二阶常系数非齐次线性微分方程解法及例题讲解

合集下载

二阶常系数非齐次线性微分方程资料讲解

二阶常系数非齐次线性微分方程资料讲解
齐通解 Y c1 cos x c2 sin x
先求 y y ex 的特解
0 不是根 k 1 是单根,
2 是重根
注意 上述结论可推广到n阶常系数非齐次线性 微分方程(k是重根次数).
特别地 y py qy Aex
2
A
p
ex , q
不是特征方程的根
y
A xex
2 p
是特征方程的单根 ,
A x 2ex 2
是特征方程的重根
例1 求方程 y 3 y 2 y xe2x 的通解.
代入上式 2Aj 4, A 2 j,
y* 2 jxe jx 2x sin x (2x cos x) j, 所求非齐方程特解为 y 2x cos x, (取虚部)
原方程通解为 y C1 cos x C2 sin x 2x cos x.
例4 求方程 y y x cos 2x 的通解.
一、 f ( x) ex Pm ( x) 型
设非齐方程特解为 y Q( x)ex 代入原方程
().Q( x) (2 p)Q( x) (2 p q)Q( x) Pm ( x)
(1) 若不是特征方程的根,2 p q 0, 可设 Q( x) Qm ( x), y Qm ( x)ex;
分别是 Pm ( x)e( j )x 的实部和虚部 考虑方程 y py qy Pm ( x)e( j )x , 辅助方程
可设 y xkQm ( x)e( j )x
Qm ( x)是m次复系数多项式
记Qm ( x) Q1( x) jQ2( x)
Q1( x),Q2( x)均是m次实系数多项式
y xk[Q1( x) jQ2( x)]ex (cosx j sinx) xkex[(Q1( x)cosx Q2( x)sinx) j(Q1( x)sinx Q2( x)cosx)]

二阶常系数非齐次线性微分方程讲解

二阶常系数非齐次线性微分方程讲解

y1 *
y2 *
1 2 x cos x Rm x sinx y* x k e x Rm


1 2 x , Rm x 都是 m 次多项式, m = max{ l , n },且 其中Rm
0
λ±iω不是特征根 λ±iω是特征根
9
k=
1
例 3 求方程 y' ' y x cos 2 x 的通解。 解 对应齐次方程的特征方程为 r 2 1 0 r1, 2 i 于是齐次方程的通解为 Y C1 cos x C 2 sinx 由于 f ( x ) x cos 2 x, ( 0, 2, Pl ( x ) x, Pn ( x ) 0即m 1) λ±iω=±2i不是特征方程的根,取 k 0, 故原方程特解设为: y* (ax b) cos2 x (cx d ) sin2 x 代入所给方程,得 y py qy e x [ pl ( x) cos x pn ( x) sin x]
第十节 二阶常系数非齐次线性微分方程
二阶常系数非齐次线性微ຫໍສະໝຸດ 方程一般式是y" py' qy f x
(1)
其中p、q是常数。 由定理3,只要求出(1)的一个特解 y*及(1)对应的齐次方程
y" py' qy 0
* y Y y . 的通解Y, 即可求得(1)的通解 :
对 f(x) 的下面两种最常见形式, 采用待定系数法来求出 y*。
Q x Qm ( x) b0 x m b1 x m1 bm1 x bm
代入(3)式,比较两端同次幂的系数即可确定bi i 0,1,2 , m,
x y * Q ( x ) e . 进而得(1)的特解

第六节 二阶常系数非齐次线性微分方程的解法

第六节 二阶常系数非齐次线性微分方程的解法
非齐次特解形式: x = asin pt + bcos pt h , b=0 代入④可得: a = 2 2 k −p 因此原方程④之解为
o
x
x
17
h sin pt x = Asin ( k t +ϕ ) + 2 2 k −p
自由振动 强迫振动
当干扰力的角频率 p ≈固有频率 k 时,
h 振 幅 2 将 大! 很 k − p2 • 当 p = k 时, 非齐次特解形式:
而 2r + a ≠ 0 , 则令 Q ( x ) = x Qm ( x ) , 即
y = xQm ( x)e

rxБайду номын сангаас
5
′′ + (2r + a)Q′ + (r 2 + ar + b)Q = Pm ( x) Q
情形3 情形3
(*)
是特征方程的二重 二重根 若 r 是特征方程的二重根, 即 r 2 + ar + b = 0 ,
3x
1 3 3x + x e . 6
10
3x 的通解. 例6 求微分方程 y′′ − 6 y′ + 9 y = x e 的通解.

特征方程 λ2 − 6λ + 9 = 0 , 特征根 λ1, 2 = 3 ,
对应齐次方程通解 Y = (C1 + C 2 x ) e 3 x .
是二重特征根, 因为 r = 3 是二重特征根,
y′′ + ay′ + by = f (x) 对应齐次方程 y′′ + ay′ + by = 0
(1) (2)
是方程(1) 的一个特解, (1)的一个特解 定理2 定理2 设 y ∗ ( x ) 是方程 (1) 的一个特解,

二阶常系数非齐次线性微分方程解法及例题

二阶常系数非齐次线性微分方程解法及例题
因 此 所 给 方 程 的 特 解 为 y * = x 1 3
提示 [b30bx0=b31]2[b0xb1]3[b0xb1] =2b03b0x3b1 =2b30b0x3b21=b10 3b1
特解形式
例2 求微分方程y5y6y=xe2x的通解 解 齐次方程y5y6y=0的特征方程为r25r 6=0 其根为r1=2 r2=3
提示
此时2pq=0 2p=0
要使(*)式成立 Q(x)应设为m2次多项式 Q(x)=x2Qm(x) 其中Qm(x)=b0xmb1xm1 bm1xbm
下页
❖结论
二阶常系数非齐次线性微分方程
有形如
ypyqy=Pm(x)ex
y*=xkQm(x)ex
的特解 其中Qm(x)是与Pm(x)同次的多项式 而k按不是特征
提示
此时2pq=0 但2p0
要使(*)式成立 Q(x)应设为m1次多项式 Q(x)=xQm(x) 其中Qm(x)=b0xm b1xm1 bm1xbm
下页
一、 f(x)=Pm(x)ex 型
设方程ypyqy=Pm(x)ex 特解形式为y*=Q(x)ex 则得
Q(x)(2p)Q(x)(2pq)Q(x)=Pm(x) ——(*) (1)如果不是特征方程r2prq=0的根 则 y*=Qm(x)ex (2)如果是特征方程r2prq=0的单根 则 y*=xQm(x)ex (3)如果是特征方程r2prq=0的重根 则 y*=x2Qm(x)ex
下页
一、 f(x)=Pm(x)ex 型
设方程ypyqy=Pm(x)ex 特解形式为y*=Q(x)ex 则得
Q(x)(2p)Q(x)(2pq)Q(x)=Pm(x) ——(*) (1)如果不是特征方程r2prq=0的根 则 y*=Qm(x)ex

二阶常系数非齐次线性微分方程的解法及例题详解

二阶常系数非齐次线性微分方程的解法及例题详解
y^(n+1)与y^n通过倒数第二个方程可得y^(n-1),依次 升阶,一直推到方程y''+p(x)y'+q(x)y=f(x),可得到方 程的一个特解y(x)。
微分算子法:
微分算子法是求解不同类型常系数非齐次线性 微分方程特解的有效方法,使用微分算子法求 解二阶常系数非齐次线性微分方程的特解记忆 较为方便,计算难度也可降低。引入微分算子 d/dx=D,d^2/dx^2=D^2,
则有 y'=dy/dx=Dy,y''=d^2y/dx^2=D^2y
于是y''+p(x)y'+q(x)y=f(x)可化为(D^2+pD+q)y=f(x), 令F(D)=D^2+pD+q,称为算子多项式, F(D)=D^2+pD+q即为F(D)y=f(x),其特解为 y=f(x)/F(D) 。
降阶法:
y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an…… y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)! y^(n+2)+py^(n+1)+qy^(n)=a0n! 令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。由
y*= xQk (x) ex
其中Q(x)是与p(x)同次的多项式,k按α不是特 征根、是单特征根或二重特征根,依次取0,1 或2.
将y*代入方程,比较方程两边x的同次幂的系 数(待定系数法),就可确定出Q(x)的系数而 得特解y*。

二阶常系数非齐次的通解

二阶常系数非齐次的通解

二阶常系数非齐次的通解1. 引言非齐次线性微分方程是研究微分方程中的重要内容之一。

二阶常系数非齐次线性微分方程是其中的一类典型问题,其形式为:$$\frac{d^2y}{dt^2}+a\frac{dy}{dt}+by=f(t)$$其中a,b为常数,f(t)为已知函数。

本文将着重讨论这类微分方程的通解。

2. 齐次线性微分方程的通解为了解决非齐次线性微分方程,首先需要求解其对应的齐次方程:$$\frac{d^2y}{dt^2}+a\frac{dy}{dt}+by=0$$其通解可以表示为:$$y_h(t)=c_1e^{r_1t}+c_2e^{r_2t}$$其中,$r_1$,$r_2$为齐次方程的特征根,$c_1$,$c_2$为任意常数。

根据特征根的不同情况,可以将齐次方程分为三类:两个实根、两个虚根、一个实根和一个重根。

分别讨论如下。

2.1 两个实根当齐次方程的特征方程有两个实根$r_1$和$r_2$时,通解为:$$y_h(t)=c_1e^{r_1t}+c_2e^{r_2t}$$此时,$r_1$和$r_2$可以通过特征方程求得:$$r_1,\ r_2=\frac{-a\pm\sqrt{a^2-4b}}{2}$$如果$a^2<4b$,则$r_1$和$r_2$是两个虚根。

2.2 两个虚根当齐次方程的特征方程有两个虚根时,通解可以表示为:$$y_h(t)=e^{\alpha t}(c_1\cos\beta t+c_2\sin\beta t)$$其中,$\alpha$和$\beta$为实数,可以通过特征方程求得:$$\alpha=-\frac{a}{2},\ \beta=\frac{\sqrt{4b-a^2}}{2}$$ 2.3 一个实根和一个重根当齐次方程的特征方程仅有一个实根$r_1$且其重根时,通解可以表示为:$$y_h(t)=(c_1+c_2t)e^{r_1t}$$其中$c_1$、$c_2$为任意常数。

高等数学:第八讲 二阶常系数线性非齐次微分方程(1)

高等数学:第八讲 二阶常系数线性非齐次微分方程(1)

齐次方程的通解为 Y C1ex C2e3x .
由于这里 0 不是特征根,所以设方程的特解为 y* b1x b0
把它代入方程得
3b1x (2b1 3b0 ) 3x 1
比较系数得
32bb11
3 3b0
1
b1
1, b0
1 3
所以原方程的一个特解为
y* x 1 3
因此所求通解为
y
C1e x
f (x) Pm (x)ex
此时微分方程(1)成为
Pm (x) a0 xm a1xm1
y'' py' qy f (x) Pm (x)ex (3)
am1x am
分三种情形讨论此式:
y'' py' qy f (x) Pm (x)ex (3)
(1)设不是特征方程的 根,即2 p q 0.
C2e3x
(x
1) 3
谢谢
y (C1 C2 x)er x y e x (C 1 cos x C2 sin x)
02 二阶常系数线性非齐次微分方程解法
定理
设 y * (x) 是二阶常系数线性非齐次微分方程(1)的一个特解,
Y C1 y1(x) C2 y2 (x)是方程(1)所对应的齐次方程(2)的通解,
则 y Y y* C1 y1(x) C2 y2 (x) y * (x) 是方程(1)的通解.
二阶常系数 线性非齐次 微分方程(1)
目录
01 二阶常系数线性非齐次微分方程
02 二阶常系数线性非齐次微分方程解法
03
例题
01 二阶常系数线性非齐次微分方程
二阶常系数非齐次线性
齐次微分方程解法
微分方程的一般形式 (一); py' qy f (x) (1)

二阶常系数非齐次线性微分方程解法及例题

二阶常系数非齐次线性微分方程解法及例题

二阶常系数非齐次线性微分方程解法及例题在数学的领域中,二阶常系数非齐次线性微分方程是一个重要的研究对象。

它在物理学、工程学、经济学等众多学科中都有着广泛的应用。

接下来,让我们深入探讨一下二阶常系数非齐次线性微分方程的解法以及相关例题。

首先,我们来明确一下二阶常系数非齐次线性微分方程的一般形式:$y''+ py' + qy = f(x)$,其中$p$、$q$ 是常数,$f(x)$是一个已知的函数。

为了求解这个方程,我们通常分为两个步骤:第一步,先求解对应的齐次方程:$y''+ py' + qy = 0$ 。

对于这个齐次方程,我们假设它的解为$y = e^{rx}$,代入方程中得到特征方程:$r^2 + pr + q = 0$ 。

通过求解这个特征方程,可以得到两个根$r_1$ 和$r_2$ 。

当$r_1$ 和$r_2$ 是两个不相等的实根时,齐次方程的通解为$y_c = C_1e^{r_1x} + C_2e^{r_2x}$;当$r_1 = r_2$ 是相等的实根时,齐次方程的通解为$y_c =(C_1 + C_2x)e^{r_1x}$;当$r_1$ 和$r_2$ 是一对共轭复根$r_{1,2} =\alpha \pm \beta i$ 时,齐次方程的通解为$y_c = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x))$。

第二步,求出非齐次方程的一个特解$y_p$ 。

求特解的方法通常根据$f(x)$的形式来决定。

常见的形式有以下几种:1、当$f(x) = P_n(x)e^{\alpha x}$,其中$P_n(x)$是$n$ 次多项式。

如果$\alpha$ 不是特征根,设特解为$y_p = Q_n(x)e^{\alpha x}$,其中$Q_n(x)$是与$P_n(x)$同次的待定多项式;如果$\alpha$ 是特征方程的单根,设特解为$y_p = xQ_n(x)e^{\alpha x}$;如果$\alpha$ 是特征方程的重根,设特解为$y_p =x^2Q_n(x)e^{\alpha x}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把它代入所给方程 得
>>>
2b0x2b0b1=x
比较系数

b0
=

1 2

b1=1
故 y*= x( 1 x 1)e2x 2
提示 2b0=1 齐2次b0方b程1=y05y6y=0的通解为Y=C1e2xC2e3x
特解形式
例2 求微分方程y5y6y=xe2x的通解 解 齐次方程y5y6y=0的特征方程为r25r 6=0
下页
一、 f(x)=Pm(x)ex 型
设方程ypyqy=Pm(x)ex 特解形式为
y*=Q(x)ex
则得
Q(x)(2p)Q(x)(2pq)Q(x)=Pm(x) ——(*)
(1)如果不是特征方程r2prq=0的根 则 (2)如果是特征方程r2prq=0的单根 则
则得
Q(x)(2p)Q(x)(2pq)Q(x)=Pm(x) ——(*)
(1)如果不是特征方程r2prq=0的根 则
y*=Qm(x)ex
提示 此时2pq0 要使(*)式成立 Q(x)应设为m次多项式 Qm(x)=b0xmb1xm1 bm1xbm
y*=x2Qm(x)ex
提示 此时2pq=0 2p=0 要使(*)式成立 Q(x)应设为m2次多项式 Q(x)=x2Q下页
结论
二阶常系数非齐次线性微分方程
有形如
ypyqy=Pm(x)ex
y*=Qm(x)ex y*=xQm(x)ex
提示 此时2pq=0 但2p0 要使(*)式成立 Q(x)应设为m1次多项式 Q(x)=xQm(x)
其中Qm(x)=b0xm b1xm1 bm1xbm
下页
一、 f(x)=Pm(x)ex 型
设方程ypyqy=Pm(x)ex 特解形式为
y*=b0xb1 把它代入所给方程 得
3b0x2b03b1=3x1
比较两端 x 同次幂的系数
得 b0=1
b1
=
1 3

因此所给方程的特解为 y*= x 1 3
提示
[b30bx0=b31]2[b0xb1]3[b0xb1] =23bb00x3b21=b10 3b1
特解形式
y
=
C1e
2x

C2e3x

1 2
(
x
2

2
x)e
2
x

首页
二、f(x)=ex[Pl(x)cosxPn(x)sinx]型
结论
二阶常系数非齐次线性微分方程
有形如
ypyqy=ex[Pl(x)cosxPn(x)sinx]
y*=xkex[R(1)m(x)cosxR(2)m(x)sinx] 的特解 其中R(1)m(x)、R(2)m(x)是m次多项式 m=max{l n} 而k按i(或i)不是特征 方程的根或是特征方程的单根依次取0或1
其根为r1=2 r2=3 因为f(x)=Pm(x)ex=xe2x =2是特征方程的单根
所以非齐次方程的特解应设为 y*=x(b0xb1)e2x
把它代入所给方程 得
2b0x2b0b1=x
比较系数

b0
=

1 2

b1=1
故 y*= x( 1 x 1)e2x 2
因此所给方程的通解为
>>>
下页
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
特解形式
=2b03b0x3b1
例2 求微分方程y5y6y=xe2x的通解 解 齐次方程y5y6y=0的特征方程为r25r 6=0
其根为r1=2 r2=3 因为f(x)=Pm(x)ex=xe2x =2是特征方程的单根
所以非齐次方程的特解应设为 y*=x(b0xb1)e2x
y*=Q(x)ex
则得
Q(x)(2p)Q(x)(2pq)Q(x)=Pm(x) ——(*)
(1)如果不是特征方程r2prq=0的根 则 (2)如果是特征方程r2prq=0的单根 则
y*=Qm(x)ex y*=xQm(x)ex
(3)如果是特征方程r2prq=0的重根 则
y*=xkQm(x)ex 的特解 其中Qm(x)是与Pm(x)同次的多项式 而k按不是特征方程的根、是特征方程的单 根或是特征方程的的重根依次取为0、1或2
下页
例1 求微分方程y2y3y=3x1的一个特解
解 齐次方程y2y3y=0的特征方程为r22r3=0
因为f(x)=Pm(x)ex=3x1 =0不是特征方程的根 所以非齐次方程的特解应设为
二阶常系数非齐次线性微分方程解法及例 题讲解
一、 f(x)=Pm(x)ex 型
设方程ypyqy=Pm(x)ex 特解形式为
y*=Q(x)ex
则得
Q(x)(2p)Q(x)(2pq)Q(x)=Pm(x) ——(*)
提示 y*py*qy*
=[Q(x)ex][Q(x)ex]q[Q(x)ex]
3.发展 (1)原因: ①甲午战争以后列强激烈争夺在华铁路的 修。筑权 ②修路成为中国人 救的亡强图烈存愿望。 (2)成果:1909年 京建张成铁通路车;民国以后,各条商路修筑 权收归国有。 4.制约因素 政潮迭起,军阀混战,社会经济凋敝,铁路建设始终未入 正轨。
=[Q(x)+2Q(x)+2Q(x)]exp[Q(x)+Q(x)]ex+qQ(x)ex
=[Q(x)(2p)Q(x)(2pq)Q(x)]ex
下页
一、 f(x)=Pm(x)ex 型
设方程ypyqy=Pm(x)ex 特解形式为
y*=Q(x)ex
相关文档
最新文档