最新人教版八年级数学一次函数复习课教学设计
最新人教版八年级数学第19章《一次函数》复习导学案

《一次函数》复习导教案班级: ___________姓名 :___________座号: __________ 抽测成绩: ____________(一)复习目标1、理解一次函数的观点;2、掌握一次函数的图像与性质;3、会用待定系数法求一次函数的表达式;4、掌握一次函数与一次方程、不等式的关系。
(二)教课过程一、活动一:一次函数的观点1、形如函数 y=_______(k、b 为常数, k___)叫做一次函数。
当b___时,函数 y=____(k____)叫做正比率函数。
2、理解一次函数观点应注意下边两点:(1)分析式中自变量 x 的次数是 ___次,( 2)比率系数 k_______。
针对训练:1、以下函数:①y=-3x②y x1③y3④y 3 x 2;此中是一3x2次函数的有。
(填序号)二、活动二:一次函数的图像与性质( 1)形状:一次函数y=kx+b 的图象是一条;( 2)平移:直线 y=kx 沿平移个单位长度获得y=kx+b 的图象,当 b>0 时,向平移;当b<0时,向平移。
( 3)一次函数 y=kx+b 中, k 与 b 的作用;k 的作用是决定: ____________________________________当 k>0 时,图像经过 _________象限, y 随 x 的增大而 ______,图像从左往右_______;当 k<0 时,图像经过 _________象限, y 随 x 的增大而 ______,图像从左往右_______;b 的作用是决定: _______________________________________当 b>0 时,一次函数图像交 y 轴的 ________________;当 b=0 时,一次函数图像交 y 轴的 ________________;当 b<0 时,一次函数图像交 y 轴的 ________________;针对训练:1、将直线 y=-3x 向上平移 4 个单位所得的直线的分析式是,y 随 x 的增大而;2、直线 y= -2x-3 向平移个单位长度获得直线y= -2x+6。
八年级数学_一次函数_复习教案

一次函数的复习教案课型:复习课 教学目标1、进一步巩固一次函数的相关知识,初步学会从数学的角度提出问题,理解问题,并能综合运用所学知识和技能解决问题,发展应用意识。
2.在利用图像探究方案的决策过程中,体会“数形结合”思想在数学应用中的重要地位。
并能运用数形结合的方法解决有关实际问题,并尝试用函数的方法描述有关实际问题,对变量的变化规律进行初步预测。
德育目标:在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
教学重点和难点重点: 运用一次函数数形相结合思想解决实际问题 难点: 灵活运用数与形解决实际问题 教学过程一、 知识要点回顾1.一次函数的概念:一次函数的概念:函数y=_______(k 、b 为常数,k______)叫做一次函数。
当b_____时,函数y=____(k____)叫做正比例函数,定义域 。
截距:一条直线与y 轴交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距。
一般的,直线y=kx+b(k ≠0)与y 轴的交点坐标是(0,b),直线y=kx+b(k ≠0)的截距是b.练习:1.下列函数中,哪些是一次函数?2.函数y=(m +2)x+( 2m -4)为正比例函数,则m 为何值3.直线y=2(x-3)+1 在y 轴上的截距是知识点:x y x y xy x y 2)4(1)3(1)2(2)1(=+-===练习:1. 填空题:有下列函数:①y=6x-5 , ② y=2x ③ y=x+4 , ④ y=-4x+3 。
其中过原点的直线是_____;函数y 随x 的增大而增大的是________;函数y 随x 的增大而减小的是______;图象在第一、二、三象限的是_____。
2.根据下列一次函数y=kx+b(k ≠ 0)的草图回 答出各图中k 、b 的符号:k__0,b__0 k__0,b__0 k__0,b__0 k__0,b__0 3、直线y=kx+b 经过一、二、四象限,则k 0, b 0.此时,直线y=bx +k 的图象只能是( )5.一次函数y=b-3x ,y 随x 的增大而6.一次函数y=-2x+b 图象过(1,-2),则b=7.一次函数y= -x+4的图象经过 象限8.直线y=kx+b 经过一、二、三象限,那么y=bx-k 经过 象限9.函数y=(m-2)x 中,已知x1>x2时,y1<y2,则m 的范围是10.直线y=3x+b 与y 轴的交点的纵坐标为-2,则这条直线一定不过象限11、设点P(0,m),Q(n,2)都在函数y=x+b 的图象上,则m+n= 12、函数 是一次函数,m= ,且y 随x 的增大而 。
初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。
2、直线y = — 2X — 2 不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。
5、过点(0,2)且与直线y=3x平行的直线是:。
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
八年级数学《一次函数-复习》教学设计

《14.2.2一次函数习题课》教学设计教学评价通过随堂提问、练习反馈、作业反馈及时对学生进行评价。
评价过程中面向全体学生,关注学生的个性差异,将学生自评、生生互评和教师概括引领、激励测进式点评有机结合。
教 学 流 程活动流程活动内容及目的活动一揭示课题,提出要求学生通过做练习,回顾一次函数的相关知识,以达到巩固双基的目的。
活动二提问检查,归整建构通过知识框架的建立,使学生头脑中对一次函数的相关知识有一个完整的 认识。
活动三变式训练,查补缺漏进一步巩固一次函数的的知识. 使 他们的学习得以提高。
活动四全课小结,再现新知使所学知识条理化、系统化。
活动五推荐作业,强化反馈以学生自主发挥为主、让不同的人获得不同的数学知识。
教 学 程 序问题与情境师生互动 媒体使用与教学评价 活动一揭示课题,提出要求请同学们用一次函数的知识解决下列问题: 1.下列函数中是一次函数的是:y=8x 2 y=x+1 y=x8 y=11+x y=-3x.2. 当m = ____________时,函5)3(82-+=-m x m y 是一次函数.3.一次函数y=x+1的图像大致是( ).4. 一次函数y = -x+1 的图像通过第____________象限,且y 随x 的增大而____________.5.直线经过A(0,2)和B (2,0)两点, 请你求出这条直线的表达式. 【教师活动】 出示问题,组织学生分组竞赛完成,最后让学生自评。
教师由此引入新课,板书课题。
【学生活动】 学生通过合作,在竞争中完成练习,并进行评价。
【媒体使用】 出示问题 【设计意图】学生通过做练习,回顾一次函数的相 关知识,以达到巩 固双基的目的.活动二提问检查,归整建构 一次函数知识框架表 1. 一次函数的概念. 2. 一次函数的图像.【教师活动】教师将学生分组,让学生自己总结,然后交流,【媒体使用】 动态展示相关问题的解答过程及结果【设计意图】3.一次函数的性质.4.直线y=kx+b的位置与k、b符号的关系.5.一次函数表达式的确定. 最后教师展示。
人教版八年级下册数学《函数》一次函数说课教学课件复习

(3)当 x = 300时,函数 y 的值为:y=40-0.1×300=10
因此,当汽车行驶300 km时,油箱中还有油10L.
2. 等腰三角形ABC的周长为10, 底边BC长
x 为 y , 腰AB长为 , 求:
(1)表示y与x的函数关系的式子。 (2) 自变量的取值范围;
另一边长为
( 5-x )(m) 1 长方形面积(m2) 4
…
2
2.5 3
…
6
6.25 6
设长方形的面积为s(m2),一边长为x,怎样用含
X的式子表示长方形的面积s?
s=x(5-x)
上述三个问题有什么共同之处?
1. 每个变化的过程中都存在着两个变量.
2.当一个变量确定一个值时,另一个变量有唯一确定的值与 其对应。
(3) 腰长AB=3时,求底边的长.
1.下列问题中哪些量是自变量?哪些量是自变量的函数?
试写出用自变量表示函数的式子。 (1)改变正方形的边长X,正方形的面积S随之改变。
___x____是自变量,__s___是___x___的函数, 关系式是____S_=__x_2__________。
(2)秀水村的耕地面积是106 m2 ,这个村人均占有耕地面积y随这个 村人数n的变化而变化。
函数
课件
学习目标
1. 函数的概念; 2. 函数的几种表示方法; 3. 体验生活中的函数关系;
复习回顾
1.什么叫变量? 2.什么叫常量?
思考:1每个问题中各有几个变量?
2同一个问题中的变量之间有什么联系?
问题1 :行驶里程s(千米)与行驶时间t(小时)
的关系式为:S=60t。请填写下表:
八年级数学一次函数复习教案

一次函数的复习教案课题:一次函数的复习课型:复习课一、教学目标1、进一步巩固一次函数的相关知识,初步学会从数学的角度提出问题,理解问题,并能综合运用所学知识和技能解决问题,发展应用意识。
2经历提出问题,收集和整理数据,获取信息,处理信息(画出函数的图象),形成如何决策的具体方案。
3在利用图像探究方案的决策过程中,体会“数形结合”思想在数学应用中的重要地位。
4在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
二、问题的引入:国庆节期间,李老师提着篮子(篮子重0.5斤)去市场买10斤鸡蛋,当李老师往篮子里装称好的鸡蛋时,发觉比过去买10斤鸡蛋的个数少很多,于是他将鸡蛋装进篮子再让摊主一起称,共称得10.55斤,即刻他要求摊主退1斤鸡蛋的钱. 你能用所学知识找到其中的奥秘了吗? ()x 109y .x y =斤斤,摊主称重为设实际重为 三、知识要点回顾1.一次函数的概念:函数y=_______(k 、b 为常数,k______)叫做一次函数。
当b_____时,函数y=____(k____)叫做正比例函数.★理解一次函数概念应注意下面两点:⑴解析式中自变量x 的次数是___次, ⑵比例系数_____.2.正比例函数y=kx(k ≠0)的图象是过点(_____),(______)的_________.3.一次函数y=kx+b(k ≠0)的图象是过点(0,___),(____,0)的__________. 4 .求下列函数中自变量的取值范围:()1-2x x -1y )3(;2x 1y )2(;1-x 1y 1=-== 5.正比例函数y=kx (k ≠0)的性质:⑴当k>0时,图象过______象限;y 随x 的增大而____。
⑵当k<0时,图象过______象限;y 随x 的增大而____。
6.一次函数y=kx+b(k ≠ 0)的性质:⑴当k>0时,y 随x 的增大而_______;当b>0时,图像交Y 轴于 半轴. ⑵当k<0时,y 随x 的增大而_______;当b>0时,图像交Y 轴于 半轴. ⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图中k 、b 的符号:四、拓展创新1.某函数具有下列两条性质: (1)它的图像是经过原点(0,0)的一条直线;(2)y 的值随x 值的增大而增大.请你举出一个满足上述条件的函数(用关系式表示)2. 若把函数x 54y 的图象沿x 轴向左平移5个单位, 则得到的图象的函数解析式是___________.3. 如图,在同一坐标系中,关于x 的一次函数y = x+ b 与 y = b x+1的图象只可能是( )4.如图,直线y 1与x 轴、y 轴分别交于B 、C 两点,直线y 2与x 轴、y 轴分别交于A 、D 两点,,并且这两条直线交于点P 的坐标(2,2)(1)求这两条直线的解析式; (2)求四边形AOCP 的面积. 五、学以致用例1 柴油机在工作时油箱中的余油量Q(千克)与工作时间t (小时)成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克(1)写出余油量Q 与时间t 的函数关系式;(2)画出这个函数的图象.例2下图 l1 l2 分别是龟兔赛跑中路程与时间之间的函数图象.根据图象可以知道:(1)这一次是 米赛跑;(2)表示兔子的图象是 ;(3)当兔子到达终点时,乌龟距终点还有 米;(4)乌龟要与兔子同时到达终点乌龟要先跑 米;(5)乌龟要先到达终点,至少要比兔子早跑 分钟.例3某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(微克)随时间x(时)变化情况如图所示,当成人按规定剂量服药后.(1)服药后 时,血液中含药量最高,达每毫升 微克,接着逐步衰减.(2)服药后5时,血液中含药量为每毫升微克 (3)当x ≤2时,y 与x 之间的函数关系式是 (4)当x ≥2时,y 与x 之间的函数关系式是 (5)如果每毫克血液中含药量度3微克或3微克以上时,治疗疾病最有效,那么这个有效时间范围是 时.六、智力加油站1.回顾与反思• 我在这节课学到的有___________________.• 对于这节课我喜欢的是_________________.• 我参与最多的是_______________________.• 我参与最少的是_______________________.• 今天的学习,谁帮助了我_________________.我帮助了谁_________________.• 我正在_________________方面取得进步.• 我希望在_______________方面多加努力.• 我想说:2.作业(1)必做题:练习册P20~P21 1~16;(2)选做题:①练习册P20~P21 17~19;②教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y (升)与放水时间x (分钟)的函数关系如图所示:(1)求出饮水机的存水量y (升)与放水时间x (分钟)(x ≥2)的函数关系式;(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?x (分钟)。
八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
人教版数学八年级下册_《第19章_第1课时_一次函数复习》教学设计

人教版八下第19章一次函数复习课(第1课时)教学设计教学内容解析教学流程图地位与作用函数是反映现实世界中数量关系和变化规律的常见数学模型之一,一次函数作为学生接触的第一种函数模型,是数学中最简单、最基本的函数,也是学生今后学习二次函数、反比例函数的基础.本章学习了函数与一次函数的定义和图象,结合图象研究了一次函数的性质,探讨了一次函数与一元一次方程、一元一次不等式、二元一次方程组之间的关系;其中,对一次函数的图象和性质的研究思路和方法,将对其他函数的研究起到很好的铺垫作用.一次函数是初中数学研究的一类最基本、最简单的函数,其中函数的定义、一次函数的定义、图象和性质是本章的主要基础知识;会根据问题的条件写出一次函数的解析式,会画一次函数的图象,是学习本章后应具备的基本技能.通过复习,加深学生利用函数观点对数学问题的理解.概念解析在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值都有唯一确定的y值与其对应,那么我们就说x是自变量,y是x的函数.函数的定义中包括了对应值的存在性和唯一性两重意思.单值对应是函数概念的关键词,是函数概念的核心所在.变量y要成为变量x的函数需满足两个条件:一是在同一变化过程中有两个变量x和y;二是对于变量x的每一个确定值,变量y都有唯一确定的值与之对应.一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.一次函数与正比例函数之间的关系是一般与特殊的关系,当一次函数中常数b=0时,一次函数就是正比例函数.思想方法本章从实际问题出发,研究变量与变量之间的一种对应关系,提出了函数的概念,给出了三种刻画函数的表示形式;学习了利用待定系数法求函数解析式的方法;结合函数图象研究了函数的性质,利用函数的性质也解释了函数的图象,接着研究了一次函数与一元一次方程、一元一次不等式、二元一次方程组之间的关系.这个过程不仅是知识的形成过程,更体现了数学建模、方程、数形结合、由特殊到一般等数学思想.知识类型本课时复习内容既有概念性知识,又有像正比例函数、一次函数的图象与性质等关于有理与规则的知识,更有数学抽象、数学建模、数形结合等关于数学思想方法的知识.由知识的类型决定,教学中应由具体事例出发,引导学生回顾知识,逐步完善知识结构,并注意对有关技能给予强化训练.教学重点一次函数的图象和性质,及三个“一次”之间的关系.教学目标解析教学目标1.掌握一次函数及其相关知识;并能运用这些知识解决相关的数学问题.2.通过具体实例,进一步体会数学中的数学建模、方程思想、数形结合、待定系数法等重要的数学思想和方法.目标解析达成目标1的标志是:能辨别函数及一次函数,会用描点法画函数的图象,能说出一次函数的性质,并能利用一次函数图象和性质解决相关的数学问题.达成目标2的标志是:能分析实际问题中变量之间的关系,将实际问题抽象为函数问题,能利用待定系数法求出一次函数解析式,能依据一次函数性质或图象解决有关问题.教学问题诊断分析具备的基础学生已经学完了本章的内容,对函数的定义、一次函数的图象和性质、一次函数与方程不等式的关系有了一定的理解,另外学生已掌握一元一次方程、二元一次方程组的解法,具备了一定的化归能力,积累了一定的数形结合解决问题的经验.与本课目标的差距分析学习本节内容,需要学生在学习过函数、一次函数相关知识的基础上,深入理解函数的概念,熟练准确调用一次函数的性质,并能结合函数的图象解决相关问题.在解决问题的过程中需要学生具备解方程的技能和较强的运算能力.存在的问题函数的概念较为抽象,掌握其本质——任给一x值都有唯一的y值和其对应,还需要一段时间消化;对一次函数的解析式中k≠0容易忽略,对一次函数与方程、不等式关系的理解和运用还需要进一步强化.应对策略(1)注意引导学生对相关概念、性质的理解;(2)通过呈现不同的题目,引导学生主动辨别概念和隐含条件;(3)通过解题反思和分享,引导学生熟练利用一次函数及其性质解决问题;(4)通过练习思考,逐步积累学习的经验,加深对相关概念和性质的理解.教学难点一次函数的图象及性质的综合应用.教学支持条件分析函数概念之中体现的是“变化与对应”的思想,教学中可以充分利用信息技术手段,用思维导图帮助学生完善本章的知识体系,运用几何画板、Geogebra等动态几何软件画出函数图象、利用其中的电子表格功能分析数量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数复习课教学设计
【教材分析】
本课的内容是人教版八年级上册第11章复习课,是对本章关于一次函数重点内容的复习。
本章中关于一次函数的知识结构如图
通过本课的学习使学生巩固一次函数图象的画法和一次函数的性质,并对一次函数进行拓展,是今后继续学习其它函数的基础,本章起着承上启下的作用。
本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。
【学情分析】
本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。
原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
【教学目标】
知识技能:
1、进一步理解一次函数和正比例函数的意义;
2、会画一次函数的图象,并能结合图象进一步研究相关的性质;
3、巩固一次函数的性质,并会应用。
过程与方法:
1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;
2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。
情感态度:
1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;
2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点难点
教学重点:复习巩固一次函数的图象和性质,并能简单应用。
教学难点:在理解的基础上结合数学思想分析、解决问题。
【教法学法】
1、教学方法
依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
因此我选用了以下教学方法:
1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过几何画板动画演示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导
做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。
本着这样的原则,课上指导学生采用以下学习方法。
1、 自主探究。
培养学生独立思考能力,阅读能力和自主探究的学习习惯。
2、 合作交流。
在独立思考的基础上,进行小组合作,培养学生合作意识。
【教学过程】
教学过程分为三部分
1、 知识回顾
先独立填空,在四人小组交流纠错、讲解、补充。
一、一次函数与正比例函数的概念
一般地,形如 的函数,叫做正比例函数。
一般地,形如 的函数,叫做一次函数。
二、一次函数的图象和性质
1、 形状
一次函数的图象是一条
2、 画法
确定 个点就可以画一次函数图像。
一次函数与x 轴的交点坐标( ,0),与y 轴的交点坐标(0, ),正比例函数的图象必经过两点分别是(0, )、(1, )。
3、 性质
(1)一次函数)0(≠+=k b kx y ,当k 0时,y 的值随x 值得增大而增大;当k 0时,y 的值随x 值得增大而减小。
(2)正比例函数,当k 0时,图象经过一、三象限;当k 0时,图象经过二、四象限。
(3)一次函数)0(≠+=k b kx y 的图象如下图,请你将空填写完整。
三、一次函数与正比例函数的关系 k 0,b 0 k 0,b 0 k 0,b 0 k 0,b 0
正比例函数是特殊的一次函数,一次函数包含正比例函数。
一次函数当k 0,b 0时是正比例函数。
一次函数b kx y +=可以看作是由正比例函数kx y =平移︱b ︱个单位得到的,当b >0时,向 平移b 个单位;当b <0时,向 平移︱b ︱个单位。
四、待定系数法确定一次函数解析式
通过两个条件(两个点或两对数值)来确定一次函数解析式。
设计意图:通过几个填空题让学生回顾一下一次函数的知识要点,通过小组合作及时纠错、讲解、补充,让学生体会小组合作的必要性。
2、 夯实基础
本部分是本节课的重点内容,所以采取先独立完成,再小组交流,再生生答疑、师生答疑,最后独立修改。
相信你的选择
1、下列函数中是一次函数的是( )
A.122-=x y
B.x y 1-=
C.31+=x y
D.1232-+=x x y
2、关于函数x y 5
1-=,下列说法中正确的是( ) A.函数图象经过点(1,5) B.函数图像经过一、三象限
C. y 随x 的增大而减小
D.不论x 取何值,总有0<y
3、一次函数34y x =-的图象不经过...
( )。
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4、如果点M 在直线1y x =-上,则M 点的坐标可以是( )
A .(-1,0) B.(0,1) C.(1,0) D.(1,-1)
5、在平面直角坐标系中,将直线23+-=x y 向下平移动4个单位长度后,所得直线的解析式为( )。
A .43--=x y B.43+-=x y C.63+-=x y D.23--=x y
6、如图,直线AB 对应的函数表达式是( ) A .332y x =-+ B .332y x =+
C .233y x =-+
D .233y x =+ 试试你的身手 1、22-=x y (如图)与x 轴的交点坐标 ,与y 轴的交点坐
标 ,直线与两坐标轴所围成的三角形面积为 。
2、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。
3、已知一次函数的图象过点(03),与(21),,则这个一次函数y 随x 的增大而 。
4、一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:_______________。
设计意图:本课内容重点就在这部分,所以必须要让学生研究明白,不能得过且过。
当学生经过独立完成、小组交流之后,大部分的同学,大部分的题已经解决了,剩下部分有学生答疑或者教师答疑,这样研究比较透彻,也可以使学生学会学习方法。
3、能力提升
挑战你的技能
这一部分是由一组题窜组成,难度逐步增大,所以让学生经历独立思考、四人组合作到八人组合作,教师课件展示。
1、已知一次函数的图象过点A(0,8)与B(6,0),
(1)求这个一次函数解析式,并在右面网格中画出函数图象。
(2)求△AOB、的面积;在x轴上一点C(13,0),求△ABC
的面积。
(3)一次函数图象上有一动点P,求出△PBC的面积S与
P点横坐标x之间的函数关系式。
(4)一次函数图象上一点D(9,a),求出△PCD的面积S
与P点横坐标x之间的函数关系式。
(5),在x轴上找一点E,使以A、B、E三点为顶点的三
角形是等腰三角形。
(只找点,不用求坐标)
设计意图:通过学生小组的不断地壮大,进一步加强学生的
合作意识,以及学会收集他人信息的目的。
当学生的思路受
阻的时候,教师适当的进行课件演示,来激发学生学习兴趣,
把抽象的知识直观的展现在学生面前,逐步将他们的感性认
识引领到理性的思考。
课后小结
本课你都有哪些收获?你是否对一次函数有了进一步认识?
【课后反思】
本节课是一次函数复习课,主要针对学生的基础进行训练。
由知识点复习到基础试题复习,最后能力提升。
并且综合了近几年中出现的数学解题思想,达到对学生能力的培养。