沪科版八年级下数学期末试卷

合集下载

沪科版八年级下册数学期末测试卷(含解析)

沪科版八年级下册数学期末测试卷(含解析)

沪科版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,已知口ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=45°,则∠DA′E′的大小为()A.170°B.165°C.160°D.155°2、空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A.折线图B.条形图C.直方图D.扇形图3、如图,四边形是菱形,,,点是边上的一动点,过点作于点,于点,连接,则的最小值为()A. B. C. D.4、学校篮球队名场上队员的身高分别为:,,,,(单位:).增加一名身高为的成员后,现篮球队成员的身高与原来相比,下列说法正确的是()A.方差不变B.方差变大C.方差变小D.不能确定5、如果把直角三角形的两条直角边长同时扩大到原来的3倍,那么斜边长扩大到原来的()A.3倍B.4倍C.6倍D.9倍6、学校为了了解七年级700名学生上学期参加社会实践活动的时间,随机对该年级50名学生进行了调查。

根据收集的数据绘制了下面的频数分市直方图,则以下说法正确的是()A.绘制该频数分布直方图时选取的组距为10分成的组数为5B.这50人中大多数学生参加社会实践活动的时间是12-14hC.这50人中有64%的学生参加社会实践活动时间不少于10hD.可以估计全年级700人中参加社会实践活动时间为6~8h的学生大约为28人7、下列各组数中,能作为直角三角形三边长度的是()A.5、6、7B.1、4、9C.5、12、13D.5、11、128、如图,在菱形中,,的垂直平分线交对角线于点, 为垂足,连结,则等于()A. B. C. D.9、一个样本的极差是52,样本容量不超过100.若取组距为10,则画频数分布直方图应把数据分成()A.5组B.6组C.10组D.11组10、下列计算正确的是().A. B. C. D.11、体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A.平均数B.方差C.頻数分布D.中位数12、某校5个小组参加植树活动,平均每组植树10株.已知第一,二,三,五组分别植树9株、12株、9株、8株,那么第四小组植树()A.12株B.11株C.10株D.9株13、用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(B.C.D.14、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.615、如图,在中,,,,是的垂直平分线,交于点,连接,则的长为().A. B. C. D.二、填空题(共10题,共计30分)16、如图,在菱形ABCD中,DE⊥AB,cosA=,则tan∠BDE的值是________17、如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G 分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则=________.18、如图,在正方形ABCD中,AB=6,点E在边CD上,DE= DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG的周长是________.19、计算:| -|+2 =________.20、若一组数据1,3,a, 2,5的平均数是3,则a=________。

沪科版八年级数学下册《期末测试卷》(附答案)

沪科版八年级数学下册《期末测试卷》(附答案)

沪科版八年级数学下册《期末测试卷》(附答案)选择题1.下列根式中一定有意义的是()A。

$a$B。

$-a^2$C。

$a+1/2$D。

$a-1/2$2.下列式子中$y$是$x$的正比例函数的是()A。

$y=3x-5$B。

$y=2/x$___D。

$y=2x$3.直线$y=x-2$与$x$轴的交点坐标是()A。

$(2,0)$B。

$(-2,0)$C。

$(0,-2)$D。

$(0,2)$4.无理数$5+\sqrt{1}$在两个整数之间,下列结论正确的是()A。

$2<5+\sqrt{1}<3$B。

$3<5+\sqrt{1}<4$___<5+\sqrt{1}<5$D。

$5<5+\sqrt{1}<6$5.某校排球队21名同学身高的众数和中位数分别是(单位:cm)()A。

185,178B。

178,175C。

175,178D。

175,1756.若$a b>c$,$a c<b$,则一次函数$y=-\frac{ac}{x-b}$的图像不经过下列哪个象限()A。

第一象限B。

第二象限C。

第三象限D。

第四象限7.如图,在正方形$ABCD$中,$BD=2$,$\angle DCE$是正方形$ABCD$的外角,$P$是$\angle DCE$的角平分线$CF$上任意一点,则$\triangle PBD$的面积等于()A。

1B。

1.5C。

2D。

2.58.如图,在直角三角形$ABC$中,$\angle ACB=90°$,$AC=BC$,边$AC$落在数轴上,点$A$表示的数是1,点$C$表示的数是3,负半轴上有一点$B_1$,且$AB_1=AB$,点$B_1$所表示的数是()A。

$-2$B。

$-\sqrt{2}$C。

$\sqrt{2}-1$D。

$1-\sqrt{2}$9.如图,函数$y=kx$和$y=-\frac{11}{x+4}$的图像相交于点$A(3,m)$,则不等式$kx\geq-x+4$的解集为A。

沪科版八年级下册数学期末测试卷及含答案

沪科版八年级下册数学期末测试卷及含答案

沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较2、▱ABCD一内角的平分线与边相交并把这条边分成2cm,3cm的两条线段,则▱ABCD的周长是()A.5cmB.7cmC.14cm或15cmD.14cm或16cm3、下列计算正确的是()A. B. C. D.若,则x=14、要使代数式有意义,则x的取值范围是()A.x>B.x<C.x≥D.x≤5、参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同.设共有x家公司参加商品交易会,则x满足的关系式为()A. x(x+1)=45B. x(x﹣1)=45C.x(x+1)=45 D.x(x﹣1)=456、四边形ABCD的对角线相交于点O,能判定四边形是正方形的条件是()A.AC=BD,AB=CD,AB//CDB.AO=BO=CO=DO,AC⊥BDC.AD//BC,∠A=∠CD.AO=CO,BO=DO,AB=BC7、以下列各组数为边长,能组成直角三角形的是()A.2,3,4B.10,8,4C.7,25,24D.7,15,128、如图,数轴上点C所表示的数是()A. B. C.3.6 D.3.79、一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,它们离开港口3小时相距()海里.A.60B.30C.20D.8010、下列方程中,没有实数根的是 ( )A.x 2-x-1=0B.x 2+1=0C.-x 2+x+2=0D.x 2=-3x11、阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖镶嵌地面,在每个顶点的周围正方形、正三角形地砖的块数可以分别是( )A.2,2B.2,3C.1,2D.2,112、如图,在平行四边形ABCD中,点E在AD上,∠ABE=20°,∠BED=∠BCD,则∠D的度数为()A.70°B.75°C.80°D.85°13、四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠D=180°C.∠B+∠A=180°D.∠A+∠D=180°14、以面积为9cm2的正方形的对角线为边长的正方形面积为()A.18cm 2B.20cm 2C.24cm 2D.28cm 215、关于的方程ax2+bx+c=2与方程(x+1)(x-3)=0的解相同,则a-b+c的值等()A.-2B.0C.1D.2二、填空题(共10题,共计30分)16、如果代数式有意义,那么字母x的取值范围是________.17、函数自变量x的取值范围是 ________.18、已知一组数据:0,2,x , 4,5的众数是4,那么这组数据的中位数是________.19、离中考还有20天,为了响应“还时间给学生”的号召,学校领导在全年级随机的调查了20名学生每天作业完成时间,绘制了如下表格:每天作业完成时间:(小2 2.53 3.5时)人数:(人) 5 5 8 2则这20个学生每天作业完成的时间的中位数为________ 小时20、如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是________.21、已知等腰的两边长分别为、,且,则的周长为________.22、如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD的边长为________cm.23、一元二次方程根的判别式的值为________.24、如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,交CB于点D,DE⊥AB,垂足为E.若AC=3,AB=5,则DE的长为________。

(考试真题)沪科版八年级下册数学期末测试卷及含答案

(考试真题)沪科版八年级下册数学期末测试卷及含答案

沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A. B. C.D.2、下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形D.四条边都相等的四边形是菱形3、下列命题中是真命题的是()A.如果a 2=b 2,那么a=bB.对角线互相垂直的四边形是菱形C.线段垂直平分线上的点到这条线段的两个端点的距离相等D.对应角相等的两个三角形全等4、如图,下列四组条件中,能判定□ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个5、式子有意义,则实数x的取值范围是( )A.x>2B.x>-2C.x≥2D.x≥-26、如图,在Rt△ABC中,∠A=90°,P为边BC上一动点,PE⊥AB于E , PF ⊥AC于F ,动点P从点B出发,沿着BC匀速向终点C运动,则线段EF的值大小变化情况是().A.一直增大B.一直减小C.先减小后增大D.先增大后减少7、如图,在平面直角坐标系中,点P的坐标为(0,2),直线y= 与x 轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A.3B.4C.5D.68、在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.709、下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形10、a= ,b= ,则a+b﹣ab的值是()A.3B.4C.5D.11、用配方法解方程x2﹣4x﹣1=0时,配方后得到的方程为()A.(x+2)2=3B.( x+2)2=5C.(x﹣2)2=3D.( x﹣2)2=512、如图,在长方形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,连结EF,若AB=6,BC=4 ,则FD的长为()A.2B.4C.D.213、某校在计算学生的数学期评成绩时,规定期中考试成绩占40%,期末考试成绩占60%.王林同学的期中数学考试成绩为80分,期末数学考试成绩为90分,那么他的数学期评成绩是()A.80分B.82分C.84分D.86分14、如图,已知一张纸片▱ABCD,∠B>90°,点E是AB的中点,点G是BC上的一个动点,沿BG将纸片折叠,使点B落在纸片上的点F处,连接AF,则下列各角中与∠BEG不一定相等的是()A.∠FEGB.∠EAFC.∠AEFD.∠EFA15、在如图的网格中,每个小正方形的边长为1,A、B、C三点均在正方形格点上,若是的高,则的长为()A. B. C. D.2二、填空题(共10题,共计30分)16、如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥CD,OE∥BC交CD于E,若OC=4,CE=3,则BC的长是________.17、如图,在矩形ABCD中,BC=6,AB=2,Rt△BEF的顶点E在边CD或延长线上运动,且∠BEF=90°,EF=BE,DF=,则BE=________.18、如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快________ s后,四边形ABPQ成为矩形.19、如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,且,C为线段上一点,,若M为y轴上一点,且,设直线与直线相交于点N,则的长为________.20、以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y= (x >0)经过点D,则OB•BE的值为________.21、一次数学测验中,某小组七位同学的成绩分别是:90,85,90,95,90,85,95.则这七个数据的众数是________.22、《九章算术》是我国古代数学的扛鼎之作,其中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,铭道长一尺,问径几何?”。

沪科版八年级下册数学期末测试卷(考试真题)

沪科版八年级下册数学期末测试卷(考试真题)

沪科版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分以的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤l32、如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.AD=BDB.OD=CDC.∠CAD=∠CBDD.∠OCA=∠OCB3、在中,,若,,则cosC的值为()A. B. C. D.4、化简的结果是( ).A. B. C. D.-5、如图,菱形ABCD的对角线相交于点0,AC=2,BD=.将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的面积是()A. B. C. D.6、若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A. B. C.D.7、如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )A. B.2 C.3 D.8、如图,平行四边形ABCD内接于⊙O,则∠ADC=()A.45°B.50°C.60°D.75°9、已知关于x的一元二次方程(a-2)x2+ax+1=0,其中a的值可以是()A.2B.0C.±2D.任意实数10、下列哪个方程是一元二次方程()A.2x+y=1B.x 2+1=2xyC.x 2+ =3D.x 2=2x﹣311、如图,在边长为的正方形中,把边绕点逆时针旋转,得到线段.连接并延长交于点,连接,则的面积为()A. B. C. D.12、如图,在平行四边形ABCD中,EF∥AD,GH∥AB,则图中的平行四边形的个数共有( )个.A.12个B.9个C.5个D.7个13、下列各式中,最简二次根式是( )A. B. C. D.14、等腰三角形的两边长是方程x2-20x+91=0的两个根,则此三角形的周长为()A.27或39B.33或27C.27或24D.以上都不对15、在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:体温(℃) 36.1 36.2 36.3 36.4 36.5 36.6 36.7次数 2 3 4 6 3 1 2则这些体温的中位数是( )A.36.2℃B.36.3℃C.36.4℃D.36.5℃二、填空题(共10题,共计30分)16、有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是________.17、如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE= AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF= :2.当边AD或BC所在的直线与⊙O相切时,AB的长是________.18、计算2 的结果为________.19、已知一组数据:1,3,5,5,6,则这组数据的方差是________.20、求如图中直角三角形中未知的长度:b=________,c=________.21、化简:=________22、函数中自变量x的取值范围是________.23、方程2(x﹣3)2=x2﹣9的解是________.24、如图,矩形中,,对角线交于点,则________,________.25、若甲组数据方差为1.2,乙组数据方差为1.6,那么更稳定的是________(填甲或者乙)三、解答题(共5题,共计25分)26、27、如图:在平行四边形ABCD中,对角线AC与BD相交于点O,E和F分别是OA和OC的中点,求证:DE=BF28、已知点A(3,0)、B(-1,0)、C(0,2),以A、B、C为顶点画平行四边形,你能求出第四个顶点D吗?29、已知:如图,在▱ABCD中,点E在AB上,点F在CD上,且DE∥BF.求证:DE=BF.30、如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、C5、D6、A7、A9、B10、D11、C12、B13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。

沪科版八年级数学下册期末考试试卷(含答案)

沪科版八年级数学下册期末考试试卷(含答案)

沪科版八年级数学下册期末考试试卷(含答案)沪科版八年级数学下册期末考试试卷一.选择题(本大题共6题,满分18分)1.下列函数中,一次函数是()A.y=xB.y=kx+bC.y=x^2-2x+1D.y=(x+3)/(x+2)2.下列判断中,错误的是()A.方程x(x-1)=0是一元二次方程B.方程xy+5x=0是二元二次方程C.方程(x+3)/(x+2)=2是分式方程D.方程2x^2-x=0是无理方程3.已知一元二次方程x^2-2x-m=0有两个实数根,那么m 的取值范围是()A.m≤-1B.m≥-1C.m>-1D.m<-14.下列事件中,必然事件是()A.“奉贤人都爱吃___”B.“2018年上海中考,___数学考试成绩是满分150分” C.“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只” D.“在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A.平行四边形的对角线相等B.矩形的对角线平分对角C.菱形的对角线互相平分 D.梯形的对角线互相垂直6.等腰梯形ABCD中,AD//BC。

E、F、G、H分别是AB、BC、CD、AD的中点,那么四边形EFGH一定是()A.矩形B.菱形C.正方形D.等腰梯形二.填空题。

(本大题共12题,每小题2分,共24分)7.一次函数y=2x-1的图像在y轴上的截距为-18.方程(1/4)x-8=0的根是89.方程2x+10-x=1的根是310.一次函数y=kx+3的图像不经过第3象限,那么k的取值范围是k>=-3/411.用换元法解方程2y^2-2y-1=0,如果设x=y-1/2,那么原方程化成以“x”为元的方程是4x^2-3=012.化简:(AB-CD)(-AC-BD)=AD^2-BC^213.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:(1+x)^2=179/10014.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=1215.既是轴对称图形有事中心对称图形的四边形为平行四边形16.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8.S四边形ABCD=16,那么对角线BD=419.给定方程19.x=-1.20.给定方程组:y=4,y=-2或者x=8,x=2.21.给定方程组:1) y=14-x2) 1/222.给定几何图形:1) OD,BO2) AC23.解:假设和谐号速度为x km/h,则复兴号列车速度为(x+70) km/h。

沪科版八年级数学下册《期末考试测试卷》(附答案)

沪科版八年级数学下册《期末考试测试卷》(附答案)

一、选择题(本大题共有6题,每题3分,满分18分)1、直线23y x =-的截距是 ( )(A )—3; (B )—2; (C )2; (D )32、如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( )(A )3a <; (B )3a = ; (C )3a >; (D )3a ≠3、下列说法正确的是( )(A )410x +=是二项方程; (B )22x y y -=是二元二次方程;(C )132x x -=是分式方程; (D210-=是无理方程 4、下列事件中,属于确定事件的是( )(A )抛掷一枚质地均匀的骰子,正面向上的点数是6;(B )抛掷一枚质地均匀的骰子,正面向上的点数大于6;(C )抛掷一枚质地均匀的骰子,正面向上的点数小于6;(D )抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次5、如果平行四边形ABCD 两条对角线的长度分别为8,12AC cm BD cm ==,那么BC 边的长度可能是( )(A )2BC cm =; (B )6BC cm =; (C )10BC cm =; (D )20BC cm =6、已知平行四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是( )(A )90D ∠= (B )AB CD = (C )AB BC = (D )AC BD =二、填空题(本大题共12题,每题2分,满分24分)7、已知一次函数()32f x x =+,那么(2)f -=学校 姓名 班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……8、已知函数37y x =-+,当2x >时,函数值y 的取值范围是9、将直线2y x =向上平移1个单位,那么平移后所得直线的表达式是10、二项方程32540x +=在实数范围内的解是11、用换元法解方程22111x x x x --=-时,如果设21x y x =-,那么所得到的关于y 的整式方程为 12、如果2x =是关于x 的方程21124k x x =+--的增根,那么实数k 的值为 13、不透明的布袋里有2个黄球,3个红球,5个白球,它们除颜色外其他都相同,那么从布袋中随机摸出一个球恰好为红球的概率是14、已知一个多边形的每个外角都是30,那么这个多边形是 边形15、如果向量AD BC =,那么四边形ABCD 的形状可以是 (写出一种情况即可)16、写出一个轴对称图形但不是中心对称图形的四边形:17、已知正方形ABCD 的边长为1,如果将向量AB AC -的运算结果记为向量m ,那么向量m 的长度为18、已知四边形ABCD 是矩形,点E 是边AD 的中点,以直线BE 为对称轴将ABE ∆翻折至FBE ∆,联结DF ,那么图1中与相等的角的个数为(图1)三、解答题(本大题共有7题,满分58分)19、(本题6x =-20、(本题8分)解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩(不写作法,画出图21、(本题4分)已知向量,a b,(如图2),请用向量的加法的平行四边形法则作向量a b形)图222、(本题8分)甲、乙两位同学同时从学校出发,骑自行车前往距离学校20千米的郊野公园。

沪科版八年级下册数学期末考试试题含答案

沪科版八年级下册数学期末考试试题含答案

沪科版八年级下册数学期末考试试卷一、单选题1x 的取值范围是A .5x ≤B .5x <C .5x ≥D .5x > 2.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 A .5 B .4 C .7 D .6 3.下列计算正确的是A= B C .= D 3- 4.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,若再添加﹣个条件使▱ABCD 成为矩形,则该条件不可以是A .AC =BDB .AO =BOC .▱BAD =90° D .▱AOB =90° 5.为执行“均衡教育”政策,某县2019年投入教育经费2650万元,预计到2021年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长率为x ,则下列方程正确的是A .()26501212000x +=B .()22650112000x +=C .()()26502650126501212000x x ++++=D .()()22650265012650112000x x ++++=6.若关于x 的一元二次方程mx 2+2mx+4=0有两个相等的实数根,则m 的值为 A .0 B .4 C .0或4 D .0或﹣47.在ABC 中,三边长分别为a ,b ,c ,且2a c b +=,12c a b -=,则ABC 是 A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 8.如图,在Rt ABC 中,90CAB ∠=︒,16AB =,6AC =,两顶点A ,B 分别在平面直角坐标系的y 轴,x 轴的正半轴上滑动,点C 在第一象限内,连接OC ,则OC 的长的最大值为A.16 B .18 C .8+ D .8+9.如图,在Rt ABC 中,90C ∠=︒,3AC =,4BC =,点P 为AB 边上任意一点过点P 分别作PE AC ⊥于点E ,PF BC ⊥于点F ,则线段EF 的最小值是A .2B .2.4C .3D .410,那么能与它们组成直角三角形的第三条线段是A .1cmcm B .1cm C D .5cm 11.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是 A .0m ≠ B .14m ≤ C .14m < D .14m > 12.一个多边形所有内角与外角的和为1260°,则这个多边形的边数是 A .5 B .7 C .8 D .9 二、填空题13x 的值为___________ 14.下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x 与方差S 2:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 .15.若a 是方程2210x x --=的解,则代数式2242019a a -+的值为____________. 16.已知正方形ABCD 中,AB =3,P 为边CD 上一点,DP =1,Q 为边BC 上一点,若▱APQ 为等腰三角形,则CQ 的长为 ____.三、解答题1722) 18.解方程:2x 2﹣3x =5.19.如图,在正方形网格中每个小正方形的边长为1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)在图(1AB .(2)在图(23的等腰DEF ∆ 20.已知关于x 的一元二次方程x 2﹣mx ﹣2=0.(1)求证:无论m 取何实数,该方程总有两个不相等的实数根; (2)若方程的一个根为2,求m 的值及另一个根.21.如图,在ABC中,D,E,F分别是AB,BC,AC的中点,连接DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若90AFB∠=︒,8AB=,求四边形BEFD的周长22.中华文明,源远流长;中华汉字,寓意深广,某校举办了以“感悟汉字深厚底蕴,弘扬中华传统文化”为主题的汉字听写大赛,全校3600名学生都参加了此次大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:(1)m= ;n= ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,估计该校参加这次比赛的3600名学生中成绩“优”等约有多少人?23.如图,平行四边形ABCD中,AE=CE.(1)用尺规或只用无刻度的直尺作出AEC∠的角平分线,保留作图痕迹,不需要写作法.(2)设AEC∠的角平分线交边AD于点F,连接CF,求证:四边形AECF为菱形.24.某公司设计了一款工艺品,每件的成本是40元,为了合力定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?25.如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF DE⊥于点F,交CD于点G.(1)求证:CG CE=.(2)如图2,连接FC、AC.若BF平分DBE∠.∠,求证:CF平分ACE(3)如图3,若G为DC中点,2AB=,求EF的长.参考答案1.C【详解】解:▱50x-≥,▱5x≥,故选:C.2.D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×2,解得n=6.故选:D.【点睛】本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.3.B【解析】【分析】根据二次根式的乘法法则对A、B、C进行判断,再根据二次根式的性质对D进行判断.【详解】解:A=,故A选项错误;B,故B选项正确;C、=C选项错误;D3=,故D选项错误;【点睛】本题主要考查了二次根式的计算:先把各二次根式化为最简二次根式,再进二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.D【解析】【分析】由矩形的判定定理和菱形的判定定理分别对各个选项进行判断即可.【详解】解:A、▱四边形ABCD是平行四边形,AC=BD,▱平行四边形ABCD是矩形,故选项A不符合题意;B、▱四边形ABCD是平行四边形,▱AO=CO,BO=DO,▱AO=BO,▱AC=BD,▱平行四边形ABCD是矩形,故选项B不符合题意;C、▱四边形ABCD是平行四边形,▱BAD=90°,▱平行四边形ABCD是矩形,故选项C不符合题意;D、▱▱AOB=90°,▱AC▱BD,▱四边形ABCD是平行四边形,▱平行四边形ABCD是菱形,故选项D不符合题意;故选:D.【点睛】此题主要考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟记矩形的判定定理是解题的关键.5.D【解析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2014年投入教育经费+2014年投入教育经费×(1+增长率)+2014年投入教育经费×(1+增长率)²=1.2亿元,据此列方程.【详解】解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)²=12000.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.6.B【解析】【分析】由已知先确定m≠0,再由方程根的情况,利用判别式Δ=4m2﹣16m=0,求解m 即可.【详解】解:▱mx2+2mx+4=0是一元二次方程,▱m≠0,▱方程有两个相等的实数根,▱Δ=4m2﹣16m=0,▱m=0或m=4,▱m=4,故选:B.【点睛】本题考查了根的判别式,解题的关键是根据根的个数结合根的判别式得出关于m 的一元二次方程.7.A【解析】根据平方差公式,可得222c a b -= ,即可求解. 【详解】解:▱2a c b +=,12c a b -=, ▱()()122a c c ab b +-=⋅ , 即222c a b -= , ▱222+=a b c ,▱ABC 是直角三角形. 故选: A . 【点睛】本题主要考查了勾股定理的逆定理,平方差公式,熟练掌握若一个三角形的两边的平方和等于第三边的平方是解题的关键. 8.B 【解析】 【分析】取AB 的中点P ,连接OP 、CP ,利用直角三角形斜边中线等于斜边的一半,可得182OP AP AB ===,再由勾股定理,可得CP=10,再由三角形的三边关系,即可求解. 【详解】解:如图,取AB 的中点P ,连接OP 、CP ,▱16AB =,▱182OP AP AB === , 在Rt ACP 中,6AC =,由勾股定理得:10CP == ,▱18OC OP CP ≤+= ,▱当O 、P 、C 三点共线时,OC 最大,最大值为18. 故选:B . 【点睛】本题主要考查了直角三角形的性质,勾股定理,三角形的三边关系,熟练掌握相关知识是解题的关键. 9.B 【解析】 【分析】求出四边形PECF 是矩形,根据矩形的性质得出EF=CP ,根据垂线段最短得出CP▱AB 时,CP 最短,根据三角形的面积公式求出此时CP 值即可. 【详解】 解:连接CP ,▱PE▱AC ,PF▱BC ,▱ACB=90°, ▱▱PEC=▱ACB=▱PFC=90°, ▱四边形PECF 是矩形, ▱EF=CP ,当CP▱AB 时,CP 最小,即EF 最小,在Rt▱ABC 中,▱C=90°,AC=3,BC=4,由勾股定理得:AB=5, 由三角形面积公式得:AC×BC=AB×CP , CP=125, 即EF 的最小值是125=2.4, 故选:B .【点睛】本题考查了勾股定理,三角形的面积,矩形的性质和判定,垂线段最短等知识点,能求出EF最短时P点的位置是解此题的关键.10.A【解析】【分析】根据勾股定理的逆定理列出方程解即可,有第三边是斜边或者是直角边两种情况.【详解】当第三边是斜边时,第三边2=(cm),当第三边是直角边时,第三边1(cm).故选A.11.B【解析】【分析】判断一元二次方程根的情况通过判别式判断即可,有实数根即判别式大于等于0.【详解】解:▱关于x的一元二次方程22(21)0x m x m--+=有实数根▱()22=-2m141m0∆--⨯⨯≥⎡⎤⎣⎦解得:14m≤.故选:B.【点睛】本题考查了一元二次方程根的判别式,掌握一元二次方程的性质,运用判别式判断方程根的情况是解题的关键.12.B【解析】【分析】根据多边形内角和及外角和直接列式计算即可.【详解】解:多边形的内角和:(n -2)×180°;多边形的外角和是360°,根据题意可知: (n -2)×180°+360°=1260°,解得n=7.故选B .【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和公式及外角和始终为360°是解题的关键.13.3【解析】【分析】根据同类二次根式的概念及一元二次方程的解法进行求解即可.【详解】解:▱▱2221x x -=+,解得1231x x ==-,(舍去).故答案:3.【点睛】本题主要考查同类二次根式及一元二次方程的解法,熟练掌握同类二次根式的概念是解题的关键.14.甲【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】 ▱x 甲=x 丙>x 丁>x 乙,▱从甲和丙中选择一人参加比赛,▱22S S甲乙<,▱选择甲参赛,故答案为甲.15.2021【解析】【分析】根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2-2a=1,然后将其代入所求的代数式并求值即可.【详解】解:▱a是方程x2-2x-1=0的一个解,▱a2-2a=1,则2a2-4a+2019=2(a2-2a)+2019=2×1+2019=2021;故答案为2021.【点睛】本题考查的是一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式求值.16.2或73【解析】【分析】分三种情况求CQ:当AP=AQ时,CQ=2;当AP=PQ时,CQ;当AQ=PQ时,设CQ=x,则BQ=3﹣x,由9+(3﹣x)2=4+x2,即可求CQ=73.【详解】解:▱AB=3,DP=1,▱CP=2,▱AP如图1,当AP=AQ时,AQ在Rt▱ABQ中,BQ=1,▱CQ=2;如图2,当AP=PQ时,PQ,在Rt▱CPQ中,CQ如图3,当AQ=PQ时,设CQ=x,则BQ=3﹣x,在Rt▱ABQ中,AQ2=9+(3﹣x)2,在Rt▱PCQ中,PQ2=4+x2,▱9+(3﹣x)2=4+x2,▱x=73,▱CQ=73.故答案为:2或7 3【点睛】本题考查正方形的性质,等腰三角形的性质,能够作出满足条件的图形,并用勾股定理解题是关键.17.7﹣【解析】【分析】分别化简二次根式,然后先算乘方,再算乘法,最后合并同类二次根式.【详解】334--+7-=7﹣【点睛】本题考查二次根式的混合运算,掌握利用二次根式的性质进行化简及二次根式混合运算的计算法则是解题关键.18.x1=5,x2=﹣12【解析】【分析】化等号右边为0,左边因式分解得(2x﹣5)(x+1)=0,令两个一次因式等于0即可求出方程的解.【详解】解:2x2﹣3x=5.移项,得:2x2﹣3x﹣5=0,因式分解,得:(2x﹣5)(x+1)=0,2x﹣5=0或x+1=0,,x2=﹣1.解得:x1=52【点睛】本题主要考查了一元二次方程的解法——因式分解法,熟练掌握因式分解法的步骤是解决问题的关键.19.(1)见解析;(2)见解析.【解析】【分析】(1)根据勾股定理可得直角边长为2和1(2)根据勾股定理可得直角边长为3和1面积为3确定▱DEF.【详解】解如图所示图(1) 图(2)【点睛】此题主要考查了勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20.(1)见解析;(2)x =﹣1【解析】【分析】(1)求判别式()2420m ∆-⨯-=>即可证明;(2)将x =2代入一元二次方程x 2﹣mx ﹣2=0,即可求m ,由此确定一元二次方程为x 2﹣x ﹣2=0,再求方程的解即可.【详解】解:(1)()224280m m ∆=-⨯-=+>,▱无论m 取何实数,该方程总有两个不相等的实数根;(2)▱方程的一个根为2,将x =2代入一元二次方程x 2﹣mx ﹣2=0,得4﹣2m ﹣2=0,解得m =1,▱一元二次方程为x 2﹣x ﹣2=0,解得x =﹣1或x =2,▱方程的另一个解是x =﹣1.【点睛】本题考查了根的判别式及解一元二次方程,掌握判别式的值与方程的解法是解答此题的关键.21.(1)见解析;(2)16【解析】【分析】(1)利用中位线可证//DF BC ,//EF AB ,根据两组对边分别平行的四边形是平行四边形来证明即可;(2)由▱AFB =90°,得DF =DB =DA =12AB =4,再根据菱形的判定定理证得四边形BEFD 是菱形,进而求得答案.【详解】(1)证明:▱D ,E ,F 分别是AB ,BC ,AC 的中点,▱DF ,EF 是▱ABC 的中位线,▱//DF BC ,//EF AB ,▱四边形BEFD 是平行四边形;(2)解:▱D ,E ,F 分别是AB ,BC ,AC 的中点,8AB =, ▱142EF AB ==,又▱90AFB ∠=︒,142DF AB ==,▱EF DF =,由(1)得:四边形BEFD 是平行四边形,▱四边形BEFD 是菱形,▱4BE EF DF BD ====,▱四边形BEFD 的周长16=.【点睛】本题考查了平行四边形的判定定理、直角三角形斜边上的中线等于斜边的一半、菱形的判定和性质等,利用直角三角形斜边上的中线等于斜边的一半证明四边形的边相等是解题的关键.22.(1)0.2,70;(2)见解析;(3)80≤x <90;(4)900【解析】【分析】(1)根据频数、频率总数的关系进行计算即可,(2)在频数分布直方图中画出80-90组的频数直方图即可;(3)根据中位数的意义,找出处在第100、101位的两个数,落在哪个组即可;(4)样本估计总体,样本中优秀的占25%,因此估计总体3600人的25%是优秀的人数.【详解】解:(1)n=40÷200=0.20;m=200×0.35=70,故答案为:0.20,70;(2)补全频数分布直方图如图所示:(3)将200个数据从小到大排列后,处在第100、101位的两个数落在80≤x<90,故答案为:80≤x<90,(4)3600×0.25=900答:这次比赛的3600名学生中成绩“优”等约有900人.【点睛】本题考查了频数分布直方图,理解统计图中的数量和数量关系是正确解答前提.23.(1)见详解;(2)见解析.【解析】【分析】(1)只用无刻度直尺作图过程如下:▱连接AC、BD交于点O,▱连接EO,EO 为▱AEC的角平分线;(2)先根据AF=EC,AF▱CE,判定四边形AECF是平行四边形,再根据AE=EC,即可得出平行四边形AECF是菱形.【详解】解:(1)如图所示,EO为▱AEC的角平分线;(2)▱四边形ABCD是平行四边形,▱AD▱BC,▱▱AFE=▱FEC,又▱▱AEF=▱CEF,▱▱AEF=▱AFE,▱AE=AF,▱AF=EC,▱四边形AECF是平行四边形,又▱AE=EC,▱平行四边形AECF是菱形.【点睛】本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.24.(1)1600元;(2)55元【解析】【分析】(1)根据每天的销售利润=每件的利润×每天的销售量,即可求出结论;(2)设每件工艺品售价为x元,则每天的销售量是[100-2(x-50)]件,根据每天的销售利润=每件的利润×每天的销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)(60-40)×[100-(60-50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100-2(x-50)]件,依题意,得:(x-40)[100-2(x-50)]=1350,整理,得:x2-140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.(1)见解析;(2)见解析;(3)EF【解析】【分析】(1)只需要证明BCG▱DCE即可得到答案;(2)先证明BEF▱BDF得到=EF FD,然后根据直角三角形斜边上的中线等于斜边的一半得到1=2CF EF DE=,FCE E∠=∠,然后根据正方形的性质与角平分线的定义进行求解即可;(3)先求出BG BD=GF x=,则=BF BG GF x+=在Rt BDF和Rt DFG中,由勾股定理222DF BD BF=-,222DF GD GF=-,求出x,由此即可得到答案.【详解】解:(1)▱四边形ABCD是正方形,▱BC=DC,▱BCD=90°,▱▱DCE=90°,▱CBG+▱BGC=90°,▱BF▱DE,▱▱BFE=90°,▱▱CBG+▱E=90°,▱▱BGC=▱E▱BCG ▱DCE (AAS ),▱CG CE =;(2)▱BF 平分DBE ∠,▱EBF DBF ∠=∠,又▱▱BFD=▱BFE=90°,BF=BF▱BEF ▱BDF (ASA ),▱=EF FD ,▱F 是DE 的中点 ▱1=2CF EF DE =,▱FCE E ∠=∠,▱四边形ABCD 是正方形,▱▱DBE=▱ACB=45°▱BF 平分DBE ∠,▱22.5EBF ∠=,▱67.5E ∠=,▱67.5FCE E ∠=∠=▱1804567.567.5ACF ∠=--=.即ACF FCE ∠=∠,▱CF 平分ACE ∠.(3)▱G 为DC 中点,==2AB CD ,▱1CG GD ==,由勾股定理:BG BD =设GF x =,则=BF BG GF x +=在Rt BDF 和Rt DFG 中,由勾股定理:222DF BD BF =- , 222DF GD GF =- ▱()22221x x -=-,解得x =再由勾股定理:DF ==由(1)知:BG DE =,▱=EF DE DF BG DF -=-=.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,角平分线的定义与判定,解题的关键在于能够熟练掌握相关知识进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期末测试卷一、选择题(每题4分,共40分)1.已知2是关于x的方程x2-2ax+4=0的一个解,则a的值是() A.1 B.2 C.3 D.42.当a+5a-2有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠-2 3.下列说法中不正确的是()A.三个内角度数之比为3:4:5的三角形是直角三角形B.三边长之比为3:4:5的三角形是直角三角形C.三个内角度数之比为1:2:3的三角形是直角三角形D.三边长之比为1:2:3的三角形是直角三角形4.一个多边形的内角和是外角和的3倍,则这个多边形的边数是() A.9 B.8 C.7 D.6(第5题)5.某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2万步,1.3万步B.1.3万步,1.3万步C.1.4万步,1.35万步D.1.4万步,1.3万步6.下列计算正确的是()A.310-25= 5 B.711·⎝⎛⎭⎪⎫117÷111=11C.(75-15)÷3=2 5 D.1318-389= 27.已知α、β是一元二次方程x2+x-2=0的两个实数根,则α+β-αβ的值是()A.3 B.1 C.-1 D.-3 8.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2 3(第8题)(第9题)(第10题)9.如图,在△ABC中,延长BC至D,使得CD=12BC.过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连接DF,若AB=8,则DF的长为() A.3 B.4 C.2 3 D.3 2 10.如图,在正方形ABCD的对角线BD上截取BE=BC,连接CE并延长交AD 于点F,连接AE,过B作BH⊥AE于点G,交AD于点H,则下列结论错误的是()A.AH=DF B.S四边形EFHG=S△DEF+S△AGHC.∠AEF=45°D.△ABH≌△DCF二、填空题(每题5分,共20分)11.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=________.12.某校开展“节约用电,保护环境”活动,为了了解开展活动一个月以来节约用电情况,从九年级的300名同学中随机选取40名同学,统计了他们各自家庭一个月节约用电的情况,绘制统计表如下:节约电量/度 2 3 4 5 6家庭数/个 5 12 12 8 3请你估计九年级300名同学的家庭一个月节约用电的总量是________度.13.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△P BE是等腰三角形,则腰长为____________.14.在▱ABCD中,BC边上的高为4,AB=5,AC=6,则▱ABCD的周长为________.三、(每题8分,共16分)15.(1)计算:213×9-12+378-1;(2)解方程:x2-10x+9=0.16.实数a、b在数轴上的对应点的位置如图所示,请化简|a|-a2-b2.四、(每题8分,共16分)17.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E在小正方形的顶点上.连接CE,请直接写出线段CE的长.(第17题)18.已知关于x的一元二次方程x2-(m-1)x+m+2=0.(1)若方程有两个相等的实数根,求m的值;(2)若方程的两个实数根之积等于m2-9m+2,求m的值.五、(每题10分,共20分)19.如图,分别延长▱ABCD的边CD,AB到E,F,使DE=BF,连接EF,分别交AD,BC于G,H,连接CG,AH.求证:CG∥AH.(第19题)20.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.(1)设花圃的一边AB长为x米,请你用含x的代数式表示另一边AD的长为________米;(2)若花圃的面积刚好为45平方米,求此时花圃的长与宽.(第20题)六、(12分)21.某水果店去年3至8月销售吐鲁番葡萄、哈密瓜的情况如下表:3月4月5月6月7月8月吐鲁番葡萄(单位:百公斤) 4 8 5 8 10 13哈密瓜(单位:百公斤) 8 7 9 7 10 7 (1)请你根据以上数据填写下表:平均数/百公斤方差吐鲁番葡萄8 9哈密瓜________ ________(2)请你根据上述信息,对这两种水果在去年3月份至8月份的销售情况进行分析.七、(12分)22.如图,已知点D是△ABC的边BC的中点,直线AE∥BC,过点D作DE∥AB,分别交AE、AC于点E、F.(1)求证:四边形ADCE是平行四边形;(2)如果四边形ADCE是矩形,△ABC应满足什么条件?并说明理由;(3)如果四边形ADCE是菱形,直接写出△ABC应满足的条件是__________________.(第22题)八、(14分)23.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG ⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论;(3)若∠B=30°,判断四边形AEGF是否为菱形,并说明理由.(第23题)答案一、1. B 2. B 3. A 4. B 5. D6.B 7. B8.C 点拨:在Rt △ABC 中,CE 为AB 边上的中线,所以CE =12AB =AE ,因为CE =5,AD =2,所以DE =3,因为CD 为AB 边上的高,所以在Rt △CDE 中,由勾股定理求得CD =4,故选C.9.B 点拨:取AB 的中点M ,连接EM ,则ME ∥BC ,ME =12BC ,∵EF∥CD ,∴M ,E ,F 三点共线,∵EF =2CD ,∴MF =BD ,∴四边形MBDF 是平行四边形,∴DF =BM =4.10.B 点拨:∵四边形ABCD 是正方形,∴∠ABE =∠ADE =∠CDE =45°,AB =BC ,∵BE =BC ,∴AB =BE ,∵BG ⊥AE ,∴BH 是线段AE 的垂直平分线,∠ABH =∠DBH =22.5°,在Rt △ABH 中,∠AHB =90°-∠ABH =67.5°,∵∠AGH =90°,∴∠DAE =∠ABH =22.5°, 在△ADE 和△CDE 中,DE =DE ,∠ADE =∠CDE =45°,AD =CD , ∴△ADE ≌△CDE , ∴∠DAE =∠DCE =22.5°, ∴∠ABH =∠DCF , 在Rt △ABH 和Rt △DCF 中,⎩⎨⎧∠BAH =∠CDF ,AB =DC ,∠ABH =∠DCF ,∴Rt △ABH ≌Rt △DCF ,∴AH =DF ,∠CFD =∠AHB =67.5°, ∵∠CFD =∠EAF +∠AEF , ∴67.5°=22.5°+∠AEF ,∴∠AEF =45°,故A 、C 、D 正确;连接HE , ∵BH 是AE 的垂直平分线, ∴AG =EG ,∴S △AGH =S △HEG ,∵AH =HE ,∴∠AHG =∠EHG =67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故B错误,故选B.二、11. -212. 1 14013.25或52或65214.45+16或45+4点拨:分两种情况:如图①所示,在▱ABCD中,BC边上的高AE=4,AB=5,AC=6,∴EC=AC2-AE2=25,BE=AB2-AE2=3,∴BC=25+3,∴▱ABCD的周长=2(AB+BC)=45+16;如图②所示,同①得EC=AC2-AE2=25,BE=AB2-AE2=3,∴AD=BC=25-3,∴▱ABCD的周长=2(AB+BC)=45+4,故答案为45+16或45+4.(第14题)三、15.解:(1)213×9-12+378-1=213×9-23+3-18=23-23-12=-1 2.(2)将方程左边因式分解,得(x-1)(x-9)=0,则有x-1=0或x-9=0,所以x1=1,x2=9.16.解:由数轴可知a<0<b,∴|a|-a2-b2=|a|-|a|-|b|=-|b|=-b.四、17.解:(1)如图所示,矩形ABCD即为所求.(第17题)(2)如图△ABE即为所求,CE=4.18.解:(1)∵Δ=b2-4ac=[-(m-1)]2-4×(m+2)=m2-6m-7,而方程有两个相等的实数根,∴m2-6m-7=0,解得m1=-1,m2=7.(2)由题意可知m+2=m2-9m+2,解得m1=0,m2=10,∵当m=0时,Δ<0,此时原方程没有实数根,∴m=10.五、19.证明:在▱ABCD中,AB∥CD,AD∥CB,AD=CB,∴∠E=∠F,∠EDG=∠DCH=∠FBH,又DE=BF,∴△EGD≌△FHB,∴DG=BH,∴AG=HC,又∵AD∥CB,∴四边形AGCH为平行四边形,∴AH∥CG.20.解:(1)(24-3x)(2)由题意可得(24-3x)x=45,解得x1=3,x2=5,当AB=3米时,BC=15米>14米,不符合题意,舍去,当AB=5米时,BC=9米,符合题意.答:花圃的长为9米,宽为5米.六、21.解:(1)平均数/百公斤方差吐鲁番葡萄8 9哈密瓜__8__ __43__(2)瓜的销售较稳定;②由于吐鲁番葡萄销售量处于上升趋势,故吐鲁番葡萄销售量前景较好.七、22.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵点D是△ABC的边BC的中点,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形.(2)解:AB=AC.理由如下:∵四边形ADCE是矩形,∴AD⊥BC,∵点D是△ABC的边BC的中点,∴AB=AC.(3)△ABC是直角三角形,且∠BAC=90°八、23.(1)证明:∵AF=FG,∴∠F AG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠F AG,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED,∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∴∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD.(2)证明:过点G作GP⊥AB于点P,如图.∴GC=GP,∴△CAG≌△P AG,∴AC=AP,GC=GP.由(1)得GE=GD,∴Rt△ECG≌Rt△DPG,∴EC=DP,∴AD=AP+PD=AC+EC. (3)解:四边形AEGF是菱形,理由如下:∵∠B=30°,∴∠ADE=30°,∴AE=12AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AEGF是菱形.(第23题)。

相关文档
最新文档