w有最大值,w最大答:当门票定为60元时,该景点一天的门票收入最高,最高门票收入是180000元.25.解:(1)把点C(0,﹣3)代入y=x2+(k﹣1)x+2k﹣1得,2k﹣1=﹣3,解得k=﹣1,所以,二次函数的解析式为y=x2﹣2x﹣3;令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∵点A在点B的左侧,∴A(﹣1,0),B(3,0).26.解:(1)(2)由题意知,方程组的解即为图象交点的坐标,∴由图象可知交点坐标为(3.2,0.6),∴方程组的解为:.27.解:y=x2﹣2x=(x﹣1)2﹣1,故顶点坐标是(1,﹣1),对称轴是直线x=1.。
第二章 二次函数 单元测试卷 2022-2023学年 北师大版数学九年级下册(含答案)

第二章二次函数单元测试卷一、选择题(每小题3分,共24分)1.下列函数是y关于x的二次函数的是()A.y=-x B.y=2x+3C.y=x2-3 D.y=1 x2+12.把函数y=(x-1)2+2的图象向右平移1个单位长度,平移后图象的函数表达式为()A.y=x2+2 B.y=(x-1)2+1C.y=(x-2)2+2 D.y=(x-1)2-33.二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是() A.y=(x-1)2+2 B.y=(x-1)2+3C.y=(x-2)2+2 D.y=(x-2)2+44.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是() A.m<2 B.m>2C.0<m≤2 D.m<-25.根据下列表格对应值:x … 6.17 6.18 6.19 6.20 6.21…ax2+bx+c …-0.02-0.010.010.040.08…判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的取值范围是()A.6.20<x<6.21 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.206.在同一直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()(第6题)7.使用家用燃气灶烧开同一壶水所需的燃气量y(m3)与旋钮的旋转角度x(度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()(第7题)A.18度B.36度C.41度D.58度8.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=52,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B的坐标为(5,4)B.AB=ADC.a=-1 6D.OC·OD=16(第8题)(第12题)二、填空题(每小题3分,共15分)9.二次函数y=(x+3)2+2的图象的对称轴是直线________.10.已知函数y=(m-1)x m2+1+3x,当m=________时,它是二次函数.11.已知二次函数的图象经过(-1,0)、(3,0)、(0,3)三点,那么这个二次函数的表达式为____________.12.如图所示,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y关于x的函数表达式为________.13.如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2-4ac>0;③8a+c<0;④5a+b+2c>0,其中正确的结论有________(只填序号).(第13题)三、解答题(共13小题,共81分)14.(5分)把下列二次函数化为一般形式,并指出二次项系数、一次项系数及常数项.(1)y=(1-x)(1+x);(2)y=4x2-12x(1+x).。
第一章 二次函数单元测试卷(二)及答案

第一章 二次函数单元测试卷(二)(本试卷共三大题,26个小题 试卷分值:150分 考试时间:120分钟) 姓名: 班级: 得分:一、填空题(本题有10个小题,每小题4分,共40分) 1.抛物线2(1)3y x =-+的对称轴是( ) A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-2.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 ( ) A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+3.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为( ) A .8、-1 B .8、1 C .6、-1 D .6、1 4.二次函数y=2(x -1)2+3的图像的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)5.已知二次函数2y 3=-+x x m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230-+=x x m 的两实数根是( )A .x1=1,x2=-2B .x1=1,x2=2C .x1=1,x2=0D .x1=1,x2=3 6.二次函数2(1)2y x =-+的最小值是( ) A .2-B .2C .1-D .17.抛物线24y x x =-的对称轴是 ( ) A .x =-2B .x =4C .x =2D .x =-48.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x<3,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个⑤a+b >m (am+b )(m ≠1),其中结论正确的有( )A . ③④B . ③⑤C . ③④⑤D . ②③④⑤ 10.已知二次函数y =ax2+bx +c(a ≠0)的图象如图所示,则正比例函数y =(b +c)x 的图象与反比例函数的图象在同一坐标系中大致是( )二、认真填一填 (本题有8个小题, 每小题4分, 共32分) 11.抛物线22(1)2y x =-++的顶点的坐标是12.进价为30元/件的商品,当售价为40元/件时,每天可销售40件,售价每涨1元,每天少销售1件,当售价为 元时每天销售该商品获得利润最大,最大利润是 ___________元.13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m.14.请你写出一个抛物线的表达式,此抛物线满足对称轴是y 轴,且在y 轴的左侧部分是上升的,那么这个抛物线表达式可以是 .15.将抛物线y=(x+2)2-3的图像向上平移5个单位,得到函数解析式为 . 16.若函数y=a(x -h)2+k 的图象经过原点,最小值为8,且形状与抛物线y=-2x2-2x+317.周长为16cm 的矩形的最大面积为____,此时矩形边长为____,实际上此时矩形是 18.如图,抛物线y=ax2+1与双曲线y=xm的交点A 的横坐标是2,则关于x 的不等式xm+ax2+1<0的解集是 .三、解答题(本题有8个小题,共78分.解答应写出文字说明,证明过程或推演步骤.) 19.(6分)已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.20.(8分)如图,抛物线y=21x2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.21.(8分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。
第26章《二次函数》单元测试(2)

第26章《二次函数》单元测试一、选择题(每题3分,共30分)1.若直线y =3x +m 经过第一、三、四象限,则抛物线y =(x -m )2+1的顶点必在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2.抛物线的顶点为(1,9),它与x 轴交于A (-2,0),B 两点,则B 点坐标为( )(A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0)3.抛物线y =2(x +3) (x -1)的对称轴是( )(A )x =1 (B )x =-1 (C )x =12(D )x =-2 4.函数y =(m -n ) x 2+mx +n 是二次函数的条件是( )(A) m 、n 是常数,且m ≠0 (B) m 、n 是常数,且m ≠n(C) m 、n 是常数,且n ≠0 (D) m 、n 可以为任意实数5.直线y =mx +1与抛物线y =2x 2-8x +k +8相交于点(3,4),则m 、k 值为( )(A) ⎩⎨⎧m =1k =3 (B)⎩⎨⎧m =-1k =2 (C) ⎩⎨⎧m =1k =2 (D) ⎩⎨⎧m =2k =16.抛物线y =2x 2如何平移可得到抛物线y =2(x -4)2-1( )(A )向左平移4个单位,再向上平移1个单位(B )向左平移4个单位,再向下平移1个单位(C )向右平移4个单位,再向上平移1个单位(D )向右平移4个单位,再向下平移1个单位7.烟花厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h (m )与飞行时间t (s )的关系式是h =-52t 2+20x +1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( ) (A )3s (B )4s (C )5s (D )6s8.如图所示是二次函数y =-12x 2+2的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( ) (A )4 (B )163(C )2π (D )8 9.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) (A )x =10,y =14 (B )x =14,y =10 (C )x =12,y =15 (D )x =15,y =1210.若A (-134,y 1),B (-54,y 2),C (14,y 3)为二次函数y =x 2+4x -5的图象上的三点,则y 1,y 2,y 3的大小关系是( )(A )y 1<y 2<y 3 (B )y 2<y 1<y 3 (C )y 3<y 1<y 2 (D )y 1<y 3<y 2(第18题)(第19题)二、填空题(每题3分,共30分)1.若抛物线y =x 2+(m -1)x +(m +3)的顶点在y 轴上,则m = .2.不论x 取何值y =-x 2+6x +c 的函数值总为负数,•则c 的取值范围为 .3.抛物线y =x 2-4x +3•的顶点及它与x 轴的交点三点连线所围成的三角形面积是 .4.已知二次函数y =x 2-4x -3,若-1≤x ≤6,则y 的取值范围为_______.5.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离S (m )与车速x (km/h )•之间有下述的函数关系式:S =0.01x +0.002x 2,现该车在限速140km/h 的高速公路上出了交通事故,事后测得刹车距离为46.5m ,请推测:刹车时,汽车 超速(填“是”或“否”)6.已知二次函数y =x 2-2x -3与x 轴交于A 、B 两点,在x 轴上方的抛物线上有一点C ,且△ABC 的面积等于10,则C 点坐标为 .7.直线y =2x +2与抛物线y =x 2+3x 的交点坐标为________. 8.已知二次函数y =ax 2+bx +c (a ≠0)的顶点坐标(-1,-3.2)及部分图象,由图象可知关于x 的一元二次方程ax 2+bx +c =0的两个根分别是x 1=1.3和x 2= . 9.如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是 .10.老师给出一个二次函数,甲、乙、丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限; 乙:当x <2时,y 随x 的增大而减小;丙:函数的图象与坐标轴...只有两个交点. 已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数__________________.三、解答题(共60分)1.已知一抛物线与x 轴的交点是A(-2,0)、B (1,0),且经过点C (2,8)。
华东师大数学九年级下《第26章二次函数》单元测试题含答案
华东师大版数学九年级下册第26章二次函数单元测试题一、选择题1.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2C.y=(x-1)2+4 D.y=(x-1)2+22.把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后的抛物线所对应的函数表达式为( )A.y=-(x+1)2+3 B.y=-(x+1)2-3C.y=-(x-1)2+3 D.y=-(x-1)2-33. 二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …-5 -4 -3 -2 -1 0 …y … 4 0 -2 -2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-5 24.若抛物线y=2x2+3上有三点A(1,y1),B(5,y2),C(-2,y3),则y1,y2,y3的大小关系为( )A.y2<y1<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y2<y15.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是( )A.-1<x<5 B.x<-1且x>5 C.x<-1或x>5 D.x>56.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )A.5元 B.10元 C.15元 D.20元7.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )A.-3 B.3 C.-9 D.08.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=-1,下列结论:①abc<0;②2a+b=0;③a-b+c>0;④4a-2b+c<0.其中正确的是( )A.①② B.只有① C.③④ D.①④9. 如图,坐标平面上,二次函数y=-x2+4x-k的图形与x轴交于A,B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1∶4,则k值为何?()A.1 B. 12 C.43 D.4510.如图,正方形ABCD的边长为3 cm,动点P从B点出发以3 cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发以1 cm/s的速度沿着边BA向A点运动,到达A点停止运动,设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )二、填空题11.已知函数y=(m-1)xm2+1+4x-3是二次函数,则该二次函数图象的顶点是______________.12.用一根长为12 cm的细铁丝围成一个矩形,则围成的矩形中,面积最大为_________.13.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是___________.14.某学习小组为了探究函数y=x2-|x|的图象和性质,根据以往学习函数的经验,列x…-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …y… 2 0.75 0 -0.25 0 -0.25 0 m 2 …15.如图,二次函数y=23x2-13x的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n),直线AB与y轴交于点C,则△AOB的面积是____.16.如图,隧道的截面是抛物线,且抛物线的表达式为y=-18x2+3.5,一辆车高 2.5m,宽4 m,该车____通过该隧道.(填“能”或“不能”)17.某校的围墙上端由一段相同的凹曲拱形栅栏组成,如图.其拱形图形为抛物线的一部分,栅栏AB之间,按相同的间距0.2 m用5根立柱加固,拱高OC为0.6 m,则一段栅栏所需立柱的总长度是______.(精确到0.1 m)18. 抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(-1,0)和(m,0),且1<m<2,当x<-1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(-3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m-1)+b=0;⑤若c≤-1,则b2-4ac≤4a.其中结论错误的是________.(只填写序号)三、解答题19.已知抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积.20.抛物线y=x2-2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2-2x+c沿y轴向下平移后,所得新抛物线与x轴交于A,B两点,如果AB=2,求新抛物线的表达式.21.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象上.(1)求m的值和二次函数的表达式;(2)求二次函数图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(3)请直接写出当y1>y2时,自变量x的取值范围.22. 某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?23.已知锐角△ABC中,边BC长为12,高AD长为8.如图,矩形EFGH的边GH在BC 边上,其余两个顶点E,F分别在AB,AC边上,EF交AD于点K.(1)求EFAK的值;(2)设EH=x,矩形EFGH的面积为S.求S与x的函数表达式,并求S的最大值.24.有一座抛物线形拱桥,正常水位时桥下面的宽度为20 m,拱顶距离水面4 m.(1)在如图的直角坐标系中,求出该抛物线所对应的二次函数表达式;(2)在正常水位的基础上,当水位上升h(m)时桥下水面的宽度为d(m),试求d与h之间的函数关系式;(3)设正常水位时桥下的水深为 2 m,为保证过往船只顺利航行,桥下水面宽度不得小于18 m.问:水深超过多少时,就会影响过往船只在桥下顺利航行?25. 已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的表达式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.答案:一、1---10 DADCC ABDDC二、11. (1,-1)12. 9cm213. k≤414. 0.7515. 216. 能17. 2.3m18. ③⑤点拨:易得①的结论正确;∵抛物线过点(-1,0)和(m,0),且1<m<2,∴0<-b2a<1 2,∴12+b2a=a+b2a>0,∴a+b>0,所以②的结论正确;∵点A(-3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(-1,0),(m,0),∴a-b+c=0,am2+bm+c=0,∴am2-a+bm+b=0,a(m+1)(m-1)+b(m+1)=0,∴a(m-1)+b=0,所以④的结论正确;∵4ac-b24a<c,而c≤-1,∴4ac-b24a<-1,∴b2-4ac>4a,所以⑤的结论错误三、19. 解:(1)y=x2-5x+6 (2)∵抛物线的表达式y=x2-5x+6,∴A(2,0),B(3,0),C(0,6),∴S△ABC =12×1×6=320. 解:(1)把(2,1)代入y=x2-2x+c得4-4+c=1,解得c=1,所以抛物线表达式为y=x2-2x+1,顶点坐标为(1,0) (2)y=x2-2x+1=(x-1)2,抛物线的对称轴为直线x=1,而新抛物线与x轴交于A,B两点,AB=2,所以A(0,0),B(2,0),所以新抛物线的表达式为y=x(x-2),即y=x2-2x21. 解:(1)m=-1,y2=x2-2x-3 (2)C(1,-4),当x≤1时,y随x 的增大而减小;当x>1时,y随x的增大而增大(3)-1<x<222. 解:(1)根据题意得y=(200+20x)(6-x)=-20x2-80x+1200 (2)令y=-20x2-80x+1200中y=960,则有960=-20x2-80x+1200,即x2+4x-12=0,解得x=-6(舍去)或x=2.答:若要平均每天盈利960元,则每千克应降价2元23. 解:(1)EFAK=BCAD=32(2)由(1)知EF8-x=32,∴EF=12-32x,∴S=EH·EF=12x-32x2=-32(x-4)2+24,当x=4时,Smax=2424. 解:(1)设抛物线所对应的表达式为y=ax2,把(-10,-4)代入得y=-125x2(2)由(1)得y=-125x2,将(d2,-4+h)代入得-4+h=-125(d2)2,求得d=104-h (3)当x=9时,y=-125×92=-8125,∴4+2-8125=6925,即当水深超过6925m时,就会影响船只在桥下顺利航行25. 解:(1)∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,∴m=-1,n =-3,∵抛物线y =x 2+bx +c 的图象经过点A(m ,0),B(0,n).∴⎩⎨⎧1-b +c =0,c =-3,∴⎩⎨⎧b =-2,c =-3,∴抛物线表达式为y =x 2-2x -3 (2)令y =0,则x 2-2x -3=0,∴x 1=-1,x 2=3,∴C(3,0),∵y =x 2-2x -3=(x -1)2-4,∴顶点坐标D(1,-4),过点D 作DE ⊥y 轴,∵OB =OC =3,∴BE =DE =1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC =∠DBE =45°,∴∠CBD =90°,∴△BCD 是直角三角形(3)如图,∵B(0,-3),C(3,0),∴直线BC 表达式为y =x -3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P(t ,t -3),M(t ,t 2-2t -3),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ =2,QF =1,当点P 在点M 上方时,即0<t <3时,PM =t -3-(t 2-2t -3)=-t 2+3t ,∴S =12PM ·QF =12(-t 2+3t)=-12t 2+32t ;当点P 在点M 下方时,即t <0或t >3时,PM =t 2-2t -3-(t -3),∴S =12PM ·QF =12(t 2-3t)=12t 2-32t。
二次函数单元测试卷
二次函数单元测试卷一、选择题(每题3分,共30分)1. 二次函数y = x² - 2x + 1的顶点坐标是()A. (1, 0)B. (-1, 0)C. (0, 1)D. (0, -1)2. 二次函数y = -2x² + 4x - 5的对称轴是()A. x = 1B. x = -1C. x = 2D. x = -23. 二次函数y = 3(x - 1)² + 2的图象的开口方向是()A. 向上B. 向下C. 向左D. 向右4. 把二次函数y = x²的图象向右平移2个单位,再向上平移3个单位后,所得图象的函数表达式是()A. y=(x - 2)²+3B. y=(x + 2)²+3C. y=(x - 2)² - 3D. y=(x + 2)² - 35. 二次函数y = ax²+bx + c(a≠0),当y = 0时,得到一元二次方程ax²+bx + c = 0,若方程有两个相等的实数根,则二次函数的图象与x轴()A. 有两个交点B. 有一个交点C. 没有交点D. 无法确定6. 二次函数y = 2x² - 3x + 1与y轴的交点坐标是()A. (0, 1)B. (0, -1)C. (1, 0)D. (-1, 0)7. 已知二次函数y = ax²+bx + c(a≠0)的图象经过点(0, -1),(5, -1),则它的对称轴是()A. x = 0B. x = 2.5C. x = 5D. 无法确定8. 二次函数y = x²+bx + c的图象向左平移2个单位,再向上平移3个单位,得到二次函数y = x² - 2x + 1的图象,则b、c的值分别为()A. b = -6,c = 6B. b = -8,c = 14C. b = -8,c = 18D. b = -6,c = 89. 若二次函数y = kx² - 6x + 3的图象与x轴有交点,则k的取值范围是()A. k<3B. k≤3C. k<3且k≠0D. k≤3且k≠010. 对于二次函数y = ax²+bx + c(a≠0),若a>0,b = 0,c<0,则它的图象()A. 开口向上,对称轴是y轴,与y轴的交点在y轴负半轴B. 开口向上,对称轴是y轴,与y轴的交点在y轴正半轴C. 开口向下,对称轴是y轴,与y轴的交点在y轴负半轴D. 开口向下,对称轴是y轴,与y轴的交点在y轴正半轴二、填空题(每题3分,共15分)11. 二次函数y = -x²+2x - 3的二次项系数是______,一次项系数是______,常数项是______。
二次函数单元测试卷及答案
二次函数单元测试卷及答案第一部分:选择题(共10题,每题2分)1. 若 $f(x)=2x^2+6x+1$,则该函数的抛物线开口向上()。
A. 对B. 错2. 对于函数 $f(x)=ax^2+bx+c$,若 $a>0$,则抛物线开口()。
A. 向上B. 向下3. 已知 $f(x)=x^2+bx+c$,若 $b^2-4c>0$,则该函数()。
A. 有两个实根B. 无实根C. 有一个实根4. 若 $f(x)=\frac{1}{2}x^2+ax+b$ 的导函数为 $f'(x)=x+1$,则 $f(x)$ 的解析式为()。
A. $\frac{1}{2}x^2+x+1$B. $\frac{1}{2}x^2+2x+1$C.$\frac{1}{2}x^2+x+2$5. 设 $f(x)=2x^2-10x+8$,$g(x)=x^2-3x+7$,则 $f(x)-g(x)$ 的值域为()。
A. $(0,+\infty)$B. $(-\infty,0)$C. $[0,+\infty)$6. 函数 $f(x)=x^2-2mx+1$ 与 $y=0$ 交点的横坐标为 $4$,则 $m$ 的值为()。
A. $1$B. $2$C. $-1$7. 若 $f(x)=x^2+1$,则 $f(2x+1)$ 的最小值为()。
A. $2$B. $5$C. $6$8. 已知函数 $f(x)=ax^2+bx+c$ 在 $x=1$ 处有极值 $0$,则 $a+b+c$ 等于()。
A. $-1$B. $0$C. $1$9. 函数 $f(x)=x^2-2x+5$ 与 $g(x)=2x-1$ 的交点横坐标之和为()。
A. $0$B. $1$C. $2$10. 若 $f(x)=x^2-2x-15$,则 $f(x)$ 的零点为()。
A. $-3,5$B. $-5,3$C. $-3,-5$答案:1.A 2.A 3.A 4.B 5.A 6.C 7.C 8.B 9.C 10.A第二部分:填空题(共5题,每题4分)1. 函数 $f(x)=x^2+2x+1$ 的零点是 _____________。
人教版九年级数学上册第22章《二次函数》单元检测题(含答案)
人教版九年级数学上册第22章《二次函数》单元检测题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.32.抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)3.抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.B.C.﹣4D.44.下列对二次函数y=﹣(x+1)2﹣3的图象描述不正确的是()A.开口向下B.顶点坐标为(﹣1,﹣3)C.与y轴相交于点(0,﹣3)D.当x>−1时,函数值y随x的增大而减小5.抛物线y=2x2﹣4x+c经过三点(﹣3,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2 6.函数y=ax+1与y=ax2+ax+1(a≠0)的图象可能是()A.B.C.D.7.若将双曲线y=向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是()A.0<a<B.<a<1C.1<a<2D.2<a<38.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为,则实心球飞行的水平距离OB的长度为()A.7m B.7.5m C.8m D.8.5m9.在平面直角坐标系中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴只有一个交点,且经过点A(2﹣m,c),B(m+2,c),则△AOB的面积为()A.8B.12C.16D.410.已知经过点(﹣1,0)的二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0;②a﹣b+c<0;③4a+2b+c>0;④2a=b;⑤3a+c<0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)11.函数y=x2m﹣1+x﹣3是二次函数,则m=.12.已知抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线.13.在函数y=(x﹣1)2+1中,当x>1时,y随x的增大而.(填“增大”或“减小”)14.将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是.15.抛物线y=x2+bx+c的图象上有两点A(1,m),B(5,m),则b的值为.16.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…123456…y…0﹣3﹣4﹣305…则当x=0时,y的值为.17.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(﹣2,p),B(5,q),则不等式ax2+mx+c≤n的解集是.18.若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m的值为.三.解答题(共7小题,满分58分)19.(6分)已知y与x2成正比例,并且x=1时y=2.(1)求y与x之间的函数关系式.(2)当x=﹣1时y的值.20.(6分)已知抛物线L:y=(m﹣2)x2+x﹣2m(m是常数且m≠2).(1)若抛物线L有最高点,求m的取值范围;(2)若抛物线L与抛物线y=x2的形状相同、开口方向相反,求m的值.21.(8分)已知抛物线y=ax2﹣4ax+3(a≠0)的图象经过点A(﹣2,0),过点A作直线l 交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.22.(8分)已知二次函数y=x2+2x﹣3.(1)用配方法把这个二次函数化成y=a(x﹣h)2+k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)当﹣4≤x≤0时,结合图象直接写出y的取值范围.23.(8分)如图,学校要用一段长为32米的篱笆围成一个一边靠墙的矩形花圃,墙长为14米.(1)若矩形ABCD的面积为96平方米,求矩形的边AB的长.(2)要想使花圃的面积最大,AB边的长应为多少米?最大面积为多少平方米?24.(10分)已知关于x的二次函数y=x2﹣2ax+a2+2a.(1)当a=1时,求已知二次函数对应的抛物线的顶点和对称轴;(2)当a=2时,直线y=2x与该抛物线相交,求抛物线在这条直线上所截线段的长度;(3)若抛物线y=x2﹣2ax+a2+2a与直线x=4交于点A,求点A到x轴的最小值.25.(12分)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,直线l 与抛物线交于A、C两点,其中点C的横坐标是2.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上找一点P,使得△PBC的周长最小,并求出点P的坐标;(3)在平面直角坐标系中,是否存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:二次函数y=x2﹣2x+3的一次项系数是﹣2,故选:C.2.【解答】解:∵y=﹣(x﹣1)2+3,∴抛物线顶点坐标为(1,3),故选:B.3.【解答】解:∵抛物线y=x2+x+c与x轴只有一个公共点,∴方程x2+x+c=0有两个相等的实数根,∴Δ=b2﹣4ac=12﹣4×1•c=0,∴c=.故选:B.4.【解答】解:A、∵a=﹣1<0,∴抛物线的开口向下,正确,不合题意;B、抛物线的顶点坐标是(﹣1,﹣3),故本小题正确,不合题意;C、令x=0,则y=﹣1﹣3=﹣4,所以抛物线与y轴的交点坐标是(0,﹣4),故不正确,符合题意;D、抛物线的开口向下,对称轴为直线x=﹣1,∴当x>−1时,函数值y随x的增大而减小,故本小题正确,不合题意;故选:C.5.【解答】解:∵y=2x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴x≤2时,y随x增大而减小,∴y1>y2>y3.故选:B.6.【解答】解:由函数y=ax+1与抛物线y=ax2+ax+1可知两函数图象交y轴上同一点(0,1),抛物线的对称轴为直线x=﹣=﹣,在y轴的左侧,A、抛物线的对称轴在y轴的右侧,故选项不合题意;B、抛物线的对称轴在y轴的右侧,故选项不合题意;C、由一次函数的图象可知a>0,由二次函数的图象知道a>0,且交于y轴上同一点,故选项符合题意;D、由一次函数的图象可知a>0,由二次函数的图象知道a<0,故选项不合题意;故选:C.7.【解答】解:双曲线y=向下平移3个单位后的函数为y′=﹣3,∵y′=﹣3交抛物线y=x2于点P(a,b),∴﹣3=a2,整理得,a3+3a﹣2=0,令y=a3+3a﹣2,且y随a的增大而增大.当a=0时,y=﹣2<0,当a=时,y=+﹣2=﹣<0,当a=1时,y=1+3﹣2=2>0,∴若a3+3a﹣2=0,则a的取值范围为:<a<1.故选:B.8.【解答】解:把A代入得:=﹣×9+k,∴k=,∴y=﹣(x﹣3)2+,令y=0得﹣(x﹣3)2+=0,解得x=﹣2(舍去)或x=8,∴实心球飞行的水平距离OB的长度为8m,故选:C.9.【解答】解:∵二次函数y=x2+bx+c的图象经过点A(2﹣m,c),B(m+2,c),∴对称轴为直线x==2,∴﹣=2,∴b=﹣4,∵点A或点B在y轴上,∴AB=4,∵二次函数y=x2+bx+c的图象与x轴只有一个交点,∴b2﹣4c=0,即16﹣4c=0,∴c=4,∴△AOB的面积为:=8.故选:A.10.【解答】解:由图可知,抛物线对称轴是直线x=1,∴﹣=1,即b=﹣2a,∵抛物线开口向下,∴a<0,b=﹣2a>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故①错误;由图可得,抛物线上的点(﹣1,a﹣b+c)在x轴下方,∴a﹣b+c<0,故②正确;∵抛物线对称轴是直线x=1,∴x=0和x=2时,函数值相等,而x=0时c>0,∴4a+2b+c>0,故③正确;∵b=﹣2a,∴④错误;∵a﹣b+c<0,b=﹣2a,∴a﹣(﹣2a)+c<0,即3a+c<0,故⑤正确;∴正确的有②③⑤,共3个,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.【解答】解:∵函数y=x2m﹣1+x﹣3是关于x的二次函数,∴2m﹣1=2,∴m=.故答案为:.12.【解答】解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故答案为:x=2.13.【解答】解:∵函数y=(x﹣1)2+1,∴a=1>0,抛物线开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故答案为:增大.14.【解答】解:∵y=x2+x﹣1=(x+)2﹣,∴将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是y=(x++2)2﹣+3,即y=x2+5x+8,故答案为:y=x2+5x+8.15.【解答】解:∵抛物线经过A(1,m),B(5,m),∴抛物线对称轴为直线x=3,∴﹣=3,解得b=﹣6,故答案为:﹣6.16.【解答】解:依据表格可知抛物线的对称轴为x=3,∴当x=0时与x=6时函数值相同,∴当x=0时,y=5.故答案为:5.17.【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣2,p),B(5,q)两点,∴﹣2m+n=p,5m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(2,p),Q(﹣5,q)两点,观察函数图象可知:当﹣5≤x≤2时,直线y=﹣mx+n在抛物线y=ax2+c的上方,∴不等式ax2+mx+c≤n的解集是﹣5≤x≤2.故答案为﹣5≤x≤2.18.【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,﹣4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.三.解答题(共7小题,满分58分)19.【解答】解:(1)∵y与x2成正比例,∴设y=kx2(k≠0),∵当x=1时,y=2,∴2=k•12,解得,k=2,∴y与x之间的函数关系式为y=2x2.(2)∵函数关系式为y=2x2,∴当x=﹣1时,y=2×1=2.20.【解答】解:(1)∵抛物线L有最高点,∴m﹣2<0,∴m<2;(2)∵抛物线L与抛物线y=x2的性状相同,开口方向相反,∴m﹣2=﹣1,∴m=1.21.【解答】解:(1)将A(﹣2,0)代入y=ax2﹣4ax+3得:0=4a+8a+3,解得,∴抛物线为,∵y=﹣x2+x+3=﹣(x﹣2)2+4,∴顶点坐标为(2,4);(2)把B(4,m)代入得,m=﹣4+4+3=3,将A(﹣2,0),B(4,3)代入y=kx+b得,解得,∴直线AB的解析式为,∵顶点的横坐标为2,把x=2代入得:y=2,∴n=4﹣2=2.22.【解答】解:(1)y=x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4,即y=(x+1)2﹣4;(2)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,∴抛物线与x轴的交点坐标为(﹣3,0),(1,0),当x=0时,y=﹣3,∴抛物线与y轴的交点坐标为(0,﹣3),二次函数的图象如图所示:(3)观察图象得,当x=﹣1时,y取最小值﹣4,当x=﹣4时,y取最大值,代入函数得,y=(﹣4)2+2×(﹣4)﹣3=16﹣8﹣3=5.∴当﹣4≤x≤0时,﹣4≤y≤5.23.【解答】解:(1)设AB为x米,则BC=(36﹣2x)米,由题意得:x(32﹣2x)=96,解得:x1=4,x2=12,∵墙长为14米,32米的篱笆,∴32﹣2x≤14,2x<32,∴9≤x<16,∴x=12,∴AB=12,答:矩形的边AB的长为12米;(2)设AB为x米,矩形的面积为y平方米,则BC=(32﹣2x)米,∴y=x(32﹣2x)=﹣2x2+32x=﹣2(x﹣8)2+128,∵9≤x<16,且﹣2<0,故抛物线开口向下,∴当x=9时,y有最大值是126,答:AB边的长应为9米时,有最大面积,且最大面积为126平方米.24.【解答】解:(1)∵a=1,∴y=x2﹣2ax+a2+2a=x2﹣2x+3=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),对称轴为直线x=1.(2)把a=2代入y=x2﹣2ax+a2+2a得y=x2﹣4x+8,令x2﹣4x+8=2x,解得x1=2,x2=4,把x=2代入y=2x得y=4,把x=4代入y=2x得y=8,∴直线与抛物线交点坐标为(2,4),(4,8),∴线段长度为=2.(3)把x=4代入y=x2﹣2ax+a2+2a得y=16﹣8a+a2+2a=(a﹣3)2+7,∴点A纵坐标为(a﹣3)2+7,∵(a﹣3)2+7≥7,∴点A到x轴最小距离为7.25.【解答】解:(1)∵抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,解得:,∴抛物线的函数表达式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为x=1,∵A、B关于直线x=1对称,所以AC与对称轴的交点为点P,此时C△PBC=PB+PC+BC=AC+BC,此时△BPC的周长最短,∵点C的横坐标是2,y C=22﹣2×2﹣3=﹣3,∴C(2,﹣3),设直线AC的解析式为y=mx+n(m≠0),∴,解得:,∴直线AC的解析式为y=﹣x﹣1,当x=1时,y=﹣1﹣1=﹣2,∴P(1,﹣2);(3)存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形.∵A(﹣1,0),B(3,0),C(2,﹣3),设E(x,y),①当AB为对角线时,则,解得:,∴E(0,3);②当AC为对角线时,解得:,∴E(﹣2,﹣3);③当BC为对角线时,则,解得:,∴E(6,﹣3).综上所述,E点坐标为(0,3)或(﹣2,﹣3)或(6,﹣3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数水平检测试题(A) 一、选择题(让你算的少,要你想的多,只选一个可要认准啊!每小题3分,共30分)
1.下列函数中,不是二次函数的是( )
(A)212yx (B)22(1)4yx
(C)1(1)(4)2yxx (D)22(2)yxx 2.二次函数2(62)(3)ymxmxm的图象如图所示,则m的取值范围是( ) (A)3m (B)3m (C)03m (D)03m
3.已知以(-1,0)为圆心,1为半径的⊙M和抛物线1162xxy,现有两个命题: ⑴ 抛物线1162xxy与⊙M没有交点. ⑵ 将抛物线1162xxy向下平移3个单位,则此抛物线与⊙M相交. 则以下结论正确的是( ) (A)只有命题(1)正确 (B)只有命题(2)正确 (C)命题(1)、(2)都正确 (D)命题(1)、(2)都不正确
4.已知h关于t的函数关系式为221gth,(g为正常数,t为时间),则函数图象为( )
(A) (B) (C) (D) 5.函数2yaxbxc的图象如图所示,那么关于x的方程230axbxc的根的情况是( ) (A)有两个不相等的实数根 (B)有两个异号实数根 (C)有两个相等实数根 (D)无实数根 6.已知二次函数23(1)yxk的图象上有A(2,1y),B(2,2y),C(-5,3y)三个点,则1y、2y、3y的大小关系是( )
(A)123yy (B)213yy (C)312yy (D)321yy 7. 已知反比例函数y=xk的图象如右图所示,则二次函数y=222kxkx的图象大致为( )
(A) (B) (C) (D) 8.二次函数y=ax2+bx+c的图象如图所示,则下列关于a、b、c间的关系判断正确的是( ) (A)ab<0 (B)bc<0 (C)a+b+c>0 (D)a-b+c<0
9. 若直线3yxm经过第一、三、四象限,则抛物线2()1yxm的顶点必在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 10. 把一个小球以20m/s的速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系:h=20t-5t2.当h=20时,小球的运动时间为( )
(A)20s (B)2s (C)(222)s (D)(222)s 二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)
11. 有一长方形纸片,长、宽分别为8 cm和6 cm,现在长宽上分别剪去宽为x cm (x<6)的纸条(如图1),则剩余部分(图中阴影部分)的面积y=______,其中_____是自变量,_____是因变量.
6 8
xx 12.试写出一个开口向上,对称轴为直线2x,且与y轴的交点的坐标为(0,3)的抛物
线的解析式是_____________. 13. 某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数:M=10053tt(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃ 14.已知函数①223yxx的图象与x轴交于A、B两点,在x轴上方的抛物线上有一点C,且△ABC的面积为10,则C点的坐标是__________. 15.抛物线cbxxy2与x轴的正半轴交于A,B两点,与y轴交于C点,且线段AB的长为1,△ABC的面积为1,则b的值是 . 16.在边长为6 cm的正方形中间剪去一个边长为x cm(x<6)的小正方形,剩下的四方框形的面积为y,y与x之间的函数关系是______. 17.如图,有一个抛物线型拱桥,其最大高度为16m,•跨度为•40m,• 现把它的示意图放在平面直角坐标系中••,••则此抛物线的函数关系式为__________.
18.抛物线322xxy与x轴分别交于A、B两点,则AB的长为 . 19.用配方法将二次函数xxy322化成khxay2)(的形式是 . 20.小王利用计算机设计了一个计算程序,输入和输出的数据如下表: 输入 … 1 2 3 4 5 … 输出 … 2 5 10 17 26 … 若输入的数据是x时,输出的数据是y,y是x的二次函数,则y与x 的函数表达式为___. 三、解答题(耐心计算,仔细观察,表露你萌动的智慧!每小题8分,共40分)
21.已知抛物线y=12x2+x-52. (Ⅰ)用配方法求出它的顶点坐标和对称轴; (Ⅱ)若抛物线与x轴的两个交点为A、B,求线段AB的长. 22.已知抛物线y=x2+bx –a2. (1) 请你选定a、b适当的值,然后写出这条抛物线与坐标轴的三个交点,并画出过三个交点的圆. (2) 试讨论此抛物线与坐标轴交点分别是1个,2个,3个时,a、b的取值范围,并且求出交点坐标. 23.如图,一张边长为16㎝的正方形硬纸板,把它的四个角都剪去一个边长为x㎝的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为V㎝3, 请回答下列问题: (1)若用含有X的代数式表示V,则V= (2)完成下表:(4分) x(㎝) 1 2 45 67
V(㎝3) 196 288 180 96 28 (3) 观察上表,容积V的值是否随x值得增大而增大?当x取什么值时,容积V的值最大?
24.已知二次函数222yxmxm. (1)求证:对于任意实数m,该二次函数图象与x轴总有公共点; (2)若该二次函数图象与x轴有两个公共点A,B,且A点坐标为(1,0),求B点坐标. 25.某工厂现有80台机器,每台机器平均每天生产384•件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,•由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品. (1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式; (2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?
四、解答题(合情推理,准确表述,展示你聪灵的气质!每小题10分,共20分) 26.某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
(1)求y与x的函数关系式; (2)如果把利润看着销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式); (3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利
x(十万元) 0 1 2
y 1 1.5 1.8 润最大?最大利润是多少? 27.如果抛物线1)1(22mxmxy与x轴都交于A,B两点,且A点在x轴 的正半轴上,B点在x同的负半轴上,OA的长是a,OB的长是b. (1)求m的取值范围; (2)若a∶b=3∶1,求m的值,并写出此时抛物线的解析式; (3)设(2)中的抛物线与y轴交于点C,抛物线的顶点是M,问:抛物线上是否存 在点P,使△PAB的面积等于△BCM面积的8倍?若存在,求出P点的坐标;若不存在,请 说明理由. 参考答案: 一、 题号 1 2 3 4 5 6 7 8 9 10 答案 D D C A C D D D B B 二、 11. (6-x)(8-x) x y;
12.243yxx等; 13.(-2,5),(4,5); 15.-3; 16 y=36-x2;
17.y=-125(x-20)2+16; 18.4;
19.91312xy; 20.y=x2+1; 三、
21.(1)顶点坐标(-1,-3),对称轴1x;(2)26; 22.略; 23.(1)2(162)Vxx ;(2)300,256 ; (3)观察上表,可以发现容积V的值不是随着x的值的增大而增大的 从表中可知,当x取整数3时,容积V最大.
24.(1)222()42()9mmm,∵20m,∴0. ∴对于任意实数m,该二次函数图象与x轴总有公共点. (2)把(1,0)代入二次函数关系式,得
202mm
,
∴12m,21m, 2m,B(-2,0),1m,(12,0)
(2)12212112mmmBmB2把(1,0)代入二次函数关系式,得0=2-m-m,,,(-2,0),(-,0)。 25.(1)y=(80+x)(384-4x),即y=-4x2+64x+30 720; (2)增加8台机器每天生产的总量最大,最大生产总量为30 976个. 四、 26.(1)y=0.1x2+0.6x+1; (2)S=3×100y-2×100y-x=-10x2+59x+100 ; (3)x=2.95时利润最大,最大利润为187.025(十万元). 27.(1)设A,B两点的坐标分别是(x1,0)、(x2,0), ∵A,B两点在原点的两侧, ∴ x1x20,即-(m+1)0, 解得 m-1.
∵)1()1(4)]1(2[2mm
7)21(484422mmm
当m-1时,Δ0, ∴m的取值范围是m-1. (2)∵a∶b=3∶1,设a=3k,b=k(k0), 则x1=3k,x2=-k,
∴ ).1()(3),1(23mkkmkk
解得31,221mm. ∵31m时,3421xx(不合题意,舍去), ∴m=2 ∴抛物线的解析式是32xxy.
(3)易求抛物线322xxy与x轴的两个交点坐标是A(3,0),B(-1,0) 与y轴交点坐标是C(0,3),顶点坐标是M(1,4). 设直线BM的解析式为qpxy,
则.)1(0,14qpqp