第七章恒定磁场1
《恒定磁场》PPT课件

任何物质的分子都存在着圆形电流,称为分子电流。
nˆ
每个分子电流都相当于一个基本磁元体。
各基本磁元体的磁效应相叠加
永磁体
IN e
v
S
基本磁元体受磁场力作用而转向 2、磁场
磁化
图 4- 4 分 子 电 流
运动的电荷在其周围空间激励出了磁场这种特殊的物质。
磁作用力都是通过磁场来传递的。
3、磁单极子 ①理论上预言存在,但是没有在实验中发现 ②即使存在也是极少的,不会影响现有的一般工程应用。
③洛仑兹力方程
Fq(EvB )
B 的单位: 在SI单位制中,为特斯拉(T) 高斯单位制中,为高斯(Gs )
1 特斯拉 =1 (牛顿·秒)/(库仑·米) 1 T=104 Gs
5、磁感应线 ①磁感应线上任一点的切线方向为该点磁感应强度 B 的方向; ②通过垂直于的单位面积上的磁感应线的条数正比于该点 B 值的大小。
2、安培磁力定律符合牛顿第三定律
F21F12
二、毕奥----沙伐定律
1、电流回路的 B
将安培磁力定律改写为
写成微分形式
F21
l2I2dl240
l1
I1dl1R21
R231
dF21I2dl24 0
l1
I1dl1R21
R231
只与回路 l1 有关
而电流回路所受磁力可以归结为回路中运动电荷受力的结果
B
A
A
q
F
B
图4-11 磁聚焦
图4-12 磁镜
图4-13 磁瓶
三. 回旋加速器
回旋加速器的优点在于以不很高的振 荡电压对粒子不断加速而使其获极高 的动能。
设D形盒的半径为R0,则离子所能
大学物理 稳恒磁场的基本性质

7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
四 安培环路定理的应用举例
例1 求长直密绕螺线管内磁场
解 1 ) 对称性分析螺旋管内为均匀场 , 方向沿
轴向, 外部磁感强度趋于零 ,即 B 0 .
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
2 ) 选回路 L .
磁场 B 的方向与
电流 I 成右螺旋.
s
B dS B dS
S
S
-Br 2
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
例 如图载流长直导线的电流为 I ,
形面积的磁通量.
解 先求
试求通过矩 B ,对变磁场
B
给B出dΦ后0I 积分求BΦ// S
I
l
2π x dΦ BdS
0I
ldx
M
NB
++++++++++++
P
LO
B dl B dl B dl BPM
B MN 0nMNI B 0nI
无限长载流螺线管内部磁场处处相等 , 外部磁场 为零.
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
例3 无限长载流圆柱体的磁场
I
解 1)对称性分析 2)选取回路
RR
rR
Bdl l
0I
L
2π rB 0I
B 0I
2π r
r B
0 r R
l
B
d
l
0
π π
《大学物理》章节试题及答案(七)

《大学物理》章节试题及答案第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). *7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )(A )()r I μr π2/1-- (B ) ()r I μr π2/1-(C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。
恒定磁场ppt

恒定磁场研究的前沿进展
01
恒定磁场作为一种独特的物理场,具有无辐射、无污染、易于调控等优势,在 基础科学、应用科学和工程技术等领域具有广泛的应用前景。
02
近年来,研究者们在恒定磁场相关的物理、材料、生物医学等领域取得了许多 前沿进展,如在磁性材料研究方面,发现了多种新型磁性材料,提高了磁性材 料的性能和稳定性。
光学性质
恒定磁场可以影响物质的光学性质,如折射率、吸收光谱等。
恒定磁场对物质化学性质的影响
电子结构
恒定磁场可以影响物质的电子结构,从而影响化学键的形成 和断裂。
反应速率
恒定磁场可以影响化学反应速率,从而影响化学反应的能量 转换和物质转化。
04
恒定磁场的应用实例
恒定磁场在医学领域的应用
核磁共振成像(MRI)
恒定磁场的基本特征
恒定磁场是一种非均匀场,其 强度和方向随空间位置的变化
而变化。
恒定磁场具有旋度,因此不会 产生电场。
恒定磁场与电场不同,其强度 不与电流密度成正比,而是与 电流密度和磁导率成正比。
恒定磁场的应用场景
ቤተ መጻሕፍቲ ባይዱ磁性材料制备
磁记录
利用恒定磁场可以控制磁性材料的磁性能参 数,如磁化强度、磁晶各向异性等,从而制 备高性能的磁性材料。
利用恒定磁场将人体中的氢原子磁化,通过检测这些原子核产生的信号,生 成人体内部的高分辨率图像。
磁分离技术
恒定磁场可用于分离血液中的肿瘤细胞、细菌等有害物质,提高疾病诊断和 治疗的准确性。
恒定磁场在材料科学领域的应用
磁性材料制造
恒定磁场可以用于制造高性能的磁性材料,如稀土永磁材料、铁氧体材料等。
磁记录
未来,恒定磁场的研究和应用将会有更多的创新和发 展,为人类的生产和生活带来更多的便利和效益。
大学物理恒定磁场PPT

磁场对通电导线的作用力
总结词
运动电荷在磁场中会受到洛伦兹力的作用,该力的大小与电荷的速度、电荷量以及磁场强度成正比。
详细描述
当电荷在磁场中运动时,电荷受到洛伦兹力的作用。洛伦兹力的大小与电荷的速度、电荷量以及磁场强度成正比,其方向由洛伦兹力公式确定。洛伦兹力在电场和磁场同时存在的情况下,会对电荷的运动轨迹产生影响。
总结词
磁通计、磁强计、铁磁物质、测量仪器等。
实验材料
将铁磁物质置于磁场中,使用磁通计和磁强计测量磁场的磁感应强度和磁场线分布。
实验步骤
通过测量数据可以得出磁场的分布情况,验证磁场的基本性质,如磁场线的闭合性、磁场的矢量性等。
实验结果
磁场的测量与观察实验
THANKS
感谢您的观看。
磁场可能改变数据存储介质中的信息,造成数据丢失或损坏。
磁场防护技术
为保护电子设备免受磁场干扰,需要采取相应的磁场防护技术。
磁场对电子设备的影响
利用磁感应强度传感器、磁通量计等设备,测量磁场的大小、方向和分布情况。
磁场测量技术
通过改变磁场源的电流、电压等参数,实现对磁场的控制和调节。
磁场控制技术
利用磁场在工业、医疗、军事等领域中实现各种应用,如磁悬浮技术、核磁共振成像等。
磁场对运动电荷的作用力
磁体在磁场中会受到磁力的作用,该力的大小与磁体的磁感应强度、磁体之间的距离以及磁体的体积成正比。
总结词
当两个磁体之间存在磁场时,它们之间会相互作用,产生磁力。磁力的大小与磁体的磁感应强度、磁体之间的距离以及磁体的体积成正比,其方向由库仑定律确定。磁力在磁场中起着重要的物理作用,如电磁感应、磁悬浮等。
在磁感应强度为B的磁场中,放入一个长度为L、面积为S的导体,当导体垂直于磁场方向放置时,导体受到的安培力F与B、L、S之间的关系为F=BIL。
大学物理第七章恒定磁场

在均匀磁场中,有一段长度为l的导线,导线的一端固定在x=0处,另一端在x=l处自由悬 挂。当导线受到外力作用而摆动时,求摆动的周期T是多少?
问题三
在均匀磁场中,有一段长度为l的导线,导线的一端固定在x=0处,另一端在x=l处自由悬 挂。当导线受到外力作用而摆动时,求摆动的振幅A是多少?
THANK YOU
04
磁场中的电流
电流产生的磁场
安培环路定律
描述电流产生的磁场,即磁场与电流 成正比,并与电流的环绕方向有关。
毕奥-萨伐尔定律
描述电流在其周围空间产生的磁场, 与电流的大小和距离有关。
磁场对电流的作用
洛伦兹力
描述带电粒子在磁场中受到的力,该 力垂直于粒子的运动方向和磁场方向。
霍尔效应
当电流垂直于磁场通过导体时,会在 导体两侧产生电势差,这种现象称为 霍尔效应。
在磁场中画出一系列从N极指向S 极的曲线,表示磁力作用的路径 。
磁感应强度和磁场强度
磁感应强度
描述磁场对放入其中的导体的作用力,用B表示。
磁场强度
描述磁场本身的强弱,用H表示。
恒定磁场与变化磁场
恒定磁场
磁场强度不随时间变化的磁场。
变化磁场
磁场强度随时间变化的磁场。
03
磁场中的物质
物质的磁性分类
磁化现象
当物质处于磁场中时,物质内部会产生感应磁场,感应磁场 与外磁场相互作用,使物质表现出磁性。这种现象被称为磁 化现象。
磁滞效应
当外磁场变化时,物质的磁化强度不仅与外磁场有关,还与 外磁场的历史状态有关。这种现象被称为磁滞效应。磁滞效 应是磁性材料中常见的一种现象,也是制造电磁铁和电机的 重要原理。
磁场中的能量
恒定磁场
1恒定磁场1.真空中位于'r点的点电荷q的电位的泊松方程为()2.由()可知,无界空间中的恒定磁场由恒定磁场的散度和旋度方程共同决定3.恒定磁场在自由空间中是()场4.磁通连续性定律公式物理意义:穿过任意闭和面的磁通量为()。
即进入闭和面S的磁力线数与穿出闭和面S的磁力线数(),磁力线是闭和的5.安培环路定律公式物理意义:磁感应强度B沿任意闭和路径l的线积分,()穿过路径l所围面积的总电流与的乘积6.一个载流的小闭和圆环称为()7.电流环的面积与电流的乘积,称为()8.在远离偶极子处,磁偶极子和电偶极子的场分布是()的,但在偶极子附近,二者场分布()9.磁力线是()的,电力线是间断的10.介质在磁场作用下会产生()11.磁化引起的分子电流、原子电流相当于()12.磁偶极子产生()磁场,叠加于原场之上,使磁场发生变化。
磁化的结果使介质中的合成磁场可能减弱,也可能增强13.介质磁性能分类:()磁性介质,()磁性介质,铁磁性及亚铁磁性介质14.()磁性介质:二次磁场与外加磁场方向相反,导致介质中合成磁场减弱15.()磁性介质:二次磁场与外加磁场方向相同,导致介质中合成磁场增强16.铁磁性及亚铁磁性介质:在()作用下,磁化现象非常显著17.在无传导电流的均匀介质中,束缚电流体密度为()18.只有磁场强度为零或磁场强度与介质表面相垂直的区域,束缚电流面密度为()19.磁感应强度通过某一表面的通量称为()20.与某电流交链的磁通量称为()21.导线回路的总自感等于内、外自感之()22.单位导线回路的内自感为()23.磁场问题的基本变量是场源变量和两个基本的场变量:磁感应强度和磁场强度。
实验证明:磁场的两个基本变量之间的关系为()24.磁通量连续性方程微分形式:()25.安培力可以用磁能量的空间变化率称()来计算26.自由空间中一半径为a的无限长导体圆柱,其中均匀流过电流I,求导体内外的磁感应强度27.一段长为L的导线,当其中有电流I通过时,求空间任一点的矢量磁位及磁感应强度28.磁导率为,内外半径分别为a,b的无限长空心导体圆柱,其中存在轴向均匀电流密度,求各处磁场强度和磁化电流密度。
《大学物理上》第七章恒定磁场
电机工作原理简介
工作原理
直流电机
电机是将电能转换为机械能的装置。在恒 定磁场中,通电导体受到安培力的作用, 从而产生旋转或直线运动。
利用直流电产生恒定磁场,驱动电机旋转 。
交流电机
永磁电机
利用交流电产生交变磁场,通过电磁感应 驱动电机旋转。
采用永磁体提供恒定磁场,无需外部励磁 电源。
其他科技领域应用举例
《大学物理上》第七 章恒定磁场
目录
• 恒定磁场基本概念与性质 • 恒定电流产生磁场 • 恒定磁场中物质性质 • 恒定磁场中能量转换与储存 • 恒定磁场中力学效应 • 恒定磁场在生活、科技领域应用
01
恒定磁场基本概念与性质
磁场与磁感应强度
磁场
磁场是存在于磁体周围的一种特殊物质,它对放入其中 的磁体产生磁力作用。磁场的基本性质是对放入其中的 磁体产生磁力的作用。
洛伦兹力与安培力做 功
洛伦兹力和安培力是磁场对运动 电荷和电流的作用力,它们在磁 场中做功,实现磁场能量与其他 形式能量的转换。
磁滞损耗和涡流损耗
在铁磁材料中,由于磁畴的转动 和畴壁的移动需要消耗能量,因 此会产生磁滞损耗。同时,变化 的磁场会在导体中产生涡流,从 而产生涡流损耗。这些损耗都是 磁场能量转换为热能的过程。
根据右手螺旋定则,磁场方向垂直于电流方向, 且符合右手螺旋方向。
03 长直导线磁场的计算
利用安培环路定理或毕奥-萨伐尔定律可计算长直 导线周围的磁场分布。
圆形载流导线周围磁场分布
01 圆形载流导线周围的磁场分布规律
在导线内部,磁场方向与电流方向相同;在导线 外部,磁场方向与电流方向相反。
02 圆形载流导线磁场的计算
磁感应强度
磁感应强度是描述磁场强弱和方向的物理量,用符号B 表示,单位为特斯拉(T)。在磁场中某一点,磁感应 强度的方向就是该点的磁场方向,大小则与该点的磁场 强弱成正比。
大学物理第7章恒定磁场试题及答案.docx
第7章恒定磁场一、选择题1.磁场可以用下述哪一种说法来定义?[](A)只给电荷以作用力的物理量(B)只给运动电荷以作用力的物理量(C)贮存有能量的空间(D)能对运动电荷作功的物理量2.空间某点磁感应强度的方向,在下列所述定义中错误的是[](A)小磁针N极在该点的指向(B)运动正电荷在该点所受最大的力与其速度的矢积的方向(C)电流元在该点不受力的方向(D)载流线圈稳定平稳时,磁矩在该点的指向3.下列叙述中错误的是[](A) 一根给定的磁力线上各点处的B的大小一定相等一(B)一根给定的磁力线上各点处的〃的方向不一定相同(C)均匀磁场的磁力线是一组平行直线(D)载流长直导线周围的磁力线是一组同心圆坏4.下列关于磁力线的描述中正确的是[](A)条形磁铁的磁力线是从N极到S极的(B)条形磁铁的磁力线在磁铁内部是从S极到N极的(C)磁力线是从N极出发终止在S极的曲线(D)磁力线是不封闭的曲线5.下列叙述中不能正确反映磁力线性质的是[](A)磁力线是闭合曲线(B)磁力线上任一点的切线方向为运动电荷的受力方向(C)磁力线与载流回路彖环一样互相套连(D)磁力线与电流的流向互相服从右手定则6.关于磁场之I'可的相互作用有下列说法,其屮正确的是[](A)同性磁极相吸,异性磁极相斥(B)磁场屮小磁针的磁力线方向只有与磁场磁力线方向一致时,才能保证稳定平稳(C) 小磁针在非均匀磁场中一定向强磁场方向运动 (D) 在涡旋电场中,小磁针沿涡旋电场的电场线运动7. 一电荷放置在行驶的列车上,相对于地面来说,电荷产生电场和磁场的情况将是[](A) (B)只只产生产生电场磁场(C)既产生电场,又产生磁场 (D)既不产生电场,又不产生磁场 T7-1-7图8. 通以稳恒电流的长直导线,在其周阖产生电场和磁场的情况将是 [](A)只产生电场 (B) 只产生磁场(C) 既产生电场,又产生磁场 (D) 既不产生电场,乂不产生磁场9. 在电流元I d/激发的磁场中,若在距离电流元为r 处的磁感应强度为d B .则下列叙述中正确的是(C) dB 一的方向垂直于/d 乙与[组成的平面二T7-1-9图 (D) dB 的方向为(-厂)方向10. 决定长直螺线管中磁感应强度大小的因素是 [](A)通入导线中的电流强度 (B)螺线管的体积(C)螺线管的直径(D)与上述各因素均无关一-11. 磁场的高斯定理B-dS= 0,说明S[](A)穿入闭合曲血的磁感应线的条数必然等于穿出的磁感应线的条数(B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数[](A) d B 一的方向与r 方向相同一(B) dB 的方向与/d/方向相同 dl(C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内13. 磁场中的高斯路理JJ BdS= 0说明了磁场的性质之一是[](A)磁场力是保守力(B)磁力线可能闭合 (C)磁场是无源场(D)磁场是无势场14. 若某空间存在两无限长直载流导线,空间的磁场就不存在简单的对称性.此 时该磁场的分布[](A)可以直接用安培环路定理来计算 (B) 只能用安培环路定理来计算 (C) 只能用毕奥-萨伐尔定律来计算(D) 可以用安培环路定理和磁场的叠加原理求出15.对于安培环 路定律I ,在下面说法中正确的是[](A)H 只是穿过闭合环路的电流所激发,与环路外的电流无关(B)是环路内、外电流的代数和(C) 安培环路定律只在具有高度对称的磁场中才成立(D) 只有磁场分布具有高度对称性时,才能用它直接计算磁场强度的人小16. 在圆形电流的平面内取一同心圆形坏路,由于环路内无电流穿过,所以§H・d/[](A)圆形环路上各点的磁场强度为零(B) 圆形环路上各点的磁场强度方向垂直于环路平面 (C) 圆形坏路上各点的磁场强度方向指向圆心 (D) 圆形环路上各点的磁场强度方向为该点的切线方向12.安培环路定 律/说明了磁场的性质之一是[](A)磁力线是闭合曲线(C)磁场是无源场(B)磁场力是保守力 (D)磁场是无势场17.下述情况中能用安培坏路定律求磁感应强度的是[](A) 一段载流直导线 (C) 一个环形电流(B) 无限长直线电流 (D) 任意形状的电流1& 取一闭合积分回路L,使三根载流导线穿过L 所围成的面.现改变三根导线 之间的相互间隔,但不越出积分回路,则[](A)回路厶内的》/不变,厶上各点的8不变(B)回路厶内的工/不变,L 上各点的B 改变变,厶上各点的B 不变 (D)冋路厶内的》/改变,厶上各点的B 改变19.边长为L 的一个正方形线圈屮通有电流/,则线圈中心的磁感应强度的大小将](A)与厶成正比 (B)与厶成反比(C)与厶无关(D)与厶*成正比T7-1-19图 20. 一无限长直圆柱体,半径为沿轴向均匀流有电流. 磁感应强度大小为Bi,圆柱体外(r>R )感应强度大小为B2,则有[1(A) 31、均与厂成正比设圆柱体内(r<R )的 (B) B 、、B 2均与厂成反比(C) B\与F •成反比,与厂 成正比(D) B 1与F •成正比,〃2与r 成反比 T7-1-20图21.如T7-1-21图所示,两根载有相同电流的无限长直导 线,分别通过x 】 = l 和兀2=3的点,且平行于尹轴.由此可 知,磁感一应强度B 为零的地方是 O12 3 x T7-1-21 图[](A) x=2的直线上(B) x>2的区域(C) x<l 的区域 (D)不在平而内22・一个半径为R 的圆形电流厶其圆心处的磁场强度大小为[1(A)4R (B)(C) 0(D)— 2R23. 有一个圆形冋路1及一个正方形冋路2,圆的直径和正方 形回路的边长相等,二者屮通有大小相等的电流,它们在各自屮心产 生的磁感应强度的大小之比BJB.为[](A) 0.90(B) 1.00(C) 1.11 (D) 1.2224. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺 线管(R = 2r ),两螺线管单位长度上的匝数相等•两螺线管屮的磁感应强度大小B R 和B r 应满足关系[](A) B R =2 B 丫 r(D) B R = 4 B r25. 两根载有相同电流的通电导线,彼此之间的斥力为F.如果它们的电流均增加一 倍,相互之间的距离也加倍,则彼此之间的斥力将为变为FF[](A)—(B)— (C)F (D) 2F4226. 两束阴极射线(电子流),以不同的速率向同一方向发射,则两束射线间[](A)存在三种力:安培力、库仑力和洛仑兹力 (B) 存在二种力:库仑力和洛仑兹力 (C) 存在二种力:安培力和洛仑兹力 (D) 只存在洛仑兹力27. 可以证明,无限接近长直电流处(r->0)的B 为--有限值.可是从毕一萨定律 得到的长直电流的公式屮得出,当尸一0时B-8.解释这一矛盾的原因是 [](A)毕一萨定律得出的过程不够严密(B) 不可能存在真正的无限长直导线 (C) 当尸一0 口寸,毕一萨定律已不成立 (D) 毕一萨定律是一个近似理论28. 运动电荷受洛仑兹力后,其动能、动量的变化情况是[](A)动能守恒(B)动量守恒(C)动能、动量都守恒(D)动能、动量都不守恒29. 运动电荷垂直进入均匀磁场后,下列各量中不守恒是T7亠23图(B)B R =B 「 (C) 2B R =B[](A)动量(B)关于圆心的角动量(C)动能(D)电荷与质量的比值30. —电量为g 的带电粒子在均匀磁场中运动,下列说法中正确的是 [](A)只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q 变为一么则粒子受力反向,数值不变 (C) 粒子进入磁场后,其动能和动量都不改变 (D) 洛仑兹力与速度方向垂直,所以其运动轨迹是圆31. 一个长直螺线管通有交流电,把一个带负电的粒子沿 螺线管的轴线射入管屮,粒子将在管屮作 ](A)圆周运动 (B)沿管轴来回运动(C)螺旋线运动 (D)匀速直线运动T7-1-31图32. 一束正离子垂直射入一个均匀磁场与均匀电场互相平行 且同向的区域.结果表明离子束在一与入射束垂直放置的荧光屏 上产生一条抛物线,则所有粒子有相同的 [](A)动能(B)质量(C)电量(D)荷质比 T7-1-32图33. 质量为〃?、电量为g 的带电粒子,以速度v 沿与均匀磁场E 成g 角方向射入磁场,英轨迹为一螺旋线.若要增大螺距,应34. 在一个由南指向北的匀强磁场中,一束电子垂直地向下通过_B此 (C) [ ] (A)磁场,受到由由磁场对西下指向上指向它东的作用力的力•向耳V® 0 0T7-1-34 图—11 11 111[](A)增大磁场B (C)减小速度v (B)减少磁场B _(D) 增加夹角q(B)(D)由由北东指向指向南西35. 一电子在垂直于一均匀磁场方向作半径为R 的圆周运动,电子的速度为v ,忽略电子产生的磁场,则此轨道内所包圉面积的磁通量为x BxnmvRT7亠35图36. 一带电粒子垂直射入均匀磁场中,如果粒子质量增大到原来的两倍,入射速度增 大到两倍,磁场的磁感应强度增大到4倍,忽略粒子运动产生的磁场,则粒子运动轨迹所包 围范围内的磁通量增大到原来的1 1 [](A)2 倍 (B)4 倍(C)2 倍(D)4倍37. 一电子以速度丿垂直地入射到一磁感应强度为B 的均匀磁场中•忽略其电子产 生的磁场,此时电子在磁场中运动的轨道所圉面积的磁通量 [](A)正比于3,正比于v 2 (B)反比于B,反比于v 2(C) 正比于5正比于v(D)反比于5反比于v38. 图中六根无限长导线相互绝缘,通过的电流均为/,区域I 、II 、均为相等的正方形.问哪个区域垂直指向里的磁通量最大?1(B) II 区/ III IV (C)III 区(D) IV 区T7-1-38 图39. 在某均匀磁场中放置有两个平面线圈,其面积S]二2S2,通有电流人二2/2,它们所受的最大磁力矩之比M 2为[](A)1 (B)2 (C)4 (D) 1/440. 有一由N 匝细导线绕成的平而正三角形线圈,边长为°,通有电流/,置于均匀外 磁场3中.当线圈平面的法向与外磁场同向时,线圈所受到的磁力矩大小为 [](A) 3Na 岳/ 2(B) 3Na 炼 /4[](A)eR 2(B) emR (C)——eR(D)兀u41.一直径为2.0cm、匝数为300匝的圆线圈,放在5xl0'2T的磁场中,当线圈内通过10mA的电流时,磁场作用于线圈的最大磁力矩为[](A) 4.7 N.m (B) 4.7xlO'2N.m(C) 4.7x1 O'5 N.m (D) 4.7x10-4 N.m42.有一直径为8 cm的线圈,共12匝,通以电流5 A.现将此线圈置于磁感应强度为0.6 T的匀强磁场屮,则[](A)作用在线圈上的最大磁力矩为M=18N.m(B)作用在线圈上的最大磁力矩为M=1.8N.m(C)线圈正法线与B成30。
大学物理稳恒磁场理论及习题解读
250 0 方向垂直A面
B
BC
0 N C I C
2 RC
0 20 5
2 0.10
O BA
5000 方向垂直C面
B
2 BA
2 BC
7.02 10 T 方向 : tan
4
1
BC 63.4 BA
NIZQ
第14页
大学物理学
恒定磁场
NIZQ
问题: 磁现象产生的原因是什么?
第 2页
大学物理学
恒定磁场
• 电流的磁效应 1820年奥斯特实验表明: 电流对磁极有 力的作用. 1820年 9月 11日在法国科学院演示的奥 斯特的实验 ,引起了安培的兴趣 .一周之后 安培发现了电流间也存在着相互作用力.
此后安培又提出了著名的安 培定律 : 磁体附近的载流导线 会受到力的作用而发生运动.
NIZQ
第 3页
大学物理学
恒定磁场
结论: 磁现象与电荷的运动有着密切的关系 . 运动电荷既能产 生磁效应,也受到磁力的作用. 安培把磁性归结为电流之间的相互作用 . 1822年安培提 出了分子电流假说:
• 一切磁现象起源于电荷的运动.
• 磁性物质的分子中存在分子电流, 每个分子电流相当于一基元磁体。
写成矢量表示:
0 Idl sin
2 4π r 0 Idl r dB 4π r 3
真空中的磁导率: 0= 410-7亨利· 米-1 (H· m-1)
NIZQ
第 8页
大学物理学
恒定磁场
• 毕奥—萨伐尔定律的应用 恒定磁场的计算: 1.选取电流元或某些典型电流分布为积分元. 2.由毕-萨定律写出积分元的磁场dB .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I1
I3
节点: 节点:三个或三个以上支路的汇 合点称为节点。( 。(如 、 两点 两点) 合点称为节点。(如A、B两点)
ε 1 , r1
I2
ε 2 , r2
R3 R1 R2
一、基尔霍夫第一定律:流入节点电 基尔霍夫第一定律: 流的总和等于流出该节点电流的总和
B 或若规定流出节点电流为正,流进节点电流为负, 或若规定流出节点电流为正,流进节点电流为负, 则可表述为回路中任一节点电流的代数和等于0。 则可表述为回路中任一节点电流的代数和等于 。
15
二、基尔霍夫第二定律 又称回路电压定律 I1 沿任一闭合回路绕行一周, 沿任一闭合回路绕行一周,回路中 各电源电动势与电阻上的电势差的 代数和为零。 代数和为零。 数学表达式
ε 1 , r1
A I 3
ε 2 , r2
I2
∑I R + ∑ε = 0
i i i
R1 B
R2
R3
规定:在回路的绕行方向上,电势降低取正值, 规定:在回路的绕行方向上,电势降低取正值, 电势升高取负值。 电势升高取负值。
r r ∫ j ⋅ ds = 0
s
这就是说,对于稳恒电流, 这就是说,对于稳恒电流,任一封闭曲面内的电量 不随时间变化。 不随时间变化。
6
三、欧姆定律 1.一段电路的欧姆定律 一段电路的欧姆定律 2.电阻定律 电阻定律
U = IR
l R = σS
电导率
l R=ρ S
电阻率
ρ 是导体材料的电阻率, 单位:Ωm 是导体材料的电阻率, 单位:
第七章 稳 恒 磁 场
§7-1 恒定电流与欧姆定律的微分形式 §7-2 基尔霍夫定律 §7-3 磁现象的电本质 毕奥-萨伐尔定律 §7-4 磁场中的高斯定律 §7-5 安培环路定律 §7-6 洛伦磁力和安培力 §7-7 磁介质
1
§7-1 恒定电流与欧姆定律的微分形 式
一、 电流 电流密度 1、 电流:大量电荷有规则的定向运动形成电流。 、 电流:大量电荷有规则的定向运动形成电流。 载流子: 形成电流的带电粒子。 载流子: 形成电流的带电粒子。 如 电子、质子、离子、空穴等。 电子、质子、离子、空穴等。
∑
I = 0
或
∑
I 进= ∑ I出
( I 1+ I 2 + I 3 = 0)
14
∑
I = 0
或
∑
I 进= ∑ I出
1.实质上是表明电荷在电路中不积累,电流连续 实质上是表明电荷在电路中不积累, 实质上是表明电荷在电路中不积累 2. 应用时,可任意假设电流方向,计算结果为正 应用时,可任意假设电流方向, 表示实际电流方向与假设方向同, 表示实际电流方向与假设方向同,为负表示与假 设方向相反; 设方向相反; 3.对于 个节点的回路,有(n-1)个独立方程。 对于n个节点的回路 对于 个节点的回路, )个独立方程。
dr dr dR = ρ = ρ S 2π rl
R2 R1
U
R=∫
R2 = ln 2π rl 2π l R1
ρdr
ρ
r
R2
R1
l
U R2 I = = 2π lU ρ ln R1 R
13
§7-2 基尔霍夫定律(复杂电路的一般计算方 法) A
支路:由电阻、 支路:由电阻、电源或其它负载 组成的一段电路。 组成的一段电路。
2、电流强度:单位时间内通过导体任一截面的电荷量 电流强度: dq I= 单位:安培( 单位:安培(A) dt 电流I的方向 指导体中正电荷的运动方向
2
3、电流密度 、
※用电流强度还不能细致地描 述电流的分布。 述电流的分布。
I
I
I
所谓分布不同是指 在导体的不同地方单 位面积中通过的电流 不同。 不同。
20
§7-3 磁现象的电本质 毕奥-萨伐尔定律
一、 基本磁现象 1、自然磁现象 、
☆磁性:具有能吸引铁磁物资(Fe、Co、Ni)的一种特性。 磁性:具有能吸引铁磁物资(Fe、Co、Ni)的一种特性。 (Fe ☆磁体:具有磁性的物体 磁体: ☆磁极:磁性集中的区域 磁极: N,S磁极不能分离,(正负电荷可以分离开) N,S磁极不能分离,(正负电荷可以分离开) 磁极不能分离,(正负电荷可以分离开 同号磁极相斥,异号磁极相吸。 同号磁极相斥,异号磁极相吸。
r r dQ ∫s j ⋅ ds = − dt
上式即为电流的连续性方程
5
2、恒定电流 、 导体内各处电流密度不随时间变化的电流 显然,在稳恒电流的情况下,在任意一段时间内, 显然,在稳恒电流的情况下,在任意一段时间内, 从封闭曲面内流出的电量应和流入的电量相等, 从封闭曲面内流出的电量应和流入的电量相等,即通 过任一封闭曲面的电流密度的通量应等于零, 过任一封闭曲面的电流密度的通量应等于零,即有
16
∑ I R + ∑ε
i i
i
=0
说明: 说明: 1. 回路绕行方向,可以任意选取, 回路绕行方向,可以任意选取, 2. 若电流方向与绕行方向相同,电流取正号, 若电流方向与绕行方向相同,电流取正号, 反之取负号; 反之取负号; 3. 绕行方向上,电动势从正极到负极,电势 绕行方向上,电动势从正极到负极, 降落, 取正值 相反,电动势从负极到正极, 取正值, 降落,ε取正值,相反,电动势从负极到正极, 电势升高, 取负值。 电势升高,ε取负值。 4. 不是所有回路方程都是独立的,必须有新 不是所有回路方程都是独立的, 支路的回路的方程才是独立的; 支路的回路的方程才是独立的;(“新”就是 前面没有绕行过。) 前面没有绕行过。)
19
若电路不对称, 若电路不对称,ε1=12V, ε2= 2V, , , r1=r2=2欧,R1=R2=8欧,R3=15欧,则 欧 欧 欧 通过各电阻的电流又如何。 通过各电阻的电流又如何。 − I 1− I 2 + I 3 = 0 1 对回路AEFBA 对回路 I3R3 + I2 R2 + I2r2 − ε2 = 0 对回路CAEFBDC 对回路 I 3 R3 + I1R1 + I1r1 −ε 1= 0 2 3
单位: A·m-2 单位: m
4、由电流密度求电流
v dS
r n
θ
r j
dI = jds⊥
若ds的法线n与J成θ角,则通过ds的电流 ds的法线n 的法线 则通过ds的电流 ds
θ
dSn
r r dI = jds cos θ = j ⋅ ds
r r I = ∫ j ⋅ ds
s
4
二、电流的连续性方程 恒定电场 1、电流的连续性方程 、
I
后来人们还发现磁电联系的例子有: 后来人们还发现磁电联系的例子有: 磁体对载流导线的作用; 磁体对载流导线的作用; 通电螺线管与条形磁铁相似; 通电螺线管与条形磁铁相似; 载流导线彼此间有磁相互作用; 载流导线彼此间有磁相互作用;…… 上述现象都深刻地说明了: 上述现象都深刻地说明了: 磁效应的根源: 磁效应的根源:电荷或电流的运动
C
I1 A
ε 1 , r1
I3 E
ε 2 , r2
I2
R1 D B
R2
R3 F
代入数据同样可解得I 代入数据同样可解得 1=-0.68A, I2= -0.32AI3=0.36A ;I1和I3都 为正说明实际电流方向跟假设 方向相同, 方向相同, I2为负说明实际电 流方向跟假设方向相反。 流方向跟假设方向相反。
v v 方向相同, 表明任一点的电流密度 j 与电场强度 E 方向相同,
大小成正比 欧姆定律的微分形式也适用于非恒定电场
∆l
8
例7-1:求半球形接地器的接地电阻和跨步电压。 :求半球形接地器的接地电阻和跨步电压
I
b
··
c A B
R
解: (1) 接地电阻 将地分为一层层薄半球 壳 , 任取一层 ( 半径 r 任取一层( 、厚dr),其电阻为
U=∫
B
A
r r b+ c E ⋅ dr = ∫
b
I c I dr = 2 2πσ b(b + c ) 2πr σ
离中心越近, 跨步”越大, 越大。 离中心越近,“跨步”越大,则 U 越大。
一内、 的金属圆筒, 例7-2 一内、外半径分别为 R 1 和 R 2 的金属圆筒, ρ 长度 , 其电阻率 ,若筒内外电势差为 ,U 且筒 l 内缘电势高, 内缘电势高,圆柱体中径向的电流强度为多少 ? 解
17
如图所示电路ε 例7-3 如图所示电路 1=ε2=12V, , I2 r1=r2=2欧,R1=R2=8欧,R3=15欧, 欧 欧 欧 ε 1 , r1 求通过各电阻的电流。 求通过各电阻的电流。 解:设电流方向如图所示,对A点 设电流方向如图所示, 点 I 1+ I 2 + I 3 = 0 1 对回路ABFEA 对回路 R1 D
σ=
1
ρ
叫做导体材料的电导率 叫做导体材料的电导率 单位:西门子每米(S/m) 单位:西门子每米( )
7
3.欧姆定律的微分形式 欧姆定律的微分形式
U = IR U = ϕ1 - ϕ2 = E∆ l I = J ∆S R=ρ∆l/ ∆S 故 J=E/ρ=σE 矢量式
ϕ1 ∆S
I
ϕ2
r r J = σE
I1 A I3 E C
ε 2 , r2
R2 F
R3
对回路CDBFEAC 对回路 对回路CDBAC ε 1 + r1 I1 + I1 R1 − ε 2 − r2 I 2 − I 2 R2 = 0 4 对回路 显然4式不是独立的 实际上由1、 和 式即可求得各支 式不是独立的, 显然 式不是独立的,实际上由 、2和3式即可求得各支 路电流。 路电流。 代入数据解得I 代入数据解得 1=I2=-0.3A,I3=0.6A ;I1、I2为负说明实 际电流方向跟假设方向相反。 际电流方向跟假设方向相反。