DNA的损伤修复PPT课件
合集下载
DNA的损伤和修复ppt课件

12
(a)亚硝酸修饰G、C、A;(b)羟基修饰C;(c)甲基磺酸乙酯修饰T(引自Russell,1992).
3、嵌入染料对DNA的损伤作用
吖啶橙 (Acridine Orange AO) 溴化乙锭 (Ethidium Bromide EB )
扁平染料分子
分子插入
TAO T
-A
TTTCG -
-ATTTTTCG - AO -T
❖ 自由基可导致碱基、核糖、磷酸基的损伤,引起DNA的结构和 功能异常。
最新版整理ppt
7
(三)化学毒物致DNA损伤
❖ 按其作用原理可分为: 碱基类似物 碱基修饰物 嵌入染料
最新版整理ppt
8
1、碱基类似物(Base analog)
是指与DNA正常碱基结构类似的化合物,在DNA复制时掺入并与 互补链上碱基配对,从而引起碱基对的置换.
❖ 常见的DNA修复方式:直接修复、切除修复、错配修复和重 组修复
最新版整理ppt
21
(一)直接修复
❖ 直接修复
❖
细胞对DNA的某些损伤可以用很简单的方式加以修复
在单一基因产物的催化下,一步反应就可以完成。这种修复
方式叫直接修复。
包括:酶光学复活、嘌呤的直接插入、O6-甲基鸟嘌呤- DNA甲基转移、单链断裂重接等。
常见的损伤有:碱基脱落、碱基破坏、嘧啶二聚体形成、单链和 双链DNA断裂、DNA交联、DNA-蛋白质交联等。
最新版整理ppt
14
(一) 碱基和核糖的破坏
❖ 由于碱基或者核糖的损伤,在DNA链上形成不稳定位点,最 终可导致DNA链的断裂。
最新版整理ppt
15
最新版整理ppt
16
(二)错配
DNA是主要的遗传物质(上课课件).ppt (恢复) (恢复)

20世纪20年代: 认为蛋白质是生物体的遗传物质 氨基酸 多肽 蛋白质
20世纪30年代: 脱氧核苷酸
磷酸 脱氧 核糖
DNA
碱基
向蛋白质是遗传物质的观点提出挑战的 学者是谁呢?
……
艾弗里
格里菲思
赫尔希
二、DNA是遗传物质的实验证据
1、肺炎双球菌的转化实验
2、噬菌体侵染细菌的实验
(一)格里菲思的肺炎双球菌转化实验 实验材料:肺炎双球菌
第3章 基因的本质
基ห้องสมุดไป่ตู้是什么?
DNA或蛋白质?
几多实验,几多论争。
是谁将谜底揭破?
亲 代
减数 雄体 精子 (2N) 分裂 (N) 减数 雌体 分裂 卵细胞 (N)
(2N)
祖孙三代的鼻子
受精 有丝 子 受精卵 作用 分裂 代
(2N) (2N)
通过对孟德尔遗传规律以及细胞的 有丝分裂、减数分裂和受精过程的 学习,认识到染色体在生物的传种 接代中具有重要作用,即生物的遗 传、变异与染色体有关。
练习:
1.注射后能使小鼠因患败血症而死亡的 是( D ) A.R型肺炎双球菌 B.加热杀死后的R型肺炎双球菌 C.加热杀死后的S型肺炎双球菌 D.加热杀死后的S型肺炎双球菌与R型 细菌混合
2.肺炎双球菌的转化实验中,发现无毒R型 和被加热杀死的有毒S型细菌混合后,在小 鼠体内找到了下列类型的细菌( A )
1、放射性同位素35S和 32P分别用于 标记噬菌体的何种成分?目的何在? (P45:相关信息。)
2、P45:旁栏思考题 3、噬菌体在细菌体内的增殖是在何 物质的作用下完成的?依据是?
图 3-6 T2噬菌体侵染大肠杆菌的实验
3、实验过程:
①用放射性同位素35S标记噬菌体蛋白质外壳
修复ppt课件

新生的毛细血管基底膜不完整, 内皮细胞间空隙较多较大,故 通透性较高。
为适应功能的需要,这些毛细 血管还会不断改建。
大血管离断后需手术吻合, 吻合处两侧内皮细胞分裂增 生,互相连接,恢复原来内 膜结构。但离断的肌层不易 完全再生,而由结缔组织增 生连接,形成瘢痕修复。
神经组织的再生
神经细胞破坏后不能再生,由神经胶质细胞及其 纤维修补,形成胶质瘢痕。
粘膜如胃肠粘膜上皮缺损后,同样也由 邻近的基底部细胞(隐窝细胞)分裂增 生来修补,新生的上皮细胞起初为立方 形,以后增高变为柱状细胞。
腺上皮再生
再生的情况依损伤的状态而异:
如果仅有腺上皮的缺损而腺体的基底膜未 被破坏,可由残存细胞分裂补充,完全恢 复原来腺体结构。
如腺体构造(含基底膜)被完全破坏,则 难以再生。
维生素中以维生素C对愈合最重要。这是由于维生素C具有催化 羟化酶的作用,影响胶原纤维的形成。
与一期愈合不同:
➢ 局部组织炎症反应明显。只有感染被 控制,坏死组织被清除,再生才能开 始。
➢ 伤口大,收缩明显,从伤口底部及边 缘长出多量肉芽组织将伤口填平。
➢ 愈合时间较长,形成瘢痕较大。
三、影响创伤愈合的因素
修复的方式、愈合的时间及瘢痕的大小的决定因素:
损伤的程度 组织的再生能力 伤口有无坏死组织和异物 伤口有无感染
一、创伤愈合的基本过程(1)
1.伤口的早期变化
伤口局部有不同程度的组织坏死和血管断裂出血。 数小时内便出现炎症反应。渗出的纤维蛋白原很
快凝固形成凝块,表面干燥形成痂皮,起着保护 伤口的作用。
一、创伤愈合的基本过程(2)
2.伤口收缩
2~3天后伤口边缘的整层皮肤及皮下组织 向中心移动,于是伤口迅速缩小,直到14 天左右停止。
为适应功能的需要,这些毛细 血管还会不断改建。
大血管离断后需手术吻合, 吻合处两侧内皮细胞分裂增 生,互相连接,恢复原来内 膜结构。但离断的肌层不易 完全再生,而由结缔组织增 生连接,形成瘢痕修复。
神经组织的再生
神经细胞破坏后不能再生,由神经胶质细胞及其 纤维修补,形成胶质瘢痕。
粘膜如胃肠粘膜上皮缺损后,同样也由 邻近的基底部细胞(隐窝细胞)分裂增 生来修补,新生的上皮细胞起初为立方 形,以后增高变为柱状细胞。
腺上皮再生
再生的情况依损伤的状态而异:
如果仅有腺上皮的缺损而腺体的基底膜未 被破坏,可由残存细胞分裂补充,完全恢 复原来腺体结构。
如腺体构造(含基底膜)被完全破坏,则 难以再生。
维生素中以维生素C对愈合最重要。这是由于维生素C具有催化 羟化酶的作用,影响胶原纤维的形成。
与一期愈合不同:
➢ 局部组织炎症反应明显。只有感染被 控制,坏死组织被清除,再生才能开 始。
➢ 伤口大,收缩明显,从伤口底部及边 缘长出多量肉芽组织将伤口填平。
➢ 愈合时间较长,形成瘢痕较大。
三、影响创伤愈合的因素
修复的方式、愈合的时间及瘢痕的大小的决定因素:
损伤的程度 组织的再生能力 伤口有无坏死组织和异物 伤口有无感染
一、创伤愈合的基本过程(1)
1.伤口的早期变化
伤口局部有不同程度的组织坏死和血管断裂出血。 数小时内便出现炎症反应。渗出的纤维蛋白原很
快凝固形成凝块,表面干燥形成痂皮,起着保护 伤口的作用。
一、创伤愈合的基本过程(2)
2.伤口收缩
2~3天后伤口边缘的整层皮肤及皮下组织 向中心移动,于是伤口迅速缩小,直到14 天左右停止。
第15章DNA损伤与修复ppt课件

DNA突 变
平衡
DNA修 复
目录
第一节 DNA损伤
DNA Damage
目录
一、多种因素通过不同机制 导致DNA损伤
(一)体内因素
➢ DNA复制错误 ➢ DNA 自身的不稳定性 ➢ 机体代谢过程中产生的活性氧
目录
n DNA复制错误:
n 在DNA复制过程中,碱基的异构互变、 4种dNTP之间浓度的 不平衡等均可能引起碱基的错配
目录
受损碱基位点
单核苷酸缺口
切除剩余磷酸核 糖,产生缺口
DNA糖 基 化 酶 识别并水解受 损碱基,产生 AP位点
AP 位 点
以对应链为模 板填补正常的 核苷酸并连接
n 核苷酸切除修复(nucleotide excision repair)
① 首先,由一个酶系统识别DNA损伤部位; ② 其次,在损伤两侧切开 DNA 链,去除两个切口之间的
n 单链断裂的直接修复
p DNA连接酶能够催化DNA双螺旋结构中一条链上缺口处 的5 -磷酸基团与相邻片段的3 -羟基之间形成磷酸二酯 键,从而直接参与部分DNA单链断裂的修复,如电离辐 射所造成的切口。
目录
二、切除修复是最普遍的DNA损伤修复方式
➢碱基切除修复 ➢ 核苷酸切除修复
目录
n 碱基切除修复(base excision repair)
■ 当DNA受热或所处环境的pH值发生改变时, DNA分子上
连接碱基和核糖之间的糖苷键可自发发生水解,导致碱基
的丢失或脱落,其中以脱嘌呤最为普遍。 ■ 含有氨基的碱基还可能自发脱氨基反应,转变为另 一种碱
基,即碱基的转变,如C转变为U,A 转变为I (次黄嘌呤) 等。
(二)体外因素
大连理工大学生物化学课件--DNA复制与修复

C
A
复制中的大肠杆菌染色体放 射自显影图 (Caims实验)
B
C
A
8
2、有一定的复制起点
基因组能独立进行复制的单位,称为复制子(replicon)。 每个复制子都含有控制复制的起点(origin),可能还有复制终 点(terminus)。DNA的复制是在起始阶段进行控制的,一旦复 制开始,就延续到完成复制为止。原核生物中的复制起始点通常 为一个,而真核生物中为多个。 大肠杆菌的复制起点(ori C),由245bp构成,关键序列在 于三个13bp的序列和四个9bp的序列。
磷酸二酯键,使两段DNA
连接起来。
32
四、DNA复制的过程
作 用 顺 序
DNA复制酶系
33
大肠杆菌的DNA复制 1. 复制的起始 ① DNA复制起始位点:大肠杆菌的复制起点由245bp构成,其 中有3个13bp和4个9bp的关键序列
成串排列的三个13bp序列 DnaA蛋白结合位点四个9bp序列
共有序列 GATCTNTTNTTT DnaA DnaB DnaC HU类组蛋白 识别起始序列,解开双链 解开DNA双链 帮助DnaB结合于起点处 使DNA弯曲,刺激复制的引发
传 信 息 的 载 体 , 继 1953 年
Watson & Crick提出DNA双螺 旋 结 构 模 型 后 , 1958 年 Crick 提出了“中心法则”(Central dogma)揭示了遗传信息的传 递规律。
3
遗传信息以密码的形式储存在DNA分子上,表现为特定的 核苷酸排列顺序。
在细胞分裂过程中,通过DNA的复制把亲代细胞的遗传信 息传递给两个子代细胞。在子代细胞的生长发育过程中,这些 遗传信息通过转录传递给RNA,再由RNA翻译转变成相应的蛋
第二章细胞 组织的适应 损伤和修复 ppt课件

一、萎缩
概念: 发育正常的细胞、组织或器官的体积缩小
通常为细胞体积缩小,可伴随数量减少。 合成代谢降低,功能下降
发育不全、未发育(不属于)
11
(一)原因及类型:
1)生理性萎缩: 是生命过程的正常现象,如
青春期的胸腺萎缩;分娩后子宫;老年期
各脏器和组织的萎缩
(退化)
12
A:82岁男性萎缩大脑
B:36岁男性正常大脑
形和组织轮廓仍保存 肉眼:灰白或黄白色,干燥,质硬 与健康
组织周围有一红色充血出血带 常见于:心、肾和脾的梗死
109
肾凝固性坏死(肾贫血性梗死)
110
111
脾凝固性坏死(脾贫血性梗死)
112
肾凝固性坏死(肾贫血性梗死)
113
2)液化性坏死 组织坏死因酶性分解而变成液态。含脂质多,蛋 白少的器官,如脑(脑软化)和含蛋白酶多的组织 如胰腺炎化脓菌感染时,大量嗜中性粒细胞的渗出 ,释放水解酶,坏死组织溶解形成(脓肿)
大体:灰白、半透明、质地坚韧、缺乏弹性 镜下: 纤维细胞明显变少,胶原纤维增粗
并互相融合成梁状、带状、片状的 半透明均质无结构物质
91
结缔组织玻璃样变 92
胸膜玻璃样变性
93
2)血管壁玻璃样变性
见于:高血压病时的肾、脑、脾及视 网膜的细动脉
大体:细动脉管壁增厚变硬、管腔狭窄 或闭塞
镜下:细动脉壁增厚、均质红染、管腔 狭窄或闭塞
5. 免疫反应
变态反应、自身免疫性疾病
6. 遗传性缺陷
染色体畸变或突变
7. 营养失衡 8. 其它
内分泌因素, 医源性、衰老、心理和社会因素等
65
损伤的类型: 变性、死亡
66
《核苷酸代谢》PPT课件 (2)

3’
5’
5’
3’
OH P
➢拓扑异构酶(旋转酶)
消除DNA 的超螺旋,根据作用方式不同而分为两种: 旋转酶Ⅰ
旋转酶Ⅱ
✓旋转酶І:使DNA一条链发生断裂(切口反应) 和再连接(封口反应)。作用是松解负超螺旋,
不需要能量。
✓旋转酶Π:使DNA两条链发生断裂和再连 接。可以形成负超螺旋,需要由ATP或GTP提 供能量.
✓ 限制性核酸内切酶:在细菌细胞内存在的一类能 识别并水解外源双链DNA的核酸内切酶,可用于 特异切割DNA,常作为基因工程工具酶。
牛脾磷酸二酯酶 从5’端3-核苷酸
பைடு நூலகம்
蛇毒磷酸二酯酶 从3’端移去5-核苷酸
嘌呤的降解:
腺嘌呤
鸟嘌呤
H2O
H2O
腺嘌呤脱氨酶
NH3
NH3 鸟嘌呤脱氨酶
次黄嘌呤 黄嘌呤氧化酶 黄嘌呤
二氢尿嘧啶脱氢酶
胸腺嘧啶
二氢胸腺嘧啶
NAD(P)H+H+ NAD(P)+
H2O
二氢嘧啶酶
NH3+CO2 +β-氨基异丁酸
脲基丙酸酶 β-脲基异丁酸
H2O
第二节 核苷酸的生物合成
嘌呤核苷酸的合成 嘧啶核苷酸的合成
核苷酸的合成有2条途径:
从头合成:利用CO2、NH3、某些氨基酸、磷酸核糖
等简单物质为原料,经过一系列酶促反应
排泄动物 人类、灵长类动物、鸟类、昆虫 除灵长类外其它哺乳类动物 某些硬骨鱼类 大多数鱼类、两栖类动物 甲壳类动物、软体动物
嘧啶的降解:
胞嘧啶
胞嘧啶脱氨酶 尿嘧啶
二氢尿嘧啶脱氢酶
二氢尿嘧啶
H2O NH3
dna的四个修复机制

dna的四个修复机制
DNA的修复机制是生物体内非常重要的一种自我保护机制,它能够有效地修复因各种因素导致的DNA损伤,从而保证遗传信息的稳定传递。
以下是DNA的四个主要修复机制:
直接修复:此机制主要针对的是DNA碱基的修饰,如嘧啶二聚体的形成。
通过特定的酶直接将受损的碱基修复为正常状态。
切除修复:当DNA链上存在化学损伤或核苷酸错误时,细胞会利用特殊的酶将损伤部分从DNA链上切去,然后由DNA聚合酶填补新的核苷酸,最后再由DNA连接酶完成修复工作。
重组修复:当DNA双链都受到损伤时,细胞会暂时停止复制,并利用另一条未受损伤的DNA链作为模板,通过重组的方式完成损伤链的修复。
错配修复:此机制主要针对复制过程中出现的碱基错配进行修复。
当DNA聚合酶发现碱基错配时,会暂停复制,并利用校对酶修正错误,确保遗传信息的准确性。
这四种修复机制在生物体内协同作用,确保DNA的完整性不受损害。
每种机制都有其独特的修复特点和适用范围,但它们共同的目标都是维护基因组的稳定性。
当这些修复机制出现异常或功能障碍时,可能会导致基因突变、癌症等多种疾病的发生。
因此,深入了解这些修复机制对于理解生物体的生命活动、预防和治疗相关疾病具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.核苷酸切除 修复
嘧啶二聚体、 DNA螺旋结构的 改变
参与修复的酶或蛋白
光复活酶
DNA糖基化酶、无嘌呤/无嘧 啶核酸内切酶 大肠杆菌中UvrA、UvrB、 UvrC和UvrD,人XP系列蛋白 XPA、XPB、XPC……XPG等
.
12
修复系统类型
修复对象
参与修复的酶或蛋白
4.错配修复
复制或重组中的 碱基配对错误
相关性癌肿 结直肠癌 皮肤癌 无 结直肠癌
.
50
遗传性疾病
家族性乳腺癌/卵巢 癌 Ataxia Telangiectasis
AT-like Disorder
Nijmegen Breakage Syndrmoe
受影响的修复途径 (基因) 同源重组(BRCA1、 BRCA2)
同源重组、非同源 末端接合(ATM)
同源重组、非同源 末端接合(Mre11)
同源重组、非同源 末端接合(NBS1)
染色体损害 染色体异常 染色体异常 染色体异常 染色体异常
相关性癌肿 乳癌、卵巢癌 淋巴癌 淋巴癌 淋巴癌
.
51
遗传性疾病
受影响的修复途径
(基因)
染色体损害
相关性癌肿
IV型黏合酶缺失症
非同源末端接合 (lIG4)
染色体异常
.
44
.
45
.
46
.
47
.
48
.
49
遗传性疾病
受影响的修复途径 (基因)
染色体损害
多发性结直肠 腺瘤
碱基切除修复(MYH)
点突变机率增加
着色性干皮病 (XP)
科凯恩综合征
遗传性非息肉 结直肠癌
核苷酸切除修复相关 基因
转录合并修复(CSA、 CSB等)
错配修复(MLH1、 MSH2)
点突变增加 点突变机率增加 点突变机率增加
生物化学与分子生物学
.
1
生物化学与分子生物学
第十五章 DNA损伤与修复
汕头大学医学院 谢剑君、李恩民
.
3
DNA损伤
.
4
.
5
.
6
O
C
N H
C
O
R
N O
H C
C CH3
N
O
C HC
R NC H
C CH3
胸腺嘧啶二聚体
紫外线 HNO2 NH2OH
脱氨基
电离辐射
、 、X
自由基
烷基化合物 (CH3 ) O
8 柯卡尼综合征
3 肌强直性营养不良1型
9 范可尼贫血
4 科凯恩氏综合症
10 早老症
5 有关人毛发二硫键营养不 11 DNA损伤修复研
良 症 相 关 蛋 白 TTDA 发 现 的
究早期简史
科学故事
6 共济失调-毛细血管扩张症 12 沃纳综合征
.
56
大肠杆菌中的MutH、MutL、 MutS,人的MLH1、MSH2、MSH3、 MSH6等
5.重组修复
双链断裂
RecA蛋白、Ku蛋白、DNA-PKcs、 XRCC4
6.损伤跨越修复
大范围的损伤或 复制中来不及修 复的损伤
RecA蛋白、LexA蛋白、其他类 型的DNA聚合酶
.
13
1
2
3
.
4
14
400nm光子
染色体 双链断裂
.
37
.
38
.
39
.
40
哺乳动物细胞
受损的染色体
正常的非同源染色体
染色体 双链断裂
DNA-PK/XRCC4/DNA连接酶
(生理性基因重组) (免疫球蛋白编码基因重排)
.
41
1
2
.
Hale Waihona Puke 42RecAⅢpol I
ligase
Ⅲ
.
43
2.合成跨越损伤修复
原核生物大肠杆菌
PolⅣ/Ⅴ
2883
834
染色体 重组
广泛,尤在睾丸、 细胞核 胸腺和免疫系统
中高表达
4263
1360 错配修 细胞核 复
.
24
.
25
.
26
.
27
.
28
.
29
.
30
.
31
长学制《生物化学与分子生物学》,第2版, 图16-20, 339页
.
32
.
33
.
34
.
35
1
2
.
36
RecAs,RecB/C/D
组织分布
细胞核 细胞核 细胞核
与MLH1组织分布一 致
广泛,在肠道表达 多限于隐窝
在非小细胞肺癌和 造血系统恶性肿瘤 中表达减少
.
23
基因
MSH4 MSH5 MSH6
染色体 定位 1p31
6p21.3
2p16
mRNA (bp)
蛋白 (aa)
主要功 能
细胞定位
组织分布
3085
936
染色体 重组
细胞核 睾丸、卵巢
.
3
19
.
20
.
21
染色体 mRNA 蛋白 主要 细胞定
基因 定位 (bp) (aa) 功能
位
组织分布
MLH1 3p21.3 2484
大肠、乳腺、肺、
756
错配
脾、睾丸、前列
修复 细胞核 腺、甲状腺、胆
囊、心脏
MLH3 14q24.3 4895
1453
错配
广泛,尤多见于
修复 细胞核 消化道上皮
次甲四氢叶酸
FADH2
T-TT+T
.
15
光复活酶
.
16
6-甲基鸟嘌呤 DNA复制
OCH3
N
N
H2N N
N
DNA复制
复原的结果
.
突变的结果
17
注释: DNA糖苷酶识别的异常碱基包括,胞嘧啶脱氨基 产生的尿嘧啶;oxoG;脱氨基的腺嘌呤;开环碱基;碳 原子之间双键变成单键的碱基等。
.
18
1 2
PMS1 2q31-33 3121
932
错配
与MLH1组织分布
细胞核
修复
一致
.
22
染色体 mRNA 蛋白 主要 基因 定位 (bp) (aa) 功能
PMS2
7p22
2859
862 错配 修复
MSH2 2p22-21 3181
934 错配 修复
MSH3 5q11-12 3187
1137 错配 修复
细胞定位
甲基亚硝胺 CH3
N
R
NO
活性甲基基团
环氧化物
重组缺陷导 致的DNA 片段的缺 陷或插入
嘧啶二聚体 碱基交换
形成
C U
AI
碱基 自发丢失
.
碱基 化学修饰
O CH
HC
HO
C H
H C
OH 苯并芘的诱变衍生物 7
.
8
.
9
.
10
.
11
修复系统类型
1.光复活修复 (直接修复)
修复对象 嘧啶二聚体
2.碱基切除修复 受损的碱基
Bloom Syndrome 同源性重组(BLM) 染色体异常
Werner Syndrome 同源性重组(WRN) 染色体异常
Fanconi Anemia
同源性重组(FA相 染色体易断裂 关基因群)
血癌 血癌、淋巴癌 各种癌症 血癌
.
52
.
53
.
54
.
55
1 亨廷顿氏症
7 ATM基因
2 脆性X染色体综合征