固体物理习题
初中固体物理试题及答案

初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体的三种基本类型是()。
A. 晶体、非晶体、准晶体B. 晶体、非晶体、多晶体C. 晶体、非晶体、单晶体D. 晶体、多晶体、准晶体答案:A2. 晶体的特点是()。
A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B3. 非晶体与晶体的主要区别在于()。
A. 原子排列方式B. 原子大小C. 原子种类D. 原子数量答案:A4. 晶体的熔点通常比非晶体的熔点()。
A. 低B. 高C. 相同D. 不可比较答案:B5. 准晶体是一种介于晶体和非晶体之间的固体,其特点是()。
A. 完全无序排列B. 长程有序但不具备周期性C. 规则排列D. 完全有序排列答案:B6. 晶体的X射线衍射图样是()。
A. 无规则的斑点B. 规则的点状图案C. 连续的曲线D. 无规则的条纹答案:B7. 固体的热膨胀系数是指()。
A. 固体在加热时体积不变B. 固体在加热时体积变化的比率C. 固体在冷却时体积变化的比率D. 固体在加热时质量变化的比率答案:B8. 固体的导电性主要取决于()。
A. 原子的质量B. 原子的排列方式C. 原子的体积D. 原子的数量答案:B9. 金属导电的原因是()。
A. 金属内部有自由移动的电子B. 金属内部有自由移动的原子C. 金属内部有自由移动的离子D. 金属内部有自由移动的分子答案:A10. 半导体的导电性介于()之间。
A. 金属和绝缘体B. 金属和非金属C. 非金属和绝缘体D. 金属和晶体答案:A二、填空题(每题2分,共20分)1. 晶体的三种基本类型是单晶体、多晶体和________。
答案:准晶体2. 晶体的原子排列具有________性。
答案:长程有序3. 非晶体的原子排列具有________性。
答案:短程有序4. 晶体的熔点较高是因为其内部________。
答案:原子排列紧密5. 准晶体的原子排列具有________性。
初中固体物理试题及答案

初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物质的分子排列特点是:A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B2. 固体物质的分子间作用力是:A. 引力B. 斥力C. 引力和斥力D. 无作用力答案:C3. 下列物质中,属于晶体的是:A. 玻璃B. 橡胶C. 食盐D. 沥青答案:C4. 晶体与非晶体的主要区别在于:A. 颜色B. 形状C. 熔点D. 分子排列答案:D5. 固体物质的熔化过程需要:A. 吸收热量B. 放出热量C. 保持热量不变D. 无法判断答案:A6. 固体物质的硬度与下列哪项因素有关:A. 分子间作用力B. 分子质量C. 分子体积D. 分子形状答案:A7. 固体物质的导电性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:C8. 晶体的熔点与下列哪项因素有关:A. 晶体的纯度B. 晶体的颜色C. 晶体的形状D. 晶体的密度答案:A9. 固体物质的热膨胀现象说明:A. 分子间距离不变B. 分子间距离减小C. 分子间距离增大D. 分子间距离先增大后减小答案:C10. 固体物质的热传导性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:A二、填空题(每空1分,共20分)1. 固体物质的分子排列特点是________,而非晶体物质的分子排列特点是________。
答案:规则排列;无规则排列2. 固体物质的熔化过程中,分子间________,分子间距离________。
答案:作用力减弱;增大3. 晶体的熔点与________有关,而非晶体没有固定的熔点。
答案:晶体的纯度4. 固体物质的硬度与分子间________有关,分子间作用力越强,硬度越大。
答案:作用力5. 固体物质的热膨胀现象是由于温度升高,分子间距离________。
答案:增大三、简答题(每题10分,共30分)1. 简述晶体与非晶体的区别。
固体物理题目总汇

填空题1、根据固体材料中原子排列的方式可以将固体材料分为晶体、非晶体和准晶体。
2、晶体结构=点阵+ 基元。
3、晶体的比热包括晶格比热和电子比热。
4、结晶学中,属于立方晶系的布拉维晶胞有简单立方、体心立方和面心立方三种。
5、密堆结构有两种:六方密堆积和立方密堆积。
6、原子电负性在一个周期内由左到右不断升高,周期表由上到下,负电性逐渐降低。
7、限定波矢q的取值范围在第一布里渊区8、金属的未满能带叫价带或导带。
1、人们利用X射线衍射测定晶体结构。
3、晶体的热学性质,如比热、热膨胀和热传导等就与晶格振动密切有关。
4、声子是一种准粒子,不具有通常意义下的动量,常把ħq称为声子的准动量。
5、根据晶体缺陷在空间延伸的线度晶体缺陷可分为点缺陷~线缺陷、面缺陷和体缺陷。
6、V心是F心的反型体。
1、晶体的基本结构单元称为基元。
2、面心立方晶胞的晶格常数为a,其倒格子原胞的体积等于32 3/a3。
3、布拉维空间点阵共有14 种,归为7种晶系。
5、一维双原子链的色散关系中频率较低的一支叫声学支(声频支),它很像单原子链中的声学支,;频率较高的一支则叫光学支(光频支)。
6、面缺陷有堆垛层错、小角晶界和晶粒间界三种主要形式。
8、一般情况下晶体电子的近似质量是张量,自由电子的惯性质量是标量。
9、对复式晶格,格波可分为声学波和光学波。
1、体心立方结构的第一布里渊区是菱形十二面 体。
2、已知某晶体的基矢取为1a 、2a 、3a ,某一晶面在三个基矢上的截距分别为3,2,-1,则该晶面的晶面指数为()6233、倒格矢体现了晶面的面间距 和 法向。
8、晶体中的载流子是 电子 和 空穴 。
2、正格子原胞体积Ω与倒格子原胞体积*Ω之积为 ()32π 3、金刚石晶体的基元含有 2 个原子,其晶胞含有 8 个碳原子。
6、准晶是介于周期性晶体 和非晶玻璃之间的一种新的固体物质形态。
8、晶格振动的简化模型主要有爱因斯坦模型和德拜模型。
1、面心立方结构的第一布里渊区是 十四面 体。
固体物理考试习题大全

固体物理考试习题⼤全晶体结构 20 分晶体衍射 10 分晶格振动 20分与晶体的热学性质 18分能带理论和晶体中电⼦在电场磁场中的运动 36 分⾦属电⼦论和半导体电⼦论 5—10分1. 晶体的微观结构、原胞、W-S 原胞、惯⽤单胞的概念、常见的晶体结构、晶⾯与晶向的概念,并能进⾏必要的计算;倒格⼦与布⾥渊区、晶体X 射线衍射,能计算⼏何结构因⼦和衍射极⼤条件。
2. 晶体结合的普遍特性;离⼦键结合和范德⽡⽿斯结合的结合能计算。
3. 简谐近似和最近邻近似,双原⼦链的晶格振动;周期边界条件,晶格振动的量⼦化与声⼦,⾊散关系;爱因斯坦模型和德拜模型,晶体的⽐热,零点振动能计算。
4. 经典⾃由电⼦论:电⼦运动⽅程,⾦属的直流电导,霍⽿效应,⾦属热导率。
量⼦⾃由电⼦论:能态密度,费⽶分布,费⽶能级,电⼦热容量。
5. 布洛赫定理及其证明;近⾃由电⼦近似的思想⼀维和⼆维近⾃由电⼦近似的能带计算,紧束缚近似的思想,紧束缚近似的计算(S 能带的的⾊散关系)。
理解半导体Ge 、Si 的能带结构。
6.波包的准经典运动概念,布洛赫电⼦的速度,加速度和有效质量和相应的计算,空⽳的概念;导体、半导体和绝缘体的能带解释,原⼦能级和能带的对应;朗道能级,回旋共振,德×哈斯—范×阿尔芬效应,碱⾦属和贵⾦属的费⽶⾯。
7.分布函数法和恒定外电场下玻⽿兹曼⽅程的推导。
理解电⼦声⼦相互作⽤,晶格散射和电导,电阻的来源。
8. 半导体基本的能带结构,半导体中的施主和受主杂质,P 型半导体和N 型半导体,半导体中的费⽶统计分布。
PN 结平衡势垒。
1.1 在结晶学中, 晶胞是按晶体的什么特性选取的?在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性⼜要考虑晶体的宏观对称性.1.2六⾓密积属何种晶系? ⼀个晶胞包含⼏个原⼦?六⾓密积属六⾓晶系, ⼀个晶胞(平⾏六⾯体)包含两个原⼦.1.3在晶体衍射中,为什么不能⽤可见光?晶体中原⼦间距的数量级为1010-⽶,要使原⼦晶格成为光波的衍射光栅,光波的波长应⼩于1010-⽶. 但可见光的波长为7.6?4.0710-?⽶, 是晶体中原⼦间距的1000倍. 因此, 在晶体衍射中,不能⽤可见光.2.1共价结合, 两原⼦电⼦云交迭产⽣吸引, ⽽原⼦靠近时, 电⼦云交迭会产⽣巨⼤的排斥⼒, 如何解释?共价结合, 形成共价键的配对电⼦, 它们的⾃旋⽅向相反, 这两个电⼦的电⼦云交迭使得体系的能量降低, 结构稳定. 但当原⼦靠得很近时, 原⼦内部满壳层电⼦的电⼦云交迭, 量⼦态相同的电⼦产⽣巨⼤的排斥⼒, 使得系统的能量急剧增⼤.2.2为什么许多⾦属为密积结构?⾦属结合中, 受到最⼩能量原理的约束, 要求原⼦实与共有电⼦电⼦云间的库仑能要尽可能的低(绝对值尽可能的⼤). 原⼦实越紧凑, 原⼦实与共有电⼦电⼦云靠得就越紧密, 库仑能就越低. 所以, 许多⾦属的结构为密积结构.3.1什么叫简正振动模式?简正振动数⽬、格波数⽬或格波振动模式数⽬是否是⼀回事?为了使问题既简化⼜能抓住主要⽭盾,在分析讨论晶格振动时,将原⼦间互作⽤⼒的泰勒级数中的⾮线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N 个原⼦构成的晶体的晶格振动, 可等效成3N 个独⽴的谐振⼦的振动. 每个谐振⼦的振动模式称为简正振动模式, 它对应着所有的原⼦都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动⽅式. 原⼦的振动, 或者说格波振动通常是这3N 个简正振动模式的线形迭加.简正振动数⽬、格波数⽬或格波振动模式数⽬是⼀回事, 这个数⽬等于晶体中所有原⼦的⾃由度数之和, 即等于3N .3.2长光学⽀格波与长声学⽀格波本质上有何差别?长光学⽀格波的特征是每个原胞内的不同原⼦做相对振动, 振动频率较⾼, 它包含了晶格振动频率最⾼的振动模式. 长声学⽀格波的特征是原胞内的不同原⼦没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是⼀常数. 任何晶体都存在声学⽀格波, 但简单晶格(⾮复式格⼦)晶体不存在光学⽀格波.3.3温度⼀定,⼀个光学波的声⼦数⽬多呢, 还是声学波的声⼦数⽬多?频率为ω的格波的(平均) 声⼦数为11)(/-=T k B e n ωω .因为光学波的频率O ω⽐声学波的频率A ω⾼, (1/-T k B O e ω )⼤于(1/-T k B A e ω ), 所以在温度⼀定情况下, ⼀个光学波的声⼦数⽬少于⼀个声学波的声⼦数⽬.3.4长声学格波能否导致离⼦晶体的宏观极化?长光学格波所以能导致离⼦晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原⼦(正负离⼦)产⽣了相对位移. 长声学格波的特点是, 原胞内所有的原⼦没有相对位移. 因此, 长声学格波不能导致离⼦晶体的宏观极化.3.5你认为简单晶格存在强烈的红外吸收吗?实验已经证实, 离⼦晶体能强烈吸收远红外光波. 这种现象产⽣的根源是离⼦晶体中的长光学横波能与远红外电磁场发⽣强烈耦合. 简单晶格中不存在光学波, 所以简单晶格不会吸收远红外光波.3.6爱因斯坦模型在低温下与实验存在偏差的根源是什么?按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率⼤约为Hz 1013, 属于光学⽀频率. 但光学格波在低温时对热容的贡献⾮常⼩, 低温下对热容贡献⼤的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.3.7在甚低温下, 德拜模型为什么与实验相符?在甚低温下, 不仅光学波得不到激发, ⽽且声⼦能量较⼤的短声学格波也未被激发, 得到激发的只是声⼦能量较⼩的长声学格波.长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, ⾃然与实验相符.4.1 波⽮空间与倒格空间有何关系? 为什么说波⽮空间内的状态点是准连续的?波⽮空间与倒格空间处于统⼀空间, 倒格空间的基⽮分别为321 b b b 、、, ⽽波⽮空间的基⽮分别为32N N / / /321b b b 、、1N , N 1、N 2、N 3分别是沿正格⼦基⽮321 a a a 、、⽅向晶体的原胞数⽬.倒格空间中⼀个倒格点对应的体积为*321) (Ω=??b b b ,波⽮空间中⼀个波⽮点对应的体积为N N b N b N b *332211)(Ω=??,即波⽮空间中⼀个波⽮点对应的体积, 是倒格空间中⼀个倒格点对应的体积的1/N . 由于N 是晶体的原胞数⽬, 数⽬巨⼤, 所以⼀个波⽮点对应的体积与⼀个倒格点对应的体积相⽐是极其微⼩的. 也就是说, 波⽮点在倒格空间看是极其稠密的. 因此, 在波⽮空间内作求和处理时, 可把波⽮空间内的状态点看成是准连续的.4.2在布⾥渊区边界上电⼦的能带有何特点?电⼦的能带依赖于波⽮的⽅向, 在任⼀⽅向上, 在布⾥渊区边界上, 近⾃由电⼦的能带⼀般会出现禁带. 若电⼦所处的边界与倒格⽮n K 正交, 则禁带的宽度)(2n K V E g =, )(n K V 是周期势场的付⾥叶级数的系数.不论何种电⼦, 在布⾥渊区边界上, 其等能⾯在垂直于布⾥渊区边界的⽅向上的斜率为零, 即电⼦的等能⾯与布⾥渊区边界正交4.3当电⼦的波⽮落在布⾥渊区边界上时, 其有效质量何以与真实质量有显著差别?晶体中的电⼦除受外场⼒的作⽤外, 还和晶格相互作⽤. 设外场⼒为F , 晶格对电⼦的作⽤⼒为F l , 电⼦的加速度为)(1l m F F a +=.但F l 的具体形式是难以得知的. 要使上式中不显含F l , ⼜要保持上式左右恒等, 则只有F a *1m =.显然, 晶格对电⼦的作⽤越弱, 有效质量m*与真实质量m 的差别就越⼩. 相反, 晶格对电⼦的作⽤越强, 有效质量m *与真实质量m 的差别就越⼤. 当电⼦的波⽮落在布⾥渊区边界上时, 与布⾥渊区边界平⾏的晶⾯族对电⼦的散射作⽤最强烈. 在晶⾯族的反射⽅向上, 各格点的散射波相位相同, 迭加形成很强的反射波. 正因为在布⾥渊区边界上的电⼦与晶格的作⽤很强, 所以其有效质量与真实质量有显著差别4.4电⼦的有效质量*m 变为∞的物理意义是什么?仍然从能量的⾓度讨论之. 电⼦能量的变化m E m E m E 晶格对电⼦作的功外场⼒对电⼦作的功外场⼒对电⼦作的功)d ()(d )(d *+=[]电⼦对晶格作的功外场⼒对电⼦作的功)d ()(d 1E E m -=.从上式可以看出,当电⼦从外场⼒获得的能量⼜都输送给了晶格时, 电⼦的有效质量*m 变为∞. 此时电⼦的加速度01*==F a m , 即电⼦的平均速度是⼀常量. 或者说, 此时外场⼒与晶格作⽤⼒⼤⼩相等, ⽅向相反.4.5紧束缚模型下, 内层电⼦的能带与外层电⼦的能带相⽐较, 哪⼀个宽? 为什么?以s 态电⼦为例. 由图5.9可知, 紧束缚模型电⼦能带的宽度取决于积分s J 的⼤⼩, ⽽积分r R r R r r r d )()]()([)(*n at s n at N at s s V V J ----=Ω的⼤⼩⼜取决于)(r at s ?与相邻格点的)(n at s R r -?的交迭程度. 紧束缚模型下, 内层电⼦的)(r at s ?与)(n at s R r -?交叠程度⼩, 外层电⼦的)(r at s ?与)(n at s R r -?交迭程度⼤. 因此, 紧束缚模型下, 内层电⼦的能带与外层电⼦的能带相⽐较, 外层电⼦的能带宽.4.6等能⾯在布⾥渊区边界上与界⾯垂直截交的物理意义是什么?将电⼦的波⽮k 分成平⾏于布⾥渊区边界的分量//k 和垂直于布⾥渊区边界的分量k ┴. 则由电⼦的平均速度)(1k E k ?=ν得到////1k E=ν,⊥⊥??=k E 1ν. 等能⾯在布⾥渊区边界上与界⾯垂直截交, 则在布⾥渊区边界上恒有⊥??k E /=0, 即垂直于界⾯的速度分量⊥ν为零. 垂直于界⾯的速度分量为零, 是晶格对电⼦产⽣布拉格反射的结果. 在垂直于界⾯的⽅向上, 电⼦的⼊射分波与晶格的反射分波⼲涉形成了驻波.5.1⼀维简单晶格中⼀个能级包含⼏个电⼦?设晶格是由N 个格点组成, 则⼀个能带有N 个不同的波⽮状态, 能容纳2N 个电⼦. 由于电⼦的能带是波⽮的偶函数, 所以能级有(N /2)个. 可见⼀个能级上包含4个电⼦.5.2本征半导体的能带与绝缘体的能带有何异同?在低温下, 本征半导体的能带与绝缘体的能带结构相同. 但本征半导体的禁带较窄, 禁带宽度通常在2个电⼦伏特以下. 由于禁带窄, 本征半导体禁带下满带顶的电⼦可以借助热激发, 跃迁到禁带上⾯空带的底部, 使得满带不满, 空带不空, ⼆者都对导电有贡献.6.1你是如何理解绝对零度时和常温下电⼦的平均动能⼗分相近这⼀点的?⾃由电⼦论只考虑电⼦的动能. 在绝对零度时, ⾦属中的⾃由(价)电⼦, 分布在费密能级及其以下的能级上, 即分布在⼀个费密球内. 在常温下, 费密球内部离费密⾯远的状态全被电⼦占据, 这些电⼦从格波获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上, 能够发⽣能态跃迁的仅是费密⾯附近的少数电⼦, ⽽绝⼤多数电⼦的能态不会改变. 也就是说, 常温下电⼦的平均动能与绝对零度时的平均动能⼀定⼗分相近.6.2为什么温度升⾼, 费密能反⽽降低?当0≠T 时, 有⼀半量⼦态被电⼦所占据的能级即是费密能级. 温度升⾼, 费密⾯附近的电⼦从格波获取的能量就越⼤, 跃迁到费密⾯以外的电⼦就越多, 原来有⼀半量⼦态被电⼦所占据的能级上的电⼦就少于⼀半, 有⼀半量⼦态被电⼦所占据的能级必定降低. 也就是说, 温度升⾼, 费密能反⽽降低.6.3为什么价电⼦的浓度越⼤, 价电⼦的平均动能就越⼤?由于绝对零度时和常温下电⼦的平均动能⼗分相近,我们讨论绝对零度时电⼦的平均动能与电⼦浓度的关系.价电⼦的浓度越⼤价电⼦的平均动能就越⼤, 这是⾦属中的价电⼦遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电⼦不可能都处于最低能级上, ⽽是在费密球中均匀分布. 由(6.4)式3/120)3(πn k F =可知, 价电⼦的浓度越⼤费密球的半径就越⼤,⾼能量的电⼦就越多, 价电⼦的平均动能就越⼤. 这⼀点从(6.5)和(6.3)式看得更清楚. 电⼦的平均动能E 正⽐与费密能0F E , ⽽费密能⼜正⽐与电⼦浓度3/2n :()3/22232πn m E F =,()3/2220310353πn m E E F ==.所以价电⼦的浓度越⼤, 价电⼦的平均动能就越⼤.6.4对⽐热和电导有贡献的仅是费密⾯附近的电⼦, ⼆者有何本质上的联系?对⽐热有贡献的电⼦是其能态可以变化的电⼦. 能态能够发⽣变化的电⼦仅是费密⾯附近的电⼦. 因为, 在常温下, 费密球内部离费密⾯远的状态全被电⼦占据, 这些电⼦从格波获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上, 能够发⽣能态跃迁的仅是费密⾯附近的电⼦, 这些电⼦吸收声⼦后能跃迁到费密⾯附近或以外的空状态上.对电导有贡献的电⼦, 即是对电流有贡献的电⼦, 它们是能态能够发⽣变化的电⼦. 由(6.79)式 )(00ε+=v τe E f f f可知, 加电场后,电⼦分布发⽣了偏移. 正是这偏移)(0εv τe E f部分才对电流和电导有贡献. 这偏移部分是能态发⽣变化的电⼦产⽣的. ⽽能态能够发⽣变化的电⼦仅是费密⾯附近的电⼦, 这些电⼦能从外场中获取能量, 跃迁到费密⾯附近或以外的空状态上. ⽽费密球内部离费密⾯远的状态全被电⼦占拒, 这些电⼦从外场中获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上. 对电流和电导有贡献的电⼦仅是费密⾯附近电⼦的结论从(6.83)式x k S x x ES v e j F ετπ?=?d 4222和⽴⽅结构⾦属的电导率E S v e k S xF ?=?d 4222τπσ看得更清楚. 以上两式的积分仅限于费密⾯, 说明对电导有贡献的只能是费密⾯附近的电⼦.总之, 仅仅是费密⾯附近的电⼦对⽐热和电导有贡献, ⼆者本质上的联系是: 对⽐热和电导有贡献的电⼦是其能态能够发⽣变化的电⼦, 只有费密⾯附近的电⼦才能从外界获取能量发⽣能态跃迁.6.5为什么价电⼦的浓度越⾼, 电导率越⾼?电导σ是⾦属通流能⼒的量度. 通流能⼒取决于单位时间内通过截⾯积的电⼦数(参见思考题18). 但并不是所有价电⼦对导电都有贡献, 对导电有贡献的是费密⾯附近的电⼦. 费密球越⼤, 对导电有贡献的电⼦数⽬就越多. 费密球的⼤⼩取决于费密半径3/12)3(πn k F =.可见电⼦浓度n 越⾼, 费密球越⼤, 对导电有贡献的电⼦数⽬就越多, 该⾦属的电导率就越⾼.6.6磁场与电场, 哪⼀种场对电⼦分布函数的影响⼤? 为什么?磁场与电场相⽐较, 电场对电⼦分布函数的影响⼤. 因为磁场对电⼦的作⽤是洛伦兹⼒, 洛伦兹⼒只改变电⼦运动⽅向, 并不对电⼦做功. 也就是说, 当只有磁场情况下, ⾮磁性⾦属中价电⼦的分布函数不会改变. 但在磁场与电场同时存在的情况下, 由于产⽣了附加霍⽿电场, 磁场对⾮磁性⾦属电⼦的分布函数的影响就显现出来. 但与电场相⽐, 磁场对电⼦分布函数的影响要弱得多.⼆. (25分)1. 证明⽴⽅晶系的晶列[hkl ]与晶⾯族(hkl )正交.2. 设晶格常数为a , 求⽴⽅晶系密勒指数为(hkl )的晶⾯族的⾯间距.三. (25分)设质量为m 的同种原⼦组成的⼀维双原⼦分⼦链, 分⼦内部的⼒系数为β1, 分⼦间相邻原⼦的⼒系数为β2, 分⼦的两原⼦的间距为d , 晶格常数为a,1. 列出原⼦运动⽅程.2. 求出格波的振动谱ω(q ).四. (30分)对于晶格常数为a 的SC 晶体1. 以紧束缚近似求⾮简并s 态电⼦的能带.2. 画出第⼀布⾥渊区[110]⽅向的能带曲线, 求出带宽.3.当电⼦的波⽮k =a πi +a πj 时,求导致电⼦产⽣布拉格反射的晶⾯族的⾯指数.⼀. 填空(20分, 每题2分)1.对晶格常数为a 的SC 晶体,与正格⽮R =a i +2a j +2a k 正交的倒格⼦晶⾯族的⾯指数为( 122 ), 其⾯间距为( a 32π2.典型离⼦晶体的体积为V , 最近邻两离⼦的距离为R , 晶体的格波数⽬为( 33R V), 长光学波的( 纵 )波会引起离⼦晶体宏观上的极化.3. ⾦刚⽯晶体的结合类型是典型的(共价结合)晶体, 它有( 6 )⽀格波.4. 当电⼦遭受到某⼀晶⾯族的强烈反射时, 电⼦平⾏于晶⾯族的平均速度(不为 )零, 电⼦波⽮的末端处在(布⾥渊区)边界上.5. 两种不同⾦属接触后, 费⽶能级⾼的带(正)电.对导电有贡献的是 (费⽶⾯附近)的电⼦.⼆. (25分)1.设d 为晶⾯族()hkl 的⾯间距为, n 为单位法⽮量, 根据晶⾯族的定义,晶⾯族()hkl 将c b a 、、分别截为l k h 、、等份,即 a =?n a cos (a ,n )==a cos (a ,n )=hd ,b =?n b cos (b ,n )= a cos (b ,n ) =kd ,c =?n c cos (c ,n )= a cos (c ,n ) =ld .于是有n =a d h i +a d k j +a d l k =a d(h i +k j +l k ). (1)其中, i 、j 、k 分别为平⾏于c b a 、、三个坐标轴的单位⽮量. ⽽晶列[]hkl 的⽅向⽮量为=R ha i +ka j +la k=a (h i +k j +l k ). (2)由(1)、(2)两式得n =2a dR ,即n 与R 平⾏. 因此晶列[]hkl 与晶⾯()hkl 正交.2. ⽴⽅晶系密勒指数为(hkl )的晶⾯族的⾯间距22222222l k h a al a k a h d hkl hkl ++=++==k j i K πππππ三. (25分)1.原⼦运动⽅程(2t qna i n Ae u ω-=)(12t qna i n Be u ω-+=1. 1. 格波的振动谱ω(q )=()2/12/1222121222212sin 16422??+-±+qa m m m m ββββββ四. (30分)1. 紧束缚近似⾮简并s 态电⼦的能带()a k a k a k J C E E z y x s s ats s cos cos cos 2)(++--=k2. 第⼀布⾥渊区[110]⽅向的能带曲线[110]⽅向的能带曲线带宽为8J s 。
固体物理40题

1. 设晶体中的每个振子的零点振动能.试用德拜模型求晶体的零点振动能.证明:根据量子力学零点能是谐振子所固有的,与温度无关,故T=0K 时振动能0E 就是各振动模零点能之和。
()()()000012mE E g d E ωωωωωω==⎰将和()22332s V g v ωωπ=代入积分有402339168m m s V E N v ωωπ==,由于098m B D B D k E Nk ωθθ==得 一股晶体德拜温度为~210K ,可见零点振动能是相当大的,其量值可与温升数百度所需热能相比拟.2. 试画出二维长方格子的第一、第二布里渊区.3. 证明:在磁场中运动的布洛赫电子,在K 空间中,轨迹面积A n 和在r 空间的轨迹面积S n之间的关系A n= (qB hc)2S n()d k d rc qv B q B dt dt⋅=-⨯=--⋅解: dk qB dr dt c dt∴=⋅ t k qBr c两边对积分,即 =22()()n n A r c S k qB∴== 4. 证明:面心立方晶格的倒格子为体心立方. 解:面心立方晶格的基矢为()()()a a aa j ,b ,c 222k i k i j =+=+=+ 则面心立方原胞体积3V []4a abc ⋅⨯==a 2bc V π*⨯=面心立方倒格矢 ()()2384a i k i j a π=⋅+⨯+()ai j k π-++2=()b a i j k π*=-+2同理: ,()ac i j k π*=+-2 a b c ***显然,,为体心立方原胞基矢,因此面心立方晶格倒格子为体心立方 5. 证明:根据倒格子的定义证明简单立方格子体积与其倒格子体积成反比解:设简单立方晶格常数为a ,则基矢为a ,b ,c ,V a ai a j ak ===3体积=其倒格矢2312b 2a a i V aππ⨯==,3122b 2a a j V a ππ⨯==,1232b 2a a k V a ππ⨯== 则倒格子体积()31232[]V b b b Vπ*=⋅⨯=6. 是否存在与库伦力无关的晶型,为什么?答:不存在与库仑力无关的晶型,因为①共价结合中电子虽不能脱离电负性 的原子,但靠近的两个原子各给出一个电子,形成电子共有的形状,位于两原子之间通过库仑力把两个原子结合起来。
固体物理题目总汇

固体物理题目总汇填空题1、根据固体材料中原子排列的方式可以将固体材料分为晶体、非晶体和准晶体。
2、晶体结构=点阵+基元3、晶体的比热包括晶格比热和电子比热。
4、结晶学中,属于立方晶系的布拉维晶胞有简单立方、体心立方和面心立方三种。
5、密堆结构有两种:六方密堆积和立方密堆积。
6、原子电负性在一个周期内由左到右不断升高,周期表由上到下,负电性逐渐降低。
7、限定波矢q的取值范围在第一布里渊区8、金属的未满能带叫价带或导带。
1、人们利用某射线衍射测定晶体结构。
3、晶体的热学性质,如比热、热膨胀和热传导等就与晶格振动密切有关。
4、声子是一种准粒子,不具有通常意义下的动量,常把q称为声子的准动量。
5、根据晶体缺陷在空间延伸的线度晶体缺陷可分为点缺陷~线缺陷、面缺陷和体缺陷。
6、V心是F心的反型体。
1、晶体的基本结构单元称为基元2、面心立方晶胞的晶格常数为a,其倒格子原胞的体积等于323/a33、布拉维空间点阵共有14种,归为7种晶系。
5、一维双原子链的色散关系中频率较低的一支叫声学支(声频支),它很像单原子链中的声学支,;频率较高的一支则叫光学支(光频支)。
6、面缺陷有堆垛层错、小角晶界和晶粒间界三种主要形式。
8、一般情况下晶体电子的近似质量是张量,自由电子的惯性质量是标量。
9、对复式晶格,格波可分为声学波和光学波。
1、体心立方结构的第一布里渊区是菱形十二面体。
2、已知某晶体的基矢取为a1、a2、a3,某一晶面在三个基矢上的截距分别为3,2,-1,则该晶面的晶面指数为2363、倒格矢体现了晶面的面间距和法向。
8、晶体中的载流子是电子和空穴2、正格子原胞体积与倒格子原胞体积之积为233、金刚石晶体的基元含有2个原子,其晶胞含有8个碳原子。
6、准晶是介于周期性晶体和非晶玻璃之间的一种新的固体物质形态。
8、晶格振动的简化模型主要有爱因斯坦模型和德拜模型。
1、面心立方结构的第一布里渊区是十四面体。
2、代表基元中的几何点称为格点。
固体物理学考试题及答案

固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
(参考资料)固体物理习题带答案

D E ( ) ,其中 , 表示沿 x , y , z 轴的分量,我们选取 x , y , z
沿立方晶体的三个立方轴的方向。
显然,一般地讲,如果把电场 E 和晶体同时转动, D 也将做相同转动,我们将以 D' 表示转
动后的矢量。
设 E 沿 y 轴,这时,上面一般表达式将归结为:Dx xyE, Dy yyE, Dz zy E 。现在
偏转一个角度 tg 。(2)当晶体发生体膨胀时,反射线将偏转角度
tg , 为体胀系数
3
解:(1)、布拉格衍射公式为 2d sin ,既然波长改变,则两边同时求导,有
2d cos ,将两式组合,则可得 tg 。
(2)、当晶体发生膨胀时,则为 d 改变,将布拉格衍射公式 2d sin 左右两边同时对 d
考虑把晶体和电场同时绕 y 轴转动 / 2 ,使 z 轴转到 x 轴, x 轴转到 z 轴, D 将做相同
转动,因此
D'x Dz zy E
D'y Dy yyE
D'z Dx xy E 但是,转动是以 E 方向为轴的,所以,实际上电场并未改变,同时,上述转动时立方晶体
的一个对称操作,所以转动前后晶体应没有任何差别,所以电位移矢量实际上应当不变,即
第一章:晶体结构 1. 证明:立方晶体中,晶向[hkl]垂直于晶面(hkl)。
证 明 : 晶 向 [hkl] 为 h1 k2 l3 , 其 倒 格 子 为
b1
2
a1
a2
a3
(a2 a3 )
b2
2
a1
a3 a1 (a2 a3)
b3
2
a1
a1
a2
(a2 a3)
。可以知道其倒格子矢量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)
(2) (1)画出布拉菲格子
(2)画出原胞和晶胞
原胞
晶胞
2.一个由同一种元素的原子组成的二维晶体, 晶格振动有几支声学支?几支光学支?
3.设有两块原子数同为N,体积分别为 V 和 V 的体心立方结构和面心立方结构的金属样品,求:
(1)两块样品的晶胞边长之比 a1 a2 ? (2)倒格子晶胞边长之比 b1 b2 ? (3)晶格振动的格波波矢数是多少? (4)晶格振动的模式数是多少?
4.(12.9) 如果基矢构成简单正交系, 证明晶面族的面间距为:
d
1
h a
2 Biblioteka k b2 l c
2
4.如图所示的倒格子点阵
r b
2 ar
画出第一、二、三布区。