北师版三角形的证明(全章节复习题)

合集下载

北师大版八下数学《三角形的证明》单元测试1(含答案)

北师大版八下数学《三角形的证明》单元测试1(含答案)

第一章三角形的证明单元测试一、填空题1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.如图1,△ABC中,∠C=90°,AM平分∠CAB,CM=20 cm,则点M到AB 的距离是_________.图1 图24.如图2,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE∶EC=_________.5.如图3,△ABC中,DE垂直平分BC,垂足为E,交AB于D,若AB=10 cm,AC=6 cm,则△ACD的周长为_________.图3 图46.如图4,∠C=90°,∠ABC=75°,∠CDB=30°,若BC=3 cm,则AD=___ cm.7.如图5,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_________.图5图68.等腰直角三角形一条边长是1 cm ,那么它斜边上的高是_________ cm. 9.如图6,在∠AOB 的两边OA 、OB 上分别取OQ =OP ,OT =OS ,PT 和QS 相交于点C ,则图中共有_________对全等三角形.10.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.11.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.二、选择题12.等边三角形的高为23,则它的边长为( ) A.4B.3C.2D.513.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 nB.90-2nC.2n D.90°-n °14.下列由线段a 、b 、c 组成的三角形,不是直角三角形的是( ) A.a =3,b =4,c =5 B.a =1,b =34,c =35 C.a =9,b =12,c =15D.a =3,b =2,c =515.直角三角形的三边长为连续自然数,则它的面积为( ) A.6B.7.5C.10D.1216.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4 cm ,最长边AB 的长是( )A.5 cmB.6 cmC.5 cmD.8 cm17.如图7,△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数为( )图7A.55°B.45°C.36°D.30°18.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( ) A.15B.12C.15或12D.以上都不正确19.直角三角形两直角边分别是5 cm 、12 cm ,其斜边上的高是( ) A.13 cmB.1330cmC.1360cmD.9 cm20.直角三角形中,以直角边为边长的两个正方形的面积分别为30和20,则以斜边为边长的正方形的面积为( )A.25B.50C.100D.6021.等腰三角形的底边为a ,顶角是底角的4倍,则腰上的高是( ) A.23a B.33 a C.63a D.21a 22.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形23.等腰三角形ABC 中,∠A =120°,BC 中点为D ,过D 作DE ⊥AB 于E ,AE =4cm,则AD等于()A.8 cmB.7 cmC.6 cmD.4 cm24.下列说法中,正确的是()A.两边及一对角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等25.如图8,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8,BE=3,那么AC长为()图8A.8B.5C.3D.3426.将两个全等的有一个角为30°的直角三角形拼成下图9,其中两条长直角边在同一直线上,则图中等腰三角形的个数是()图9A.4B.3C.2D.127.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等*28.已知一个直角三角形的周长是4+26,斜边上中线长为2,则这个三角形的面积为( )A.5B.2C.45D.1三、解答题29.已知:如图10,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.图1030.已知:如图11,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .图1131.已知三角形的三边分别是n 2+n ,n +21和n 2+n +21(n >0),求证:这个三角形是直角三角形.32.如图12,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BA C.图1233.如图13,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长.图13*34.①在△ABC中,AB=AC,AB的垂直平分线交AC于N,交BC的延长线于M,∠A=30°,求∠NMB的大小.②如果将①中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.③你感到存在什么样的规律性?试证明.(请同学们自己画图)④将①中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改?参考答案一、1.55°,55°或70°,40° 2.18或21 3.20 cm 4.251∶3 5.16 cm 6.6 7.75° 8.22或219.4 10.如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 真 11.等腰二、12.A 13.C 14.D 15.A 16.D 17.B 18.B 19.C 20.B 21.D 22.D 23.A 24.C 25.D 26.B 27.D 28.B三、29.略 30.略 31.略 32.略 33.134.①15° ②35° ③AB 的垂直平分线与底边BC 所夹的锐角等于∠A 的一半 ④不需要修改。

北师大版八年级数学下册第一章:三角形的证明 复习

北师大版八年级数学下册第一章:三角形的证明 复习

北师大版八年级数学下册第一章三角形的证明同步测试一.选择题1.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF 2.如图,点O在直线AE上,OC平分∠AOE,∠BOD是直角.若∠1=25°,那么∠BOE的度数是()A.90°B.145°C.155°D.165°3.如图,平面直角坐标系xOy中,点M的坐标为(2,2),点N在x轴上,若△OMN是等腰三角形,则满足条件的点N共有()个.A.3 B.4 C.5 D.84.如图,以的顶点为圆心,适当长为半径画弧,交于点,交于点.再分别以点为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接.则下列说法错误的是()A. .两点关于所在直线对称B. .两点关于所在直线对称C. 是等腰三角形D. 射线是的平分线5.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组6.如图,AB⊥BD,CD⊥BD,AD=BC,则能直接判断Rt△ABD≌Rt△CDB的理由是()A.HL B.ASA C.SAS D.SSS7.如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN =3,则CM的长为()A.3 B.3.5 C.4 D.4.58.在如图中,,于,于,.交于点,则下列结论中不正确的是()A. B. 点在的平分线上C. D. 点是的中点9.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE =EF+CF.A.①②③B.①②④C.②③④D.①②③④10.如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建()A.A处B.B处C.C处D.D处11.如图,公路互相垂直,公路的中点与点被湖隔开.若测得的长为,则两点间的距离为()A. B. C. D.12.下列命题是假命题的是()A.矩形的对角线相等且互相平分B.两点之间,线段最短C.垂直于同一条直线的两条直线互相垂直D.角平分线上的点到角两边的距离相等二.填空题13.如图,∠C=∠D=90°,添加一个条件:(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.14.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=°.15.如图,已知,垂直平分交.于.两点,若,,则的周长为.16.如图,在中,,平分,交于点,若,则.17.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为.18.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC =6cm,则AC=,DE=.三.解答题19.已知:如图1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°求证:Rt△ABC和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)如图2,将△ABC和A′B′C′拼在一起(即:点A与点B′重合,点B与点A′重合),BC和B′C′相交于点O,请用此图证明上述命题.20.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E.F,求证:DE=DF.21.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,FE是AC的垂直平分线,交AD于点F,连接BF.求证:AF=BF.22.已知:如图,在△BAC中,AB=AC,D,E分别为AB,AC边上的点,且DE∥BC,求证:△ADE是等腰三角形.23.如图,已知∠CPB=65°,AB∥CP,点D,E分别是PC,PB上一点,连接DE,使DE=PE,∠CDE的平分线与∠ABE的平分线交于点F.(1)∠BED=130°;(2)求∠BFD的度数.24.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=45°,图2中:∠DEF=135°;(2)请观察图1.图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.北师大版八年级数学下册第一章三角形的证明同步测试答案一.选择题1.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:A.2.如图,点O在直线AE上,OC平分∠AOE,∠BOD是直角.若∠1=25°,那么∠BOE的度数是()A.90°B.145°C.155°D.165°解:∵点O在直线AE上,OC平分∠AOE,∴∠AOC=∠COE=90°,∵∠DOB是直角,∠1=25°,∴∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∴∠BOE=∠COE+∠BOC=90°+65°=155°.故选:C.3.如图,平面直角坐标系xOy中,点M的坐标为(2,2),点N在x轴上,若△OMN是等腰三角形,则满足条件的点N共有()个.A.3 B.4 C.5 D.8解:如上图:满足条件的点N共有(﹣2,0)(2,0)(2,0)(4,0).故选:B.4.如图,以的顶点为圆心,适当长为半径画弧,交于点,交于点.再分别以点为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接.则下列说法错误的是()A. .两点关于所在直线对称B. .两点关于所在直线对称C. 是等腰三角形D. 射线是的平分线解:连接.,根据作图得到..在与中,(),,即射线是的平分线,正确,不符合题意;根据作图得到,是等腰三角形,正确,不符合题意;根据作图得到,又射线平分,是的垂直平分线,.两点关于所在直线对称,正确,不符合题意;根据作图不能得出平分,不是的平分线,.两点关于所在直线不对称,错误,符合题意.故答案为:.两点关于所在直线对称5.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组解:①.∵△ABC中,AB=AC,∴△ABC是等腰三角形,故①正确;②.∵△ABC中,∠B=56°,∠BAC=68°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣68°﹣56°=56°,∴∠B=∠C,∴△ABC是等腰三角形,故②正确;③∵△ABC中,AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD,∠ADB=∠ADC,∵∠B+∠BAD+∠ADB=180°,∠C+∠CAD+∠ADC=180°,∴∠B=∠C,∴△ABC是等腰三角形,故③正确;④.∵△ABC中,AD⊥BC,AD平分边BC,∴AB=AC,∴△ABC是等腰三角形,故④正确;即正确的个数是4,故选:D.6.如图,AB⊥BD,CD⊥BD,AD=BC,则能直接判断Rt△ABD≌Rt△CDB的理由是()A.HL B.ASA C.SAS D.SSS解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:A.7.如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM的长为()A.3 B.3.5 C.4 D.4.5解:过点P作PD⊥CB于点D,∵∠ACB=60°,PD⊥CB,PC=12,∴DC=6,∵PM=PN,MN=3,PD⊥OB,∴MD=ND=1.5,∴CM=6﹣1.5=4.5.故选:D.8.在如图中,,于,于,.交于点,则下列结论中不正确的是()A. B. 点在的平分线上C. D. 点是的中点解:,于,于,,,故本选项正确;,,,,,,点在的平分线上,故本选项正确;,,,,,,正确;是的中点,无法判定,故本选项错误.9.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE =EF+CF.A.①②③B.①②④C.②③④D.①②③④解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.10.如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建()A.A处B.B处C.C处D.D处解:根据作图可知:EF是线段MN的垂直平分线,所以EF上的点到M.N的距离相等,即发射塔应该建在C处,故选:C.11.如图,公路互相垂直,公路的中点与点被湖隔开.若测得的长为,则两点间的距离为()A. B. C. D.解:在中,,为的中点,.12.下列命题是假命题的是()A.矩形的对角线相等且互相平分B.两点之间,线段最短C.垂直于同一条直线的两条直线互相垂直D.角平分线上的点到角两边的距离相等解:A.矩形的对角线相等且互相平分,是真命题;B.两点之间,线段最短,是真命题;C.在同一平面内,垂直于同一条直线的两条直线互相平行,原命题是假命题;D.角平分线上的点到角两边的距离相等,是真命题;故选:C.二.填空题13.如图,∠C=∠D=90°,添加一个条件:AC=AD(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.解:条件是AC=AD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=AD.14.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=90°.解:在Rt△AEC和Rt△DAB中∴Rt△AEC≌Rt△DAB(HL),∴∠ACE=∠ABD,∵∠EAC+∠ACE=90°,∴∠EAC+∠ABD=90°,∴∠AFB=90°,即∠CFD=90°,∴∠ACD+∠BDC=90°,故答案为90.15.如图,已知,垂直平分交.于.两点,若,,则的周长为.解:垂直平分,,的周长.故答案为:.16.如图,在中,,平分,交于点,若,则.解:,,平分,,.17.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为120°或75°或30°.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.18.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC =6cm,则AC=5cm,DE=8cm.解:∵BC=6cm,∴BD=DC=3(cm),∵AD⊥BC,BD=DC,AB=5cm,∴AC=AB=5(cm),∵点C在AE的垂直平分线上,∴EC=AC=5(cm),∴DE=DC+EC=8(cm),故答案为:5cm;8cm.三.解答题19.已知:如图1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°求证:Rt△ABC和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)如图2,将△ABC和A′B′C′拼在一起(即:点A与点B′重合,点B与点A′重合),BC和B′C′相交于点O,请用此图证明上述命题.解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等;(2)在△ACO和直角△A'C'O′中,,∴△ACO≌△A′C′O,∴OC=C′O,AO=A′O,∴BC=B′C′,在△ABC与△A′B′C′中,∴△ABC≌△A'B'C'(SSS).20.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E.F,求证:DE=DF.证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.21.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,FE是AC的垂直平分线,交AD于点F,连接BF.求证:AF=BF.证明:连接CF,∵AB=AC,AD平分∠BAC,∴BD=CD,AD⊥BC,∴BF=CF,∵FE垂直平分AC,∴AF=CF,∴AF=BF.22.已知:如图,在△BAC中,AB=AC,D,E分别为AB,AC边上的点,且DE∥BC,求证:△ADE是等腰三角形.证明:∵AB=AC,∴∠B=∠C,又∵DE∥BC,∴∠B=∠ADE,∠C=∠AED,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形.23.如图,已知∠CPB=65°,AB∥CP,点D,E分别是PC,PB上一点,连接DE,使DE=PE,∠CDE的平分线与∠ABE的平分线交于点F.(1)∠BED=130°;(2)求∠BFD的度数.解:(1)∵DE=PE,∴∠EDP=∠CPB=65°,∴∠BED=∠EDP+∠CPB=130°,故答案为:130;(2)∵AB∥CP,∴∠ABP+∠CPB=180°,∴∠ABP=115°,∵∠EDP=65°,∴∠CDE=115°,∵∠CDE的平分线与∠ABE的平分线交于点F.∴∠FBE=∠ABE=57.5°,∠FDE=∠CDE=57.5°,∴∠BFD=360°﹣57.5°﹣57.5°﹣130°=115°.24.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=45°,图2中:∠DEF=135°;(2)请观察图1.图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.解:(1)图1,∵AB∥DE,∴∠B=∠DGC=45°,∵BC∥EF,∴∠DEF=∠DGC=45°;图2,∵AB∥DE,∴∠B=∠BGE=45°,∵BC∥EF,∴∠DEF+∠BGE=180°,∴∠DEF=180°﹣45°=135°;故答案为45°,135°;(2)∠DEF与∠ABC相等,∠DEF与∠ABC互补,结论:如果两个角的两边分别平行,那么这两个角相等或互补.。

北师大版八年级数学下册 《三角形的证明》全章复习与巩固--巩固练习(基础) 含答案解析

北师大版八年级数学下册 《三角形的证明》全章复习与巩固--巩固练习(基础)  含答案解析

《三角形的证明》全章复习与巩固(基础)【巩固练习】一、选择题1.△ABC中,AB=AC,BD 平分∠ABC交AC 边于点D,∠BDC=75°,则∠A的度数是()A.35°B.40°C.70°D.110°2.三角形的三个内角中,锐角的个数不少于()A. 1 个B. 2 个C. 3个D.不确定3.用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,其中一定可以拼成的图形的是()A.①②③B.②③④C.①③④D.①②④4.如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD的是()A. AD=AE B.∠AEB=∠ADC C. BE=CD D. AB=AC5.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD 是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+26.(2016•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm 或14cm D.以上都不对7.有两个角和其中一个角的对边对应相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对8.面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对二、填空题9.如果等腰三角形的一个底角是80°,那么顶角是_________ 度.10.△ABC中,∠A是∠B的2 倍,∠C比∠A+∠B还大12°,那么∠B=_________ 度.11.(2015 秋•洛阳校级月考)如果a,b,c 为三角形的三边,且(a﹣b)+(a﹣c)+|b2 2﹣c|=0,则这个三角形是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE 交于点H,请你添加一个适当的条件:_________ ,使△AEH≌△CEB.13.等腰直角三角形一条边长是1 cm,那么它斜边上的高是_________ .14.在△ABC和△ADC中,下列论断:①AB=AD;②∠BAC=∠DAC;③BC=DC,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:_________ .15.在△ABC中,边AB、BC、AC 的垂直平分线相交于P,则PA、PB、PC 的大小关系是_________ .16.已知△ABC中,∠A=90°,角平分线BE、CF 交于点O,则∠BOC=_________ .三、解答题17.(2015 秋•定州市期中)如图,四边形ABCD 中,∠B=90°,AB∥CD,M 为BC 边上的一点,且AM 平分∠BAD,DM 平分∠ADC.求证:(1)AM⊥DM;(2)M 为BC 的中点.18.(2016 秋•太和县期中)如图:△ABC中,∠ABC和∠ACB的平分线交于F 点,过F 点作DE∥BC,分别交AB、AC 于点D、E.求证:(1)BD=DF.(2)△ADE的周长等于AB+AC.19. 如图,D,E 是△ABC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.20.(2015春•建昌县期末)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为(2)在图2中,当BA=BD=10m时,△ABD的周长为(3)在图3中,当DA=DB时,求△ABD的周长.;;【答案与解析】一.选择题1.【答案】B;【解析】解:设∠A的度数是x,则∠C=∠B=∵BD平分∠ABC交AC边于点D,∴∠DBC=,∴++75=180°,∴x=40°.∴∠A的度数是40°.故选B.2.【答案】B;【解析】解:由三角形内角和为180度可知:三角形的三个内角中,锐角的个数不少于2个.故选B.3.【答案】D;【解析】解:两个全等的直角三角形,一定可以拼成平行四边形(直角边重合,两直角不邻),等腰三角形(直角边重合,两直角相邻),以及矩形(斜边重合);若为等腰直角三角形,则可拼成正方形;所以①②④一定可以拼接而成,③不一定拼成.4.【答案】B;【解析】解:A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE≌△ACD正确,故本选项错误;B、三角对应相等的两三角形不一定全等,错误,故本选项正确;C、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,正确,故本选项错误;D、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,正确,故本选项错误;5.【答案】C;【解析】解:∵AD 是△ABC 的角平分线,DE⊥AB ,∠C=90°,∴CD=DE=1, 又∵直角△BDE 中,∠B=30°, ∴BD=2DE=2,∴BC=CD+BD=1+2=3. 故选 C .6.【答案】C ;【解析】解:当 4cm 为等腰三角形的腰时,三角形的三边分别是 4cm ,4cm ,5cm 符合三角形的三边关系, ∴周长为 13cm ;当 5cm 为等腰三角形的腰时,三边分别是,5cm ,5cm ,4cm ,符合三角形的三边关系, ∴周长为 14cm , 故选 C.7.【答案】A ;【解析】解:有两个角和其中一个角的对边对应相等, 符合“角角边”判定方法, 所以,两个三角形必定全等. 8.【答案】C ;【解析】解:因为两个面积相等的三角形,也就是底乘高相等;但是一个数可以有许多不 同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角 形不一定全等. 二、填空题9.【答案】 20;【解析】解:∵三角形是等腰三角形, ∴两个底角相等,∵等腰三角形的一个底角是 80°, ∴另一个底角也是 80°, ∴顶角的度数为 180°﹣80°﹣80°=20°. 10.【答案】28;【解析】解:设∠B=x ,则∠A=2x ,∠C=3x+12°,∵∠A+∠B+∠C=180°,∴x+2x+3x+12°=180°,解得 x=28°. 故答案为:28.11.【答案】等边三角形;【解析】解:∵(a ﹣b ) +(a ﹣c ) +|b ﹣c|=0,22 ∴a ﹣b=0,a ﹣c=0,b ﹣c=0, ∴a=b ,a=c ,b=c , ∴a=b=c ,∴这个三角形是等边三角形; 故答案为:等边三角形.12.【答案】AH=CB或EH=BE或AE=CE;【解析】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=BE;根据ASA添加AE=CE.可证△AEH≌△CEB.13.【答案】cm或cm;【解析】解:(1)当1cm是斜边,则其高就是斜边1的一半是cm;(2)当其直角边是1cm时,根据勾股定理得其斜边是cm,再根据其高是斜边的一半得高是cm;所以它斜边上的高是cm或cm.14.【答案】在△ABC和△ADC中,如果AB=AD,∠BAC=∠DAC,那么BC=DC.【解析】解:把①②作为条件③作为结论,∵AB=AD,∠BAC=∠DAC,又∵AC=AC,∴△ABC≌△ADC,∴BC=BD.故答案为:在△ABC和△ADC中,如果AB=AD,∠BAC=∠DAC,那么BC=DC.15.【答案】PA=PB=PC;【解析】∵边AB的垂直平分线相交于P,∴PA=PB,∵边BC的垂直平分线相交于P,∴PB=PC,∴PA=PB=PC.16.【答案】135°;【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为135°.三、解答题17.【解析】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.18.【解析】证明:(1)∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF;(2)由(1)证得DB=DF,同理EC=EF.∵DE=DF+EF,∴DE=BD+CE,∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.19.【解析】解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,所以∠ADB=120°,∠AEC=120°.因为BD=AD,AE=EC,所以∠B=∠BAD=(180°﹣∠ADB)=(180°﹣120°)=30°,∠C=∠CAE=(180°﹣∠AEC)=(180°﹣120°)=30°.所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.20.【解析】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC+AC=AD,222即x+8=(6+x),222解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.18.【解析】证明:(1)∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF;(2)由(1)证得DB=DF,同理EC=EF.∵DE=DF+EF,∴DE=BD+CE,∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.19.【解析】解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,所以∠ADB=120°,∠AEC=120°.因为BD=AD,AE=EC,所以∠B=∠BAD=(180°﹣∠ADB)=(180°﹣120°)=30°,∠C=∠CAE=(180°﹣∠AEC)=(180°﹣120°)=30°.所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.20.【解析】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC+AC=AD,222即x+8=(6+x),222解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.18.【解析】证明:(1)∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF;(2)由(1)证得DB=DF,同理EC=EF.∵DE=DF+EF,∴DE=BD+CE,∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.19.【解析】解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,所以∠ADB=120°,∠AEC=120°.因为BD=AD,AE=EC,所以∠B=∠BAD=(180°﹣∠ADB)=(180°﹣120°)=30°,∠C=∠CAE=(180°﹣∠AEC)=(180°﹣120°)=30°.所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.20.【解析】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC+AC=AD,222即x+8=(6+x),222解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.18.【解析】证明:(1)∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF;(2)由(1)证得DB=DF,同理EC=EF.∵DE=DF+EF,∴DE=BD+CE,∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.19.【解析】解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,所以∠ADB=120°,∠AEC=120°.因为BD=AD,AE=EC,所以∠B=∠BAD=(180°﹣∠ADB)=(180°﹣120°)=30°,∠C=∠CAE=(180°﹣∠AEC)=(180°﹣120°)=30°.所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.20.【解析】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC+AC=AD,222即x+8=(6+x),222解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).。

北师大版三角形的证明(全章节复习题)

北师大版三角形的证明(全章节复习题)

北师⼤版三⾓形的证明(全章节复习题)等腰三⾓形(基础)知识讲解【学习⽬标】1. 了解等腰三⾓形、等边三⾓形的有关概念, 掌握等腰三⾓形的轴对称性;2. 掌握等腰三⾓形、等边三⾓形的性质,会利⽤这些性质进⾏简单的推理、证明、计算和作图.3. 理解并掌握等腰三⾓形、等边三⾓形的判定⽅法及其证明过程. 通过定理的证明和应⽤,初步了解转化思想,并培养学⽣逻辑思维能⼒、分析问题和解决问题的能⼒.4. 理解反证法并能⽤反证法推理证明简单⼏何题.【要点梳理】要点⼀、等腰三⾓形的定义1.等腰三⾓形有两条边相等的三⾓形,叫做等腰三⾓形,其中相等的两条边叫做腰,另⼀边叫做底,两腰所夹的⾓叫做顶⾓,底边与腰的夹⾓叫做底⾓.如图所⽰,在△ABC中,AB=AC,△ABC是等腰三⾓形,其中AB、AC为腰,BC为底边,∠A是顶⾓,∠B、∠C是底⾓.2.等腰三⾓形的作法已知线段a,b(如图).⽤直尺和圆规作等腰三⾓形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆⼼,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三⾓形3.等腰三⾓形的对称性(1)等腰三⾓形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的⾼线.结论:等腰三⾓形是轴对称图形,顶⾓平分线(底边上的⾼线或中线)所在的直线是它的对称轴.4.等边三⾓形三条边都相等的三⾓形叫做等边三⾓形.也称为正三⾓形.等边三⾓形是⼀类特殊的等腰三⾓形,有三条对称轴,每个⾓的平分线(底边上的⾼线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三⾓形的底⾓只能为锐⾓,不能为钝⾓(或直⾓),但顶⾓可为钝⾓(或直⾓).∠A=180°-2∠B,∠B=∠C=1802A-∠.(2)等边三⾓形与等腰三⾓形的关系:等边三⾓形是特殊的等腰三⾓形,等腰三⾓形不⼀定是等边三⾓形.要点⼆、等腰三⾓形的性质1.等腰三⾓形的性质性质1:等腰三⾓形的两个底⾓相等,简称“在同⼀个三⾓形中,等边对等⾓”.推论:等边三⾓形的三个内⾓都相等,并且每个内⾓都等于60°.性质2:等腰三⾓形的顶⾓平分线、底边上中线和⾼线互相重合.简称“等腰三⾓形三线合⼀”.2.等腰三⾓形中重要线段的性质等腰三⾓形的两底⾓的平分线(两腰上的⾼、两腰上的中线)相等.要点诠释:这条性质,还可以推⼴到⼀下结论:(1)等腰三⾓形底边上的⾼上任⼀点到两腰的距离相等。

北师大版八年级数学 下册第一章:三角形的证明 期末复习题

北师大版八年级数学 下册第一章:三角形的证明 期末复习题

北师大版八年级数学下册第一章:三角形的证明期末复习题一、选择题(每小题3分,共30分)1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是(A)A.HL B.ASA C.SAS D.AAS2.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为(A)A.35° B.40°C.45°D.50°3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知△PAB的周长为14,PA=4,则线段AB的长度为(A)A.6 B.5 C.4 D.34.在△ABC中,AB=AC=2,D为BC的中点,∠C=30°,则AD的长为(C)A. 3B. 2 C.1 D.25.如图,在△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为(B)A.12 B.9 C.8 D.66.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为(A)A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.若等腰三角形的一个角是80°,则它顶角的度数是(B)A.80° B.80°或20°C.80°或50°D.20°8.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD交AB于点E,则下列结论一定成立的是(C)A.BC=EC B.EC=BE C.BC=BE D.AE=EC9.如图,在△ABC中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,则AC的长为(C)A.5 B.4 C.3 D.2e10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于点E ,交AC 于点F ,过点O 作OD ⊥AC 于点D ,下列四个结论:①EF =BE +CF ; ②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离相等; ④设OD =m ,AE +AF =n ,则S △AEF =mn. 其中正确的结论是(A) A .①②③B .①②④C .②③④D .①③④二、填空题(每小题3分,共21分)11.在△ABC 中,AB =AC ,点D 是BC 的中点.若∠B =50°,则∠DAC 的度数是40°. 12.如果三角形三边长分别为6 cm ,8 cm ,10 cm ,那么它最短边上的高为8cm. 13.如图,在△ABC 中,CD 平分∠ACB ,DE ∥BC 交AC 于点E.若DE =7,AE =5,则AC 的长为12.14.如图,在锐角△ABC 中,直线PL 为BC 的垂直平分线,射线BM 为∠ABC 的平分线,PL 与BM 相交于点P.若∠PBC =30°,∠ACP =20°,则∠A 的度数为70°.15.已知在Rt △ABC 中,∠C =90°,AC =BC ,直线m 经过点C ,分别过点A ,B 作直线m 的垂线,垂足分别为点E ,F.若AE =3,AC =5,则线段EF 的长为1或7.16.已知△ABC ≌△DEF ,BC =EF =6 cm ,△ABC 的面积为18 cm 2,则EF 边上的高的长是6cm.17.腰长为5,高为4的等腰三角形的底边长为三、解答题(共69分)18.已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2.求证: (1)BD =CE ;(2)∠M =∠N.【解答】 证明:(1)在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS). ∴BD =CE. (2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE , 即∠BAN =∠CAM. 由(1),得△ABD ≌△ACE , ∴∠B =∠C. 在△ACM 和△ABN 中, ⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN , ∴△ACM ≌△ABN(ASA).19.如图,AB =AD ,BC =DC ,点E 在AC 上.求证: (1)AC 平分∠BAD ;(2)BE =DE.证明:(1)在△ABC 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC ,即AC 平分∠BAD. (2)由(1)得,∠BAE =∠DAE.在△BAE 和△DAE 中,⎩⎪⎨⎪⎧BA =DA ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE(SAS).∴BE =DE.20.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连接AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F.(1)若∠C =36°,求∠BAD 的度数; (2)求证:FB =FE.解:(1)∵AB =AC , ∴∠C =∠ABC. ∵∠C =36°,∵BD =CD ,AB =AC , ∴AD ⊥BC. ∴∠ADB =90°.∴∠BAD =90°-36°=54°. (2)证明:∵BE 平分∠ABC , ∴∠ABE =∠CBE =12∠ABC.∵EF ∥BC , ∴∠FEB =∠CBE. ∴∠FBE =∠FEB. ∴FB =FE.21.如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE ⊥BC ,交线段AB 于点F.请找出一组相等的线段(AB =AC 除外),并加以证明.解:AD =AF. 证明:∵AB =AC , ∴∠B =∠C. ∵DE ⊥BC ,∴∠BEF =∠DEC =90°.∴∠BFE +∠B =90°,∠D +∠C =90°. ∴∠BFE =∠D. ∵∠BFE =∠DFA ,∴AD=AF.22.如图,在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为E,F,且DE=DF.求证:△ABC是等边三角形.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为AC的中点,∴DA=DC.又∵DE=DF,∴Rt△ADE≌Rt△CDF(HL).∴∠A=∠C.∴∠A=∠B=∠C.∴△ABC是等边三角形.23.按照有关规定:距高铁轨道200米以内的区域内不宜临路新建学校、医院、敬老院和集中住宅区等噪声敏感建筑物.如图是一个小区平面示意图,长方形ABEF为一新建小区,直线MN为高铁轨道,C,D 是直线MN上的两点,点C,A,B在同一直线上,且DA⊥CA,CD=2AD.小王看中了①号楼A 单元的一套住宅,与售楼人员的对话如下:小王心中一算,发现售楼人员的话不可信,请你用所学的数学知识说明理由. 解:过点A 作AG ⊥MN ,垂足为G. ∵CD =2AD =440,DA ⊥CA , ∴AC =4402-2202=220 3. ∵S △ACD =12AC ·AD =12CD ·AG ,∴AG =2203×220440=1103≈191<200.∴A 单元用户会受到影响,售楼人员的话不可信.24.如图,在△ABC 中,AB =AC ,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E. (1)求证:△ABD 是等腰三角形; (2)若∠A =40°,求∠DBC 的度数;(3)若AE =6,△CBD 的周长为20,求△ABC 的周长.解:(1)证明:∵AB 的垂直平分线MN 交AC 于点D , ∴DB =DA.∴△ABD 是等腰三角形.(2)∵△ABD 是等腰三角形,∠A =40°, ∴∠ABD =∠A =40°,∠ABC =∠C =(180°-40°)÷2=70°. ∴∠DBC =∠ABC -∠ABD =70°-40°=30°. (3)∵AB 的垂直平分线MN 交AC 于点D ,AE =6,∴AB=2AE=12,BD=AD.∵△CBD的周长为20,∴BD+CD+BC=20.∴AC+BC=20.∴△ABC的周长为AB+AC+BC=12+20=32.25.已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC内部,求证:AB=AC;(3)猜想,若点O在△ABC的外部,AB=AC成立吗?请说明理由.解:(1)证明:过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°. 又∵OB=OC,∴Rt△BOD≌Rt△COE(HL).∴∠B=∠C.∴AB=AC.(2)证明:过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°. 又∵OB=OC,∴Rt△BOD≌Rt△COE(HL).∴∠DBO=∠ECO.∵OB=OC,∴∠OBC=∠OCB.∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB.∴AB=AC.(3)不一定成立.理由:如图3,过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°.又∵OB=OC,∴Rt△BOD≌Rt△COE(HL).∴∠DBO=∠ECO.∵OB=OC,∴∠OBC=∠OCB.∴∠DBC=∠ECB.∴∠ABC=∠ACB.∴AB=AC.如图4,可知AB≠AC.∴若点O在△ABC的外部时,AB=AC不一定成立.。

北师大版数学八年级下册:第一章《三角形的证明》含详细答案

北师大版数学八年级下册:第一章《三角形的证明》含详细答案

北师大版八年级下册数学第一章三角形的证明一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.52.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到A.1B.2C.D.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.北师大版八年级下册数学第一章三角形的证明参考答案与试题解析一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。

北师大版八年级数学下册第一章 三角形的证明(含答案)

北师大版八年级数学下册第一章 三角形的证明(含答案)

北师大版八年级数学下册第一章 三角形的证明(含答案)一、选择题1.由线段a,b,c 组成的三角形,不是直角三角形的是( )A.a=3,b=4,c=5B.a=1,b=43,c=53 C.a=9,b=12,c=15 D.a=√3,b=2,c=√5 答案 D D 中,a 2+b 2=7,c 2=5,a 2+b 2≠c 2,故选D.2.下列条件中,能判定两个直角三角形全等的是( )A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等答案 D 当两直角边对应相等时,再由直角相等,根据SAS 可以判定两直角三角形全等.3.到三角形三个顶点的距离相等的点是三角形的( )A.三个内角平分线的交点B.三边垂直平分线的交点C.三条中线的交点D.三条高的交点答案 B 到三角形三个顶点距离相等的点在三角形三边的垂直平分线上.4.用反证法证明:“三角形中必有一个内角不小于60°”时,应当先假设这个三角形中( )A.有一个内角小于60°B.每一个内角小于60°C.有一个内角大于60°D.每一个内角大于60°答案B反证法第一步是提出与结论相反的假设.5.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()图1-5-1A.√6B.4C.2√3D.5答案B∵AD⊥BC,∠ABC=45°,∴∠BAD=90°-∠ABC=45°=∠ABC,∴BD=AD,又∵AD⊥BC,BE⊥AC,∴∠ADB=∠ADC=90°,∠BEC=90°.∴∠C+∠CAD=90°,∠C+∠CBE=90°,∴∠CAD=∠CBE,∴△ADC≌△BDH.∴BH=AC=4.6.已知等腰直角三角形ABC,斜边AB的长为2,以AB所在直线为x轴,AB的垂直平分线为y 轴建立直角坐标系,则点C的坐标是()A.(0,1)B.(0,-1)C.(0,1)或(0,-1)D.(1,0)或(-1,0)答案C∵OC⊥AB,∠CAB=45°,∴∠ACO=45°.AB=1,∴C(0,1)或(0,-1).∴CO=AO=127.下列命题中的假命题是()A.等腰三角形的顶角一定是锐角B.等腰三角形的底角一定是锐角C.等腰三角形至少有两个角相等D.等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合答案A等腰三角形的顶角可以是锐角,也可以是直角或钝角.8.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠AB.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点答案D∵A=36°,AB=AC,∴∠C=∠ABC=72°.∴∠C=2×36°=2∠A,A选项正确.∵BD平分∠ABC,∴∠ABD=∠CBD=36°.∴∠A=∠ABD=36°,∴△ABD是等腰三角形,C选项正确.又∵∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,B选项正确,只有D选项结论错误.9.如图,在Rt△ABC中,∠BAC=90°,AC=6,BC=10,过A作DE∥BC交∠ABC的平分线BE于点E、交∠ACB的平分线CD于点D,则DE为()A.18B.16C.14D.8答案C在Rt△ABC中,AC=6,BC=10,由勾股定理得AB=8,∵DE∥BC,∴∠D=∠DCB,∠E=∠EBC,∵CD平分∠ACB,BE平分∠ABC,∴∠ACD=∠DCB,∠ABE=∠EBC,∴∠D=∠ACD,∠E=∠ABE,∴AD=AC=6,AE=AB=8,∴DE=6+ 8=14,故选C.10.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS,下面结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()图1-5-4A.①②B.②③C.①③D.①②③答案A∵PR⊥AB,PS⊥AC,且PR=PS,∴∠BAP=∠CAP.又∵AQ=PQ,∴∠CAP=∠APQ.∴∠BAP=∠APQ.∴QP∥AR.在Rt△APR和Rt△APS中,{AP=AP,PR=PS,∴Rt△APR≌Rt△APS.∴AS=AR.故①②均正确.由已知条件不能得到△BRP≌△CSP.故选A.二、填空题11.等腰三角形两腰上的中线相等,这个命题的逆命题是,这个逆命题是命题.答案两边上的中线相等的三角形是等腰三角形;真12.等腰三角形的两边长分别是7和3,则它的周长是.答案17解析当7为腰长时,周长为7+7+3=17.当3为腰长时,∵3+3=6<7,∴不能构成三角形,故答案为17.13.已知△ABC的三边长分别为a,b,c,且满足(a-b)2+(b-c)2+(c-a)2=0,则△ABC是三角形.答案等边解析∵(a-b)2+(b-c)2+(c-a)2=0,∴a-b=0,b-c=0,c-a=0,∴a=b,b=c,c=a,∴a=b=c.∴△ABC 是等边三角形.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD∶DC=2∶1,BC=7.8cm,则D到AB 的距离为cm.答案 2.6解析∵AD平分∠BAC且∠C=90°,∴点D到AB的距离等于CD的长.∵BD∶DC=2∶1,BC=7.8×7.8=2.6 cm.故答案为2.6.cm,∴CD=1315.如图,在△ABC中,AB的垂直平分线MN交AB于点E,交AC于点D,且AC=16,△BCD的周长等于26,则BC的长为.答案10解析∵MN垂直平分AB,∴AD=BD.∴△BCD的周长=BD+DC+BC=AC+BC.∴16+BC=26.∴BC=10.16.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为.答案1+√3解析∵CD⊥AB,∴∠ADC=∠BDC=90°.又∵∠A=45°,∠B=30°,∴∠ACD=∠A=45°,BC=2CD=2.∴AD=CD=1,BD=√BC2-CD2=√22-12=√3.∴AB=AD+DB=1+√3.17.如图,D是线段AB、BC的垂直平分线的交点,若∠ABC=60°,则∠ADC=.答案120°解析连接BD并延长.∵D是线段AB、BC的垂直平分线的交点,∴AD=BD=CD,∴∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=2∠ABC=120°.又∵∠5=∠1+∠2,∠6=∠3+∠4,∴∠ADC=∠5+∠6=120°.18.如图,在△ABC 中,AB=AC=5,BC=6,若点P 在边AC 上移动,则BP 的最小值是 .答案245解析 过点A 作AE ⊥BC 于点E,因为AB=AC=5,所以BE=CE=12BC=3,所以AE=√AB 2-BE 2=√52-32=4,所以S △ABC =12BC ·AE=12.易知BP 的最小值是S △ABC 12AC =245. 三、解答题19.如图,在Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN,求BN 的长.答案 设BN=x,由题意可得DN=AN=9-x.∵D 是BC 的中点,∴BD=3.在Rt △NBD 中,x 2+32=(9-x)2,解得x=4,即BN=4.20.如图所示,在△ABC 中,∠ACB=90°,CD 、CE 三等分∠ACB,CD ⊥AB.求证:(1)AB=2BC;(2)CE=AE=BE.证明 (1)∵∠ACB=90°,CD 、CE 三等分∠ACB,∴∠1=∠2=∠3=30°,∴∠1+∠2=60°,∴∠A=30°.在Rt△ACB中,∵∠A=30°,∴AB=2BC.(2)由(1)知∠A=∠1=30°,∴CE=AE.又∵∠B=∠BCE=60°,∴△BCE为等边三角形,∴CE=BE.∴CE=AE=BE.21.如图,在△ABC中,AB=8,AC=4,G为BC的中点,DG⊥BC交∠BAC的平分线AD于D,DE⊥AB 于E,DF⊥AC交AC的延长线于F.(1)求证:BE=CF;(2)求AE的长.答案(1)证明:连接DB、DC,易知△BDE与△CDF均为直角三角形.∵DG垂直平分BC,∴DB=DC.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AF,∴DE=DF(角平分线上的点到这个角的两边的距离相等).∴Rt△DBE≌Rt△DCF(HL),∴BE=CF.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,又∠DAE=∠DAF,AD=AD,∴△ADE≌△ADF.∴AE=AF=AC+CF.由(1)知BE=CF,∴AE=AC+BE=4+BE.∴AE=4+8-AE.∴AE=6.22.如图所示,△ABC是边长为6 cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为v P=2 cm/s,v Q=1 cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?答案由题意可知AP=2t cm,BQ=t cm(0≤t≤3),则BP=AB-AP=(6-2t)cm.(1)若△PBQ为等边三角形,已知∠B=60°,需BP=BQ,即6-2t=t,解得t=2,即当t=2时,△PBQ 为等边三角形.(2)当PQ⊥BQ时,∵∠B=60°,∴∠BPQ=30°,∴BP=2BQ,即6-2t=2t,解得t=1.5;当PQ⊥BP时,同理可得BQ=2BP,即t=2(6-2t),解得t=2.4.综上可知,当t为1.5或2.4时,△PBQ为直角三角形.。

北师大版八年级数学下册《三角形的证明》单元测试1(含答案)

北师大版八年级数学下册《三角形的证明》单元测试1(含答案)

第一章 三角形的证明单元测试一、选择题(每题3分,共30分)1、△ABC 中,AB = AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC = 75°,则∠A 的度数为( )A 35°B 40°C 70°D 110°2、适合条件∠A =∠B =31∠C 的三角形一定是( )A 锐角三角形B 钝角三角形C 直角三角形D 任意三角形3、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是( )A ①②④B ②④C ①④D ②③④4、已知△ABC 中,AB =AC ,AB 的垂直平分线交AC 于D ,△ABC 和△DBC 的周长分别是60 cm 和38 cm ,则△ABC 的腰和底边长分别为 ( ) A 24 cm 和12 cm B 16 cm 和22 cm C 20 cm 和16 cm D 22 cm 和16 cm5、如图,△ABC 中,AC =BC ,直线l 经过点C ,则 ( ) A l 垂直AB B l 平分AB C l 垂直平分AB D 不能确定6、三角形中,若一个角等于其他两个角的差,则这个三角形是 ( ) A 钝角三角形 B 直角三角形 C 锐角三角形 D 等腰三角形7、已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是( ) A 9㎝B 12㎝C 12㎝或者15㎝D 15㎝8、如图,已知在△ABC中,AB=AC,D为BC上一点,BE=CD,CF=BD,那么∠EDF等于( )A 90°-∠A B 90°-21∠A C 45°-21∠A D 180°-∠A9、一个正方形和一个等腰三角形有相等的周长,已知等腰三角形有两边长分别为5.6 cm和13.2 cm,则这个正方形的面积为()A 64 cm2B 48 cm2C 36 cm2D 24 cm210、如图,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A 45°B 55°C 60°D 75°二、填空题(每小题3分,共30分)1、“直角三角形两条直角边的平方和等于斜边的平”的方逆定理是2、等腰三角形的腰长为2cm,面积等于1cm2,则它的顶角的度数为 .3、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB相交于D点,则∠BCD的度数是 .4、等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是 .5、正三角形的边长为a,则它的面积为.6、在△ABC中,AB=AC,∠A=58°,AB的垂直平分线交AC于N,则∠NBC = .7、在直角三角形中,如果一个锐角为30°,而斜边与较小直角边的和为12,那么斜边长为.8、已知:如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=.9、在等腰三角形ABC中,AB=AC=5,BC=6,D是BC上一点,作DE⊥AB,DF⊥AC,则DE+DF= .10、如图,一张直角三角形的纸片,象图中那样折叠,使A与B重合,∠B=30°,AC=3,则折痕DE等于.三、解答题(本题共8个小题,共60分)1、(7分)已知:如图,等腰三角形ABC 中,AC =BC ,∠ACB =90°,直线l 经过点C(点A 、B 都在直线l 的同侧),AD ⊥l ,BE ⊥l ,垂足分别为D 、E .求证:△ADC ≌△CEB.2、(7分)用反证法证明一个三角形中不能有两个角是直角.3、(8分)如图,在△ABC 中,AD 是高,CE 是中线,DC=BE ,DG ⊥CE 于G .求证:①G 是CE 的中点. ②∠B=2∠BCE .4、(7分)在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,且AE =21(AB +AD ),求∠ABC +∠ADC 的度数.ABCDEGABCED5、(7分)如图,△ABC 中,E 是BC 边上的中点,DE ⊥BC 于E ,交∠BAC 的平分线AD 于D ,过D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,试证明:BM =CN .6、(7分)已知:如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是BC 的中点,CE ⊥AD ,垂足为点E ,BF//AC 交CE 的延长线于点F . 求证:AC=2BF .7、(7分)在△ABC 中,AB =AC ,D 是AB 上一点,E 是AC 延长线上一点,且BD =CE . 求证:DM =EM .ABC DMNEBFABCDE8、(10分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.参考答案一、选择题1、B2、B3、A4、D5、D6、B7、D8、B9、A 10、C二、填空题1、如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形2、30°或150°3、10°4、32a 5、234a 6、3°7、 6 8、55° 9、24510、1三、解答题(本题共8个小题,共60分) 1、略 2、略3、提示:连结DE ,由直角三角形斜边中线等于斜边的一半易证.4、提示:过C 点作AD 的延长线的垂线,垂足为F .利用角平分线的性质和AE=21(AB+AD )可知BE=DF ,CF=CE ,再由△CDF ≌CBE 即得. 5、提示:连结BD 、CD 利用角平分线和中垂线的性质证△BDM ≌CDN . 6、提示:证△ACD ≌CBF .7、提示:过D 点作AC 的平行线(或者过E 点作AB 的平行线)利用三角形全等可证.8、(1)∠A = 30°;证明略(2)△ABC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形(基础)知识讲解【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC 为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个角都相等,并且每个角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。

(2)等腰三角形两底边上的中点到两腰的距离相等.(3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等.(4)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等.要点三、等腰三角形的判定定理1.等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.2.等边三角形的判定定理三个角相等的三角形是等边三角形.有一个角是60°的等腰三角形是等边三角形.3. 含有30°角的直角三角形定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 要点四、反证法在证明时,先假设命题的结论不成立,然后从这个假设出发,经过逐步推导论证,最后推出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果,从而证明命题的结论一定成立,这种证明命题的方法叫做反证法.要点诠释:反证法也称归谬法,是一种间接证明的方法,一般适用于直接证明有困难的命题.一般证明步骤如下:(1)假定命题的结论不成立;(2)从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果;(3)由矛盾的结果,判定假设不成立,从而说明命题的结论是正确的.【典型例题】类型一、等腰三角形中有关角度的计算题1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.举一反三:【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为40°,求其余各角.3、已知等腰三角形的周长为13,一边长为3,求其余各边.举一反三:【变式】已知等腰三角形的底边BC=8cm,且|AC-BC|=2cm,那么腰AC的长为( ).A.10cm或6cm B.10cm C.6cm D.8cm或6cm类型三、等腰三角形的性质及其运用4、如图,在△ABC中,边AB>AC.求证:∠ACB>∠ABC举一反三:【变式】已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长BC至点E,使CE=CD.求证:DB=DE.5、已知:如图,△ABC的两条高BE、CD相交于点O,且OB=OC,求证:△ABC是等腰三角形.举一反三【变式1】如图,在△ABC中,AB=AC,∠BAD=∠CAE,点D、E在BC上,试说明△ADE是等腰三角形.类型三、含有30°角的直角三角形6. 如图所示,△ABC中,∠ACB=90°,CD⊥AB,垂足是D,∠A=60°.求证:BD=3AD.举一反三:【变式】如图,等边三角形ABC一点P,AP=3,BP=4,CP=5,求∠APB的度数.类型四、反证法7. 求证:在一个三角形中,至少有一个角小于或等于60°。

举一反三:【变式】下列选项中,可以用来证明命题“若a 2>1,则a >1”是假命题的反例是( )A . a= —2B . a= —1C . a=1 D. a=2【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或17D .10或12 2. 用反证法证明命题:如果AB ⊥CD ,AB ⊥EF ,那么CD ∥EF ,证明的第一个步骤是( )A. 假设CD ∥EF ;B. 假设AB ∥EFC. 假设CD 和EF 不平行D. 假设AB 和EF 不平行3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是( )A. 4个B. 3个C. 2个D. 1个4. 已知实数x ,y 满足|x −4|+(y −8)2=0,则以x ,y 的值为两边长的等腰三角形的周长是( )A .20或16B .20C .16D .以上答案均不对5. 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠度数是( )A .60° B.70° C.80° D.不确定6. 如图,在△ABC 中,AB=AC ,BD 是∠ABC 的平分线,若∠ADB=93°,则∠A=( )A .31°B .46.5°C .56°D .62°二.填空题7.如图,△ABC 中,D 为AC 边上一点,AD =BD =BC ,若∠A =40°,则∠CBD =_____°.8. 等腰三角形的顶角比其中一个底角大30°,则顶角的度数为 .9.用反证法证明“如果同位角不相等,那么这两条直线不平行“的第一步应假设_________.10. 等腰三角形的一个角是70°,则它的顶角的度数是 .11.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是_________ .(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.12. 如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么AD的长为 .三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.15. 用反证法证明:等腰三角形的底角是锐角.角的平分线的性质(基础)【学习目标】1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.3. 熟练运用角的平分线的性质解决问题.【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD 平分∠ADB ,点P 是CD 上一点,且PE ⊥AD 于点E ,PF ⊥BD 于点F ,则PE =PF.要点二、角的平分线的判定角平分线的判定:角的部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE ⊥AD 于点E ,PF ⊥BD 于点F ,PE =PF ,则PD 平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于E.(2)分别以D 、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 部交于点C. (3)画射线OC.射线OC 即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形部一点,此点叫做三角形的心且这一点到三角形三边的距离相等.三角形的一角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.【典型例题】类型一、角的平分线的性质1.如图,∠ACB=90°,BD平分∠ABC交AC于D,DE⊥AB于E,ED的延长线交BC 的延长线于F. 求证:AE=CF.2、如图, △ABC中, ∠C =90, AC =BC, AD平分∠CAB, 交BC于D, DE⊥AB于E, 且AB=6cm, 则△DEB的周长为( )A. 4cmB. 6cmC.10cmD. 以上都不对举一反三:AB AC ABD与△【变式】已知:如图,AD是△ABC的角平分线,且:32ACD的面积之比为()A.3:2 B32C.2:3 233、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.类型二、角的平分线的判定4、已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF.求证:AF为∠BAC的平分线.举一反三:【变式】如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,BE =CF .求证:AD 是△ABC 的角平分线.【巩固练习】一.选择题1. AD 是△ABC 的角平分线, 自D 点向AB 、AC 两边作垂线, 垂足为E 、F, 那么下列结论中错误的是( )A.DE = DFB. AE = AFC.BD = CDD. ∠ADE = ∠ADF2.如图,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21C .mnD .2mn3. 如图,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2C.3D. 44. 到三角形三边距离相等的点是( )A.三角形三条高线的交点B.三角形三条中线的交点C .三角形三边垂直平分线的交点 D.三角形三条角平分线的交点5. 如图,下列条件中不能确定点O 在∠APB 的平分线上的是( )A .△PBA ≌△PDC B. △AOD ≌△COBC. AB ⊥PD ,DC ⊥PBD.点O 到∠APB 两边的距离相等.6. 已知,如图,AB ∥CD ,∠BAC 、∠ACD 的平分线交于点O ,OE ⊥AC 于E ,且OE=5cm ,则直线AB 与CD 的距离为( )A. 5cmB. 10cmC. 15cmD. 20cm二.填空题7.如图,已知∠C =90°,AD 平分∠BAC ,BD =2CD ,若点D 到AB 的距离等于5cm ,则BC 的长为_____cm .8. 如图,在△ABC 中,∠C =90°,DE ⊥AB ,∠1=∠2,且AC =6cm ,那么线段BE是△ABC 的 ,AE +DE = 。

相关文档
最新文档