温度监测及报警电路(热敏电阻+LM324)

合集下载

设计一个温度监测和显示报警电路

设计一个温度监测和显示报警电路

设计要求:设计一个温度监测和显示报警电路,电路包括:温度监测、显示报警和供电电源3个部分。

1)设计温度监测电路。

温度监测范围:0~100℃;对应输出电压0~10V(参考值)。

2)设计窗口比较器电路。

上下限可调整;为窗口比较器设计状态指示灯,超过上限红灯亮、低于下限绿灯亮、上下限之间黄灯亮;超限时有报警提示音。

3)为上述电路设计配套供电电源。

4)确定上述电路中所有元器件的型号或参数。

电阻要给出阻值和功率;电容要给出容量和耐压;变压器要给出输出电压和功率。

5)关键元器件的参数选择要说明计算公式。

如放大倍数、工作电流、设定电压等。

1、电路图电源部分温度检测和显示报警部分2、元器件选择及参数计算(1)变压器UI=(整流输出+稳压器压降)×(阻抗压降)×(电源波动)取整流输出为12V(即VCC),因此UI=(12+3)××。

取UI为18V。

变压器次级电压为U2=UI/~=15V.电源电路电流约为60mA,取100mA。

变压器功率为12×100mA=。

所以变压器可选15V/3W。

(2)整流二极管电源输出电流按计算桥式电路中每只二极管电流为Id=1/2Iomax=。

每只二极管承受的最大反压U(M)==24V。

可选用1N4001,其参数为Io=1A,Urm=100V。

(3)滤波电容一般来说,充电时间常数RC是其充电周期的(2~5)倍。

对于桥式整流电路,滤波电容的充电周期是其交流电源周期的一半,即RC≥(2~5)T/2=(2~5)/2f。

取倍,C=830μF,取C=1000μF。

考虑电容的耐压值,电网电压最高为Ucmax=×=。

综合考虑,C1可选1000μF/50V的电解电容。

C2、C3为μF的瓷片电容,用于滤去高频纹波。

(4)NTC热敏电阻的选择测温电路输出电压Uo=R1×Vcc/(R1+RNTC),根据要测的温度范围和设定的温度电压范围,选择合适的R1的值。

温度指示电路_超温报警_(2)

温度指示电路_超温报警_(2)

温光指示电路专业:电气工程及其自动化学号:7022813046 学生姓名:邓旭东指导教师:吴敏黄灿英【摘要】温度指示电路是在实际应用中相当广泛的测量电路。

本次设计主要运用基本的模拟电子技术基础和传感器原理的知识,从基本的元器件出发,实现了超温报警电路的设计。

在电子课程设计中的主要思想:一、达到课程要求;二、尽量应用所学知识。

超温报警电路是采用LM324温度传感器设计的,报警温度超过设定温度时会发出光报警信号。

本电路主要由低功耗四运算放大器LM324、热敏电阻、LED发光二极管等元器件组成,并利用热敏电阻的阻值随着温度的升高而增大这个原理改变四运算放大器LM324比较器的比较电压,使其输出产生变化,从而引起发光二极管发出可见光,从而起到温度指示的作用。

在实际应用中,利用发光二极管的温度指示作用来判断环境温度的变化,从而减少不必要的损失。

【关键词】温度指示热敏电阻LM324 发光二极管光敏电阻目录前言 (2)第1章工作原理 (3)1.1 热敏电阻的工作原理 (3)1.2 发光二极管的工作原理 (3)1.3 LM324的工作原理 (4)1.4电路的工作原理 (4)第2章安装与调试 (5)2.1 元器件的选择 (5)2.1.1 元器件清单的编制 (5)2.1.2 元器件的技术参数的选择 (6)2.1.3 简述核心器件的功能 (9)2.1.4 元器件的测试方法2.2制作安装调试 (12)第3章制作PCB板 (18)第4章小结 (21)第5章参考文献 (23)附录…………………………………………………………………………( 24 )前言温度测量与控制电路广泛应用于生产生活中的各个方面,特别是在工业生产中,温度自动控制已经成为一个相当成熟的技术。

本次课程设计给我们创造了良好的学习机会:一是查阅资料将自己所学的数字电子技术,模拟电子技术,以及传感器的相关知识综合运用,二是系统了解温度监测的详细过程,为日后的学习和工作增长知识,积累经验。

热敏电阻控制温度上下限报警装置

热敏电阻控制温度上下限报警装置

传感器课程设计报告书课题名称 热敏电阻控制温度上下限报警装置姓 名 陈亚萍学 号 20097274院、系、部电气工程系 专 业自动化 指导教师高艳玲2013年 1 月 3 日※※※※※※※※※※※※※ ※※ ※※※※※※※※※2009级传感器 课程设计热敏电阻控制温度上下限报警装置20097274 陈亚萍一、设计目的1、掌握热电式传感器工作原理并了解热敏电阻与温度变化的关系;2、熟练应用直流电桥,比较器等基本电路;3、自拟电路,充分体会热电式传感器的实际应用;4、学习使用PROTEUS系统进行电路仿真,PROTEL软件绘制原理图二、设计要求1.实现基本功能,画出设计电路图;2.制板;3.提示:(1):将热敏电阻接到桥式电路中,常温下输出电压为0,LED不发光;(2):当把热敏电阻加到一定的热水或冷水中,(即温度升高或降低)桥式电路不平衡,导致后续的晶体管出现导通,对应的LED亮;(3):在接三极管前先需要对桥式电路的输出电压信号放大,放大倍数约100倍;4.完成3000字设计报告三、硬件电路设计3.1电路设计结构框图图3-1电路设计结构框图3.2传感器的选择热敏电阻的基本特性是电阻—温度特性。

我们使用的热敏电阻为负温度系数热敏电阻,特别适用于-100~300℃之间测温,在较小的温度范围内,其电阻-温度特性曲线是一条指数曲线,即随着温度的升高阻值不断减小。

由于热敏电阻是由半导体材料制成的,其中的载流子数目是随温度的升高按指数规律迅速增加的。

载流子数目越多,导电能力越强,其电阻率也就越小,因此热敏电阻的电阻值岁温度的升高将按指数规律迅速减小。

这和金属中自由电子的导电机制恰好相反,金属中的电阻值是随着温度的上升而缓慢增大的。

热敏电阻有正温度系数,临界温度系数与负温度系数之分,本实验所用的101为负温度系数(NTC ),在较小的温度范围内,其电阻-温度特性曲线是一条指数曲线,可表示为t e RT βα=式中, RT 为温度为T 时的电阻值,α与β为与半导体性能T 有关的常数,为热敏电阻的热力学温度。

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)描述lm324应用电路(一)温度控制器采用LM324四运算放大器集成电路,温度控制范围为5~95℃,可广泛应用于工农业生产方面的温度自动控制。

该温度控制器电路由电源电路、温度检测电路、基准电压电路、温度指示电路、电压比较放大电路和控制执行电路组成,如图6-6所示。

图6-6采用LM324运算放大器的温度控制器电路电路中,电源电路由电源开关S、电源变压器T、整流桥堆UR、滤波电容C1、C2、三端稳压集成电路IC2、限流电阻R10和电源指示发光二极管VL1组成;温度检测电路由晶体管式温度传感器V1、电阻R1、电容C3和运算放大器集成电路IC1(N1~N4)内部的N1组成;基准电压电路由电阻R4、R5、R8、电位器RP1~RP3、稳压二极管VS和IC1内部的N4组成;温度指示电路由电阻R2、R3、IC1内部的N2和电压表PV组成;电压比较放大电路由IC1内部的N3和电阻R6、R7组成;控制执行电路由电阻R9、晶体管V2、继电器K、二极管VD 和工作指示发光二极管VL2组成。

交流220V电压经T降压、UR整流、C1滤波及IC2稳压后,为IC1、基准电压电路和控制执行电路提供+9V工作电压,同时将VL1点亮;+9V电压经R5限流、VS稳压后产生+6V左右的基准电压,一路经R4、RP1分压后为N2的正相输入端提供基准电压;另一路先经N4缓冲放大,然后经RP2、RP3分压后,再经R8加至N4的正相输入端,作为N3的基准电压;V1发射结的电压降(Vbe)随着环境温度的变化而变化。

温度上升时,V1的导通内阻变小,发射结的电压降也减小,使N1的输出电压降低,N2的输出电压升高,N4的输出电压则下降;PV用来指示V1检测的温度值(灵敏度为10mV/℃),若PV指示电压值为250mV,则表明温度为25℃;RP3用来设定控制温度值;RP2用来设定RP3的最大输出电压(调节RP2的阻值,使RP3的最大输出电压为1V);RP1用来设定N2正相输入端的基准电压(调节RP1的阻值,使N2的正相输入端电压为530mV)。

温度监测报警器电路图

温度监测报警器电路图

温度监测报警器电路图发布:2011-08-19 | 作者: | 来源: caiduoshi | 查看:1809次| 用户关注:本文介绍的温度监测报警器,具有“高”、“中”、“低”3档温度指示,能在温度偏高或偏低时发出报警信号,可用于大棚、温室等需要温度监控的场合。

电路工作原理该温度监测报警器电路由温度检测/指示电路和声音报警电路组成,如图所示。

温度检测/指示电路由电阻器RI、R2、控制集成电路IC1、热敏电阻器(温度传感器)RT、电位器RP、二极管VDI和发光二极管VL1~VL3组成。

声音报警电路由二极管VD2、VD3、电本文介绍的温度监测报警器,具有“高”、“中”、“低”3档温度指示,能在温度偏高或偏低时发出报警信号,可用于大棚、温室等需要温度监控的场合。

电路工作原理该温度监测报警器电路由温度检测/指示电路和声音报警电路组成,如图所示。

温度检测/指示电路由电阻器RI、R2、控制集成电路IC1、热敏电阻器(温度传感器)RT、电位器RP、二极管VDI和发光二极管VL1~VL3组成。

声音报警电路由二极管VD2、VD3、电阻器R3、R4晶体管V、电子开关集成电路IC2和蜂鸣器HA组成。

接通电源开关S后,电池CB为整机电路提供4.5V工作电源。

RT用来检测环境温度,其阻值随着温度的升高而减小,IC1的2脚电压随着RT的阻值变化而变化。

RP用来设定监控温度。

当环境温度适宜(在RP的设定温度范围内)时,ICl的2脚电位介于高电平与低电平之间,12脚输出低电平,10脚和II脚输出高电平,VL2点亮,VL1和VL3不发光,声音报警电路不工作,HA不发声。

当环境温度偏低时,RT的阻值增大,使IC1的2脚电压升高,当IC1的2脚和5脚变为高电平时,11脚和12脚将输出低电平,使VL1和VL2点亮,VD2和V导通,IC2也导通工作,HA发出报警声。

当环境温度升高时,RT的阻值随之减小,使IC1的2脚电压下降。

当温度偏高使IC1的2脚和4脚变为低电平时,10脚和12脚输出低电平,使VL2和VL3点亮,VD3和V导通,IC2也导通工作,HA发出报警声。

热敏电阻温度测量电路

热敏电阻温度测量电路

热敏电阻温度测量电路下图是温度在0~50℃范围的测量电路。

当温度为0℃时输出电压是0V ,温度为50℃时是5V 。

他可以与电压表链接来测量温度,也可以连接AD 转换器变换为数字量,利用计算机之类进行测量。

1、工作原理该电路由检测温度的热敏电阻和1个运算放大器电路,以及将0~50℃的温度信息变换为0~5V 电压的2个运算放大器电路构成。

热敏电阻检测温度时,利用热敏电阻TH R 与电阻3R 分压后的电压作为检测电压进行处理,在这里是利用运算放大器1OP 的电压跟随器电路提取的。

输出电压的极性为正,随着温度的上升,热敏电阻的电阻值降低,所以输出电压也下降。

检出的信号加在1OP 和电阻~4R 7R 构成的差动放大电路的正输入端上,而加在负输入端上的是由8R 、9R 、1VR 对5V 分压后的电压,这部分是电压调整电路,可以在温度为0℃时将1OP 的输出电压调整为0V ,这样就可以输出与温度上升成比例的负电压。

2OP 的输出加在由3OP 构成的反转放大电路上被放大,放大倍数为—10211/)(R VR R +倍。

调整2VR 可以使温度达50℃时3OP 的输出电压为+5V 。

通过调整1VR 和2VR ,可以在0℃时得到0V 的输出电压,50℃时得到5V 的输出电压,使输出电压与温度成比例。

2、设计(1)温度测量范围以及输出电压、电源电压的确定:设定温度测量范围为0~50℃,这时的输出电压是0~5V 。

电路使用的电源为±15V ,基准电压为5V 。

(2)热敏电阻和运算放大器的选定:这里使用NTC 型热敏电阻,选用25℃的电阻值为10K Ω,误差在±1%以内的NTH4G39A 103F02型,这种热敏电阻的常数为B=3900。

(3)补偿电阻3R 的确定:电阻3R 的作用是当热敏电阻的温度变化时,将相对应的输出电压的变化线性化。

设线性化的温度范围是0~50℃,,那么补偿电阻3R 可由下式求得:Ω=-+-+=k R R R R R R R R R XX 566.722)(1010103 (4)电阻1R 、2R 、电容器1C 的确定:这是给热敏电阻提供电压的分压电阻,这个电压是通过电阻1R 和2R 将5V 电压分压而得到的。

热敏电阻测温电路

热敏电阻测温电路

热敏电阻测温电路热敏电阻测量电路本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。

其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃.2.2.1 原理电路本测温控温电路由温度检测、显示、设定及控制等部分组成,见图2.2.1。

图中D1~D4为单电源四运放器LM324的四个单独的运算放大器。

RT1~RTn为PTC感温探头,其用量取决于被测对象的容积。

RP1用于对微安表调零,RP2用于调节D2的输出使微安表指满度。

S为转换开关。

图2.2.1 测温控温电路由RT检测到的温度信息,输入D1的反馈回路。

该信息既作为D2的输入信号,经D2放大后通过微安表显示被测温度;又作为比较器D4的同相输入信号,与D3输出的设定基准信号,构成D4的差模输入电压。

当被控对象的实际温度低于由RP3预设的温度时,RT的阻值较小,此时D4同相输入电压的绝对值小于反相输入电压的绝对值,于是D4输出为高电位,从而使晶体管V饱和导通,继电器K得电吸合常开触点JK,负载RL由市电供电,对被控物进行加热。

当被控对象的实际温度升到预设值时, D4同相输入电压的绝对值大于反相输入电压的绝对值, D4的输出为低电位,从而导致V截止,K失电释放触点JK至常开,市电停止向RL供电,被控物进入恒温阶段。

如此反复运行,达到预设的控温目的。

2.2.2 主要元器件选择本测温控温电路选用PTC热敏电阻为感温元件,该元件在0℃时的电阻值为264Ω,制作成温度传感器探测头,按图2.2.2线化处理后封装于护套内,其电阻-温度特性见图2.2.3.图2.2.2 线化电路线化后的PTC热敏电阻感温探头具有良好的线性,其平均灵敏度达16Ω/℃左右。

如果采用数模转换网络、与非门电路及数码显示器,替代本电路的微安表显示器,很容易实现远距离多点集中的遥测。

继电器的选型取决于负载功率。

为便于调节,RP1~RP4选用线性带锁紧机构的微调电位器。

热敏电阻测温电路

热敏电阻测温电路

热敏电阻测温电路概述热敏电阻(thermistor)是一种将温度变化转化为电阻变化的传感器。

热敏电阻测温电路是一种常见的温度测量方法,通过读取热敏电阻的电阻值来确定温度。

本文将介绍热敏电阻测温电路的工作原理、电路设计以及使用注意事项。

工作原理热敏电阻的电阻值与温度呈负相关关系,温度升高时电阻值减小,温度降低时电阻值增加。

这是因为热敏电阻的电阻值受其内部材料温度相关性的影响。

常见的热敏电阻有两种类型:PTC(正温度系数)和NTC (负温度系数)。

PTC热敏电阻的电阻值随温度升高而增加,而NTC热敏电阻的电阻值随温度升高而减小。

热敏电阻测温电路利用了热敏电阻温度-电阻特性的这一特点,通过测量电阻值来间接确定温度。

电路设计热敏电阻测温电路一般由以下几部分组成:1.热敏电阻:选择适当的热敏电阻类型和参数,根据测量范围和精度要求进行选择。

2.偏置电阻:为了减小热敏电阻的电阻变化对测量结果的影响,一般需要在热敏电阻和测量电路之间加入一个偏置电阻。

3.电桥:为了提高测量精度,常常使用电桥电路来测量热敏电阻的电阻值。

电桥电路一般由热敏电阻、偏置电阻和参考电阻组成。

4.读取电路:读取电桥电路的输出电压,通过将输出电压与参考电压进行比较,可以得到热敏电阻的电阻值,从而确定温度。

使用注意事项在设计和使用热敏电阻测温电路时,需要注意以下几点:1.热敏电阻的特性:了解选用的热敏电阻的温度-电阻特性,以及其额定工作范围和精度。

2.偏置电阻的选择:根据热敏电阻的特性和设计要求,选择适当的偏置电阻,以使热敏电阻的电阻变化对测量结果的影响最小化。

3.电桥电路的设计:根据热敏电阻的特性和设计要求,设计适当的电桥电路,以提高测量精度。

4.温度补偿:热敏电阻的温度-电阻特性可能受到环境温度的影响,在一些应用中,可能需要进行温度补偿以提高测量精度。

5.输出接口:根据实际需求,选择合适的输出接口(如模拟电压输出或数字信号输出),以便接入其他设备或系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度监测及报警电路(热敏电阻+LM324)姓名:_____孔亮______ 学号:____0928401116____
一、元件介绍:
1、热敏电阻MF53-1:
2、LM324:
LM324是四运放集成电路,它采用14脚双列直插塑料封装,lm324原理图如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

lm324引脚图见图2。

图一图二由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

3、LED——发光二极管
LED(Light-Emitting-Diode中文意思为发光二极管,是一种能够将电能转化为可见光的半导体,它改变了白炽灯钨丝发光与节能灯三基色粉发光的原理,而采用电场发光。

据分析,LED的特点非常明显,寿命长、光效高、无辐射与低功耗。

LED的光谱几乎全部集中于可见光频段,其发光效率可超过150lm/W(2010年)。

一般LED工作时,加10mA足以使之正常工作,故电阻值为V o/10mA,即为外加电阻的值,如+5V的电压下可以使用500欧姆的电阻。

二、设计原理:
检测电路采用热敏电阻RT(MF53-1)作为测温元件;采用LM324作比较电路;用发光二极管实现自动报警。

报警分三级:温度>20O C,一个灯亮;
温度>40O C,二个灯亮;
温度>60O C,三个灯亮。

三、M ultisim仿真:
仿真电路设计图
说明:该仿真电路图以5kΩ的电位器模拟热敏电阻MF53—1在不同温度下的阻值,并利用分压电路将不同温度下热敏电阻下方的电位送入LM324与事先计算好的电位进行比较,当其电位大于事先计算好的电位时,运放输出高电平,点亮LED,达到报警的效果。

分压电阻阻值的计算:
温度=20 ℃时,热敏电阻阻值为3.5千欧,此时R5与R6之间的电位为:
1/(3.5+1)×9=2伏特
温度=40 ℃时,热敏电阻阻值为1.64千欧,此时R5与R6之间的电位为:
1/(1.64+1)×9=3.46伏特
温度=60 ℃时,热敏电阻阻值为823欧,此时R5与R6之间的电位为:
1000/(823+1000)×9=5伏特
假定分压电路的电流为1毫安,则:
R4=2伏特/1毫安=2千欧
R4+R1=3.46伏特/1毫安=3.46千欧
R4+R1+R2=5伏特/1毫安=5千欧
R4+R1+R2+R3=9伏特/1毫安=9千欧
故得到:R4=2千欧,R1=1.46千欧,R2=1.54千欧,R3=4千欧
. 仿真结果:
温度>20℃场景模拟(一个灯亮)
温度>40℃场景模拟(两个灯亮)
.
温度>60℃场景模拟(三个灯亮)
四、实际电路测量:
电路现象:调节电位器,当刚刚一个灯亮时,此时测得R5与R5之间电位为1.94伏特;当刚刚两个灯亮时,此时测得R5与R5之间电位为3.42伏特;当刚刚三个灯亮时,此时测得R5与R5之间电位为4.99伏特。

电路功能验证:
一个灯亮时:
R5与R5之间电位=1000/(1000+R6)=1.94÷9
得到:R6=3639欧,查表得电位器此时模拟的温度约为20℃
两个灯亮时:
R5与R5之间电位=1000/(1000+R6)=3.42÷9
得到:R6=1631欧,查表得电位器此时模拟的温度约为40℃
三个灯亮时:
R5与R5之间电位=1000/(1000+R6)=4.99÷9
得到:R6=803欧,查表得电位器此时模拟的温度约为60℃
结论:该电路可以实现测温电路的功能。

五、实验中遇到的问题:
本人在实际实验中接入电源时,误将电源电流档调到0,结果将芯片烧毁,后经上网查询后发现,是因为电流源内部有电流监控装置,用来稳定电流,当输出电流小于预定值时,会主动提升某处的电压,直到输出电流等于预定电流为止。

若电流源开路,意味者电流源内部会持续提高控制电压,导致电压端电压过高,烧毁芯片。

相关文档
最新文档