高二数学独立重复试验与二项分布1

合集下载

选修2-3教案2.2.3独立重复试验与二项分布(1)

选修2-3教案2.2.3独立重复试验与二项分布(1)

2.2.3独立重复试验与二项分布(第一课时)教学目标:理解n 次独立重复试验的模型及二项分布教学重点:理解n 次独立重复试验的模型及二项分布教学过程一、复习引入:1. 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .2. 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为(|)P AB P A B P B ()=()3. 事件B 发生与否对事件A 发生的概率没有影响,即(|)()P A B P A =.称A 与B 独立二、讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)n P P -+展开式的第1k +项 例1.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.328=+≈+≈答:5次预报中至少有4次准确的概率约为0.74. 例2.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验 1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.82lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次课堂小节:本节课学习了n 次独立重复试验的模型及二项分布。

(完整)2.2.3 独立重复试验与二项分布

(完整)2.2.3 独立重复试验与二项分布

C32

3 5

(1
3
5 )2
5

54 125
5
5
125
(4)刚好在第二、第三两次击中目标。
(1 3) 3 3 18 5 5 5 125
11 [普通高中课程数学选修课2-3堂] 练2.2习二项分布及其应用
1、每次试验的成功率为P(0<P<1),重复进行10次 试验,其中前七次未成功后三次成功的概率( C )
C
n n
pn
注: P( X k ) cnk pkqnk是( p q)n展开式中的第 k 1 项.
8 [普通高中课程数学选修2-3] 2.2 二项分布及其应用
二项分布与两点分布、超几何分布有什么区别和联系? 1.两点分布是特殊的二项分布 (1 p)
2.一个袋中放有 M 个红球,( N M )个白球,依次从袋中 取 n 个球,记下红球的个数 .
P(B0) P(A1 A2 A3) q3, P(B1) P(A1 A2 A3) P(A1A2 A3) P(A1 A2 A3) 3q2 p, P(B2) P(A1A2 A3) P(A1A2 A3) P(A1 A2 A3) 3qp2,
P(B3 ) P( A1A2 A3 ) p3.
所以,连续掷一枚图钉3次,仅出现1次针尖向上的概率是 3q2 p.
6 [普通高中课程数学选修2-3] 2.2 二项分布及其应用
思考?
上面我们利用掷1次图钉,针尖向上的概率为p,求 出了连续掷3次图钉,仅出现次1针尖向上的概率。类
似地,连续掷3次图钉,出现 k(0 k 3) 次针尖向
上的概率是多少?你能发现其中的规律吗?
(2)在10次射击中,至少8次击中目标的概率为:

独立重复试验与二项分布(一)

独立重复试验与二项分布(一)
k n k n k
(1)n,p,k分别表示什么意义? (2)这个公式和前面学习的哪部分内容 有类似之处?
k n k k 恰为 [(1 P) P]n 展开式中的第 k 1 项 Tk 1 Cn (1 P) P
16
基本概念
3、 二项分布
在一次试验中某事件发生的概率是p,那么在n次 独立重复试验中这个事件恰发生x次,显然x是一个随机 变量 于是得到随机变量ξ的概率分布如下:
问题(3):各次试验是否相互独立?
9
(二) 形成概念
“独立重复试验”的概念 -----在同样条 件下进行的,各次之间相互独立的一种试验。
特点: ⑴在同样条件下重复地进行的一种试验; ⑵各次试验之间相互独立,互相之间没有影响; ⑶每一次试验只有两种结果,即某事要么发生, 要么不发生,并且任意一次试验中发生的概率 都是一样的。
ξ 0
0 n 0 n 1 n
1
1 n 1

k
C pq
k n k n k

n
n n 0 Cn pq
p
C pq C pq


n k
我们称这样的随机变量ξ服从二项分布,记作 其中n,p为参数,并记 C
k n
x ~ B(n, p,)
17
p (1 p)
k
B(k; n, p)
及时应用:
例1: 某射击运动员进行了3次射击,假 设每次射击击中目标的概率为0.6,且 各次击中目标与否是相互独立的,用X 表示这3次击中目标的次数,求X的分 布列。
问题(4)连续射击3次,恰有1次击
中的概率是多少?
12
分解问题(3)
问题a 3次中恰有1次击中目标,有几种情况?

独立重复试验与二项分布

独立重复试验与二项分布

独立重复试验与二项分布1.n 次独立重复试验一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. 2.二项分布前提 在n 次独立重复试验中字母的含义X 事件A 发生的次数 p每次试验中事件A 发生的概率分布列 P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n 结论 随机变量X 服从二项分布 记法记作X ~B (n ,p ),并称p 为成功概率明确该公式中各量表示的意义:n 为重复试验的次数;p 为在一次试验中某事件A 发生的概率;k 是在n 次独立重复试验中事件A 发生的次数.判断正误(正确的打“√”,错误的打“×”) (1)n 次独立重复试验的每次试验结果可以有多种.( ) (2)n 次独立重复试验的每次试验的条件可以略有不同.( ) (3)二项分布与超几何分布是同一种分布.( ) (4)两点分布是二项分布的特殊情形.( ) 答案:(1)× (2)× (3)× (4)√已知随机变量X 服从二项分布,X ~B ⎝ ⎛⎭⎪⎫6,13,则P (X =2)等于( )A.316B.4243C.13243D.80243答案:D任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( ) A.34 B.38 C.13 D.14答案:B设随机变量X ~B (2,p ),若P (X ≥1)=59,则p =________.答案:13探究点1 独立重复试验的概率甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果须用分数作答) (1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率.【解】 (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38,由于甲、乙射击相互独立,故P (A 2B 2)=49×38=16.1.[变问法]在本例(2)的条件下,求甲、乙均击中目标1次的概率?解:记“甲击中目标1次”为事件A 3,“乙击中目标1次”为事件B 3,则P (A 3)=C 12×23×13=49,P (B 3)=38, 所以甲、乙均击中目标1次的概率为P (A 3B 3)=49×38=16.2.[变问法]在本例(2)的条件下,求甲未击中、乙击中2次的概率?解:记“甲未击中目标”为事件A 4,“乙击中2次”为事件B 4,则P (A 4)=C 02(1-23)2=19,P (B 4)=C 22(34)2=916,所以甲未击中、乙击中2次的概率为P (A 4B 4)=19×916=116.独立重复试验概率求法的三个步骤1.某一试验中事件A 发生的概率为p ,则在n 次独立重复试验中A -发生k 次的概率为( ) A .C k n p k(1-p )n -kB .(1-p )k pn -kC .(1-p )kD .C kn (1-p )k pn -k解析:选D.由于P (A )=p ,P (A )=1-p ,所以在n 次独立重复试验中事件A 发生k 次的概率为C kn (1-p )k pn -k.故选D.2.某气象站天气预报的准确率为80%,计算:(结果保留到小数点后第2位) (1)“5次预报中恰有2次准确”的概率; (2)“5次预报中至少有2次准确”的概率. 解:(1)记“预报一次准确”为事件A , 则P (A )=0.8.5次预报相当于5次独立重复试验. “恰有2次准确”的概率为P =C 25×0.82×0.23=0.051 2≈0.05,因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P =C 05×0.25+C 15×0.8×0.24=0.006 72.所以所求概率为1-P =1-0.006 72≈0.99.所以“5次预报中至少有2次准确”的概率约为0.99. 探究点2 二项分布抛掷两枚骰子,取其中一枚的点数为点P 的横坐标,另一枚的点数为点P 的纵坐标,求连续抛掷这两枚骰子三次,点P 在圆x 2+y 2=16内的次数X 的分布列.【解】 由题意可知,点P 的坐标共有6×6=36(种)情况,其中在圆x 2+y 2=16内的有点(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8种,则点P 在圆x 2+y 2=16内的概率为836=29.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,29, 所以P (X =0)=C 03⎝ ⎛⎭⎪⎫290×⎝ ⎛⎭⎪⎫793=343729,P (X =1)=C 13⎝ ⎛⎭⎪⎫291×⎝ ⎛⎭⎪⎫792=98243,P (X =2)=C 23⎝ ⎛⎭⎪⎫292×⎝ ⎛⎭⎪⎫791=28243,P (X =3)=C 33⎝ ⎛⎭⎪⎫293×⎝ ⎛⎭⎪⎫790=8729.故X 的分布列为X 0 1 2 3 P34372998243282438729解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验是独立重复地进行了n 次.1.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值等于( ) A .0 B .1 C .2D .3解析:选C.事件A =“正面向上”,发生的次数ξ~B ⎝ ⎛⎭⎪⎫5,12,由题设得C k 5⎝ ⎛⎭⎪⎫125=C k +15⎝ ⎛⎭⎪⎫125,所以k +k +1=5,所以k =2.2.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动5次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125B .C 25⎝ ⎛⎭⎪⎫125C .C 33⎝ ⎛⎭⎪⎫123D .C 25C 35⎝ ⎛⎭⎪⎫125解析:选 B.质点P 由原点移动到(2,3)需要移动5次,且必须有2次向右,3次向上,所以质点P 移动5次后位于点(2,3)的概率即为质点P 的5次移动中恰有2次向右移动的概率,而每一次向右移动的概率都是12,所以向右移动的次数X ~B ⎝ ⎛⎭⎪⎫5,12,所以所求的概率为P (X=2)=C 25⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫123=C 25⎝ ⎛⎭⎪⎫125.究点3 二项分布的综合应用袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的次数X 的分布列; (2)不放回抽样时,取到黑球的个数Y 的分布列.【解】 (1)有放回抽样时,取到的黑球的次数X 可能的取值为0,1,2,3.由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则X ~B ⎝ ⎛⎭⎪⎫3,15,则 P (X =0)=C 03×⎝ ⎛⎭⎪⎫150×⎝ ⎛⎭⎪⎫453=64125,P (X =1)=C 13×⎝ ⎛⎭⎪⎫151×⎝ ⎛⎭⎪⎫452=48125,P (X =2)=C 23×⎝ ⎛⎭⎪⎫152×⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33×⎝ ⎛⎭⎪⎫153×⎝ ⎛⎭⎪⎫450=1125.所以X 的分布列为X 0 1 2 3 P6412548125121251125(2)则P (Y =0)=C 02C 38C 310=715,P (Y =1)=C 12C 28C 310=715,P (Y =2)=C 22C 18C 310=115.所以Y 的分布列为Y 0 1 2 P715715115二项分布实际应用问题的解题策略(1)根据题意设出随机变量. (2)分析出随机变量服从二项分布.(3)找到参数n (试验的次数)和p (事件发生的概率).(4)写出二项分布的分布列.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.解:(1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名考生选做同一道题的事件为“AB ∪A B ”,且事件A ,B 相互独立. 所以P (AB ∪A B )=P (A )P (B )+P (A )P (B )=12×12+(1-12)×(1-12)=12.(2)随机变量X 的可能取值为0,1,2,3,4. 且X ~B (4,12).所以P (X =k )=C k 4(12)k(1-12)4-k =C k 4(12)4(k =0,1,2,3,4).所以随机变量X 的分布列为X 0 1 2 3 4 P1161438141161.某人投篮一次投进的概率为23,现在他连续投篮6次,且每次投篮相互之间没有影响,那么他投进的次数ξ服从参数为⎝ ⎛⎭⎪⎫6,23的二项分布,记为ξ~B ⎝ ⎛⎭⎪⎫6,23,计算P (ξ=2)=( )A.20243 B.8243 C.4729D.427解析:选A.根据二项分布概率的计算公式可得,P (ξ=2)=C 26⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-234=20243,故选A.2.一名射手对同一目标独立地射击四次,已知他至少命中一次的概率为8081,则此射手一次射击命中的概率为( ) A.13B.23C.14D.25解析:选B.设此射手射击四次命中次数为ξ,一次射击命中的概率为p ,所以ξ~B (4,p ). 依题意可知,P (ξ≥1)=8081,所以1-P (ξ=0)=1-C 04(1-p )4=8081,所以(1-p )4=181,所以p =23.3.某市公租房的房源位于甲、乙、丙三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的.则该市的4位申请人中恰有2人申请甲片区房源的概率为________.解析:每位申请人申请房源为一次试验,这是4次独立重复试验,设申请甲片区房源记为A ,则P (A )=13,恰有2人申请甲片区的概率为P =C 24·⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫232=827.答案:8274.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.求乙恰好比甲多击中目标2次的概率.解:设“乙恰好比甲多击中目标2次”为事件A ,“乙击中目标2次且甲击中目标0次”为事件B 1,“乙击中目标3次且甲击中目标1次”为事件B 2,则A =B 1∪B 2,B 1,B 2为互斥事件, 则P (A )=P (B 1)+P (B 2)=C 23×(23)2×13×C 03×(12)3+C 33×(23)3×C 13×(12)3=16,所以乙恰好比甲多击中目标2次的概率为16.知识结构深化拓展1.独立重复试验的基本特征 (1)每次试验都在同样条件下进行.(2)每次试验都只有两种结果:发生与不发生.(3)各次试验之间相互独立.(4)每次试验,某事件发生的概率都是一样的.2.n 次独立重复试验的概率公式中各字母的含义[A 基础达标]1.某学生通过英语听力测试的概率为13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.427D.227解析:选A.记“恰有1次获得通过”为事件A , 则P (A )=C 13(13)·(1-13)2=49.故选A.2.设随机变量ξ服从二项分布ξ~B (6,12),则P (ξ≤3)等于( )A.1132B.732C.2132D.764 解析:选C.P (ξ≤3)=P (ξ=0)+P (ξ=1)+P (ξ=2)+P (ξ=3)=C 06×(12)6+C 16·(12)6+C 26·(12)6+C 36·(12)6=2132.故选C.3.甲、乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A.827B.6481C.49D.89解析:选A.当甲以3∶1的比分获胜时,说明甲乙两人在前三场比赛中,甲只赢了两局,乙赢了一局,第四局甲赢,所以甲以3∶1的比分获胜的概率为P =C 23(23)2(1-23)×23=3×49×13×23=827,故选A. 4.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( ) A .6 B .5 C .4D .3解析:选C.由1-C 0n ⎝ ⎛⎭⎪⎫12n>0.9,得⎝ ⎛⎭⎪⎫12n<0.1,所以n ≥4. 5. 袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n },a n =⎩⎪⎨⎪⎧-1,第n 次摸取红球1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57×(13)2×(23)5B .C 27×(23)2×(13)5C .C 57×(13)2×(13)5D .C 27×(13)2×(23)2解析:选B.由S 7=3知,在7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为23,摸取白球的概率为13,则S 7=3的概率为C 27×(23)2×(13)5,故选 B.6.下列例子中随机变量ξ服从二项分布的有________.①随机变量ξ表示重复抛掷一枚骰子n 次中出现点数是3的倍数的次数; ②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③有一批产品共有N 件,其中M 件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M <N );④有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数.解析:对于①,设事件A 为“抛掷一枚骰子出现的点数是3的倍数”,P (A )=13.而在n 次独立重复试验中事件A 恰好发生了k 次(k =0,1,2,…,n )的概率P (ξ=k )=C k n×⎝ ⎛⎭⎪⎫13k×⎝ ⎛⎭⎪⎫23n -k,符合二项分布的定义,即有ξ~B ⎝ ⎛⎭⎪⎫n ,13;对于②,ξ的取值是1,2,3,…,n ,P (ξ=k )=0.9×0.1k -1(k =1,2,3,…,n ),显然不符合二项分布的定义,因此ξ不服从二项分布;③和④的区别是:③是“有放回”抽取,而④是“不放回”抽取,显然④中n 次试验是不独立的,因此ξ不服从二项分布,对于③有ξ~B ⎝⎛⎭⎪⎫n ,M N.答案:①③7.一袋中装有4个白球,2个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现3次停止,设停止时,取球次数为随机变量X ,则P (X =5)=________.解析:X =5表示前4次中有2次取到红球,2次取到白球,第5次取到红球. 则P (X =5)=C 24(13)2×(23)2×13=881.答案:8818.张师傅驾车从公司开往火车站,途经4个交通岗,这4个交通岗将公司到火车站分成5个路段,每个路段的驾车时间都是3分钟,如果遇到红灯要停留1分钟.假设他在各交通岗是否遇到红灯是相互独立的,并且概率都是13.则张师傅此行程时间不少于16分钟的概率为________.解析:如果不遇到红灯,全程需要15分钟,否则至少需要16分钟,所以张师傅此行程时间不少于16分钟的概率P =1-(1-13)4=6581.答案:65819.下列随机变量X 服从二项分布吗?如果服从二项分布,其参数各是什么? (1)掷5枚相同的正方体骰子,X 为出现“1点”的骰子数. (2)1 000个新生婴儿,X 为男婴的个数.(3)某产品的次品率为p ,X 为n 个产品中的次品数.(4)女性患色盲的概率为0.25%,X 为任取10个女人中患色盲的人数. 解:(1)X 服从参数为5,16的二项分布,简记为X ~B ⎝ ⎛⎭⎪⎫5,16. (2)X 服从参数为1 000,12的二项分布,简记为X ~B ⎝ ⎛⎭⎪⎫1 000,12.(3)X 服从参数为n ,p 的二项分布,简记为X ~B (n ,p ).(4)X 服从参数为10,0.25%的二项分布,简记为X ~B (10,0.25%).10.甲、乙两队参加世博会知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错或不答者得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且每人答对与否相互之间没有影响.用ξ表示甲队的总得分. (1)求随机变量ξ的分布列;(2)设C 表示事件“甲队得2分,乙队得1分”,求P (C ). 解:(1)由题意知,ξ的可能取值为0,1,2,3,且P (ξ=0)=C 03×⎝ ⎛⎭⎪⎫1-233=127,P (ξ=1)=C 13×23×⎝ ⎛⎭⎪⎫1-232=29,P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23=49,P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫233=827,所以ξ的分布列为(2)甲队得2由上表可知,甲队得2分,其概率为P (ξ=2)=49,乙队得1分,其概率为P =23×13×12+13×23×12+13×13×12=518.根据独立事件概率公式得P (C )=49×518=1081.[B 能力提升]11.近年来,政府提倡低碳减排,某班同学利用寒假在两个小区逐户调查人们的生活习惯是否符合低碳观念.若生活习惯符合低碳观念的称为低碳族,否则称为非低碳族.数据如下表(计算过程把频率当成概率):(1)如果甲、乙来自A 2人是低碳族的概率; (2)A 小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A 小区中任选25个人,记X 表示25个人中低碳族人数,试写出X 满足的分布. 解:(1)设事件C 表示“这4人中恰有2人是低碳族”,P (C )=C 22·0.52·C 22·0.22+C 12·0.5×0.5×C 12·0.2×0.8+C 22·0.52·C 22·0.82=0.01+0.16+0.16=0.33.即甲、乙、丙、丁这4人中恰有2人是低碳族的概率为0.33.(2)设A 小区有a 人,两周后非低碳族的概率P 1=a ×0.5×(1-20%)2a=0.32.故低碳族的概率P 2=1-0.32=0.68.随机地从A 小区中任选25个人,这25个人是否为低碳族相互独立,且每个人是低碳族的概率都是0.68,故这25个人中低碳族人数服从二项分布,即X ~B (25,0.68).12.为向国际化大都市目标迈进,沈阳市今年新建三大类重点工程,它们分别是30项基础设施类工程,20项民生类工程和10项产业建设类工程.现有来自沈阳的3名工人相互独立地从这60个项目中任选一个项目参与建设. (1)求这3人选择的项目所属类别互异的概率;(2)将此3人中选择的项目属于基础设施类工程或产业建设类工程的人数记为X ,求X 的分布列.解:记第i 名工人选择的项目属于基础设施类,民生类,产业建设类分别为事件A i ,B i ,C i ,i =1,2,3.由题意知A 1,A 2,A 3,B 1,B 2,B 3,C 1,C 2,C 3均相互独立. 则P (A i )=3060=12,P (B i )=2060=13,P (C i )=1060=16(i =1,2,3).(1)3人选择的项目所属类别互异的概率:P =A 33P (A 1B 2C 3)=6×12×13×16=16.(2)任一名工人选择的项目属于基础设施类或产业建设类工程的概率:P =30+1060=23.由X ~B ⎝ ⎛⎭⎪⎫3,23,所以P (X =k )=C k 3⎝ ⎛⎭⎪⎫23k⎝ ⎛⎭⎪⎫1-233-k(k =0,1,2,3). 所以X 的分布列为X 0 1 2 3 P127294982713.(选做题)如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,……,依此类推,一个半径适当的光滑均匀小球从入口A 投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是12.记小球遇到第n 行第m 个障碍物(从左至右)上顶点的概率为P (n ,m ). (1)求P (4,1),P (4,2)的值,并猜想P (n ,m )的表达式(不必证明);(2)已知f (x )=⎩⎪⎨⎪⎧4-x ,1≤x ≤3,x -3,3<x ≤6,设小球遇到第6行第m 个障碍物(从左至右)上顶点时,得到的分数为ξ=f (m ),试求ξ的分布列.解:(1)P (4,1)=C 03⎝ ⎛⎭⎪⎫123=18,P (4,2)=C 13⎝ ⎛⎭⎪⎫123=38.猜想P (n ,m )=C m -1n -1⎝ ⎛⎭⎪⎫12n -1.(2)ξ=3,2,1,P (ξ=3)=P (6,1)+P (6,6)=116, P (ξ=2)=P (6,2)+P (6,5)=516, P (ξ=1)=P (6,3)+P (6,4)=58.故ξ的分布列为离散型随机变量及其分布列、 二项分布及其应用(强化练)一、选择题1.下列随机变量X 不服从二项分布的是( ) A .投掷一枚均匀的骰子5次,X 表示点数6出现的次数B .某射手射中目标的概率为p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要的射击次数C .实力相等的甲、乙两位选手进行了5局乒乓球比赛,X 表示甲获胜的次数D .某星期内,每次下载某网站的数据被病毒感染的概率为0.3,X 表示下载n 次数据电脑被病毒感染的次数解析:选B.选项A ,试验出现的结果只有两种:点数为6和点数不为6,且点数6在每一次试验中概率都为16,每一次试验都是相互独立的,故随机变量X 服从二项分布.选项B ,虽然随机变量在每一次试验中的结果只有两种,每一次试验事件相互独立且概率不发生变化,但随机变量的取值不确定,故随机变量X 不服从二项分布.选项C ,甲、乙的获胜率相等,进行5次比赛,相当于进行了5次独立重复试验,故X 服从二项分布.选项D ,由二项分布的定义,知被感染次数X ~B (n ,0.3).2.设随机变量X 的分布列如下,则下列各项中正确的是( )A.P (X =1.5)=0 1 C .P (X <3)=0.5D .P (X <0)=0解析:选A.由分布列知X =1.5不能取到,故P (X =1.5)=0,正确;而P (X >-1)=0.9,P (X <3)=0.6,P (X <0)=0.1.故A 正确.3.设随机变量X 的概率分布列如表所示,则P (|X -2|=1)等于( )A.712B.2C.512D.16解析:选C.由分布列的性质知16+14+13+m =1,故m =14.又由|X -2|=1,知X =3或X =1.所以P (|X -2|=1)=P (X =3)+P (X =1)=14+16=512.选C.4.甲、乙两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12B.51246解析:选B.设事件A :甲实习生加工的零件为一等品, 事件B :乙实习生加工的零件为一等品, 则P (A )=23,P (B )=34,所以这两个零件中恰有一个一等品的概率为P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=23×(1-34)+(1-23)×34=512. 5.盒中有10只螺丝钉,其中3只是坏的,现在从盒中不放回地依次抽取两只,那么在第一只抽取为好的条件下,第二只是坏的概率为( ) A.112 B.13 C.8384 D.184解析:选B.设事件A 为“第一只抽取为好的”,事件B 为“第二只是坏的”,则P (A )=C 17C 19A 210,P (AB )=C 17C 13A 210,所以P (B |A )=13,选 B.6.从混有5张假钞的20张一百元纸币中任意抽取2张,将其中一张在验钞机上检验发现是假钞,则这两张都是假钞的概率为( ) A.119 B.1718 C.419D.217解析:选D.设事件A 表示“抽到的两张都是假钞”,事件B 表示“抽到的两张至少有一张假钞”,则所求的概率即P (A |B ).P (AB )=P (A )=C 25C 220,P (B )=C 25+C 15C 115C 220,由公式P (A |B )=P (AB )P (B )=C 25C 25+C 15C 115=1010+75=217.故选D.7.某工厂师徒二人加工相同型号的零件,是否加工出精品互不影响.已知师傅加工一个零件是精品的概率为23,徒弟加工一个零件是精品的概率为12,师徒二人各加工2个零件不全是精品的概率为( ) A.89B.2339解析:选A.因为师傅加工一个零件是精品的概率为23,徒弟加工一个零件是精品的概率为12,师徒二人各加工2个零件不全是精品的对立事件是师徒二人各加工2个零件全是精品,所以师徒二人各加工2个零件不全是精品的概率为P =1-C 22(23)2C 22(12)2=89.故选A.8.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( ) A.13 B.29 C.49D.827解析:选A.由已知得逆时针跳一次的概率为23,顺时针跳一次的概率为13,则逆时针跳三次停在A 上的概率为P 1=23×23×23=827,顺时针跳三次停在A 上的概率为P 2=13×13×13=127.所以跳三次之后停在A 上的概率为P =P 1+P 2=827+127=13.9.如果X ~B ⎝ ⎛⎭⎪⎫20,13,Y ~B ⎝⎛⎭⎪⎫20,23,那么当X ,Y 变化时,使P (X =x k )=P (Y =y k )成立的(x k ,y k )的个数为( )A .10B .20C .21D .0解析:选C.根据二项分布的特点,知(x k ,y k )分别为(0,20),(1,19),(2,18),…,(20,0),共21个,故选C.10.已知随机变量X ~B (20,13),若使P (X =k )的值最大,则k 等于( )A .5或6B .6或7C .7D .7或8解析:选B.令P (X =k +1)P (X =k )=C k +120p k +1q 20-k -1C k 20p k q 20-k=20-k2k +2>1, 得k <6,即当k <6时,P (X =k +1)>P (X =k );当k =6时,P (X =7)=P (X =6); 当k >6时,P (X =k +1)<P (X =k ). 所以P (X =6)和P (X =7)的值最大,故选B. 二、填空题11.现有10张奖券,其中8张2元的,2张5元的,从中同时取3张,记所得金额为ξ元,则P (ξ=6)=________,P (ξ=9)=________. 解析:ξ=6代表事件为取出的三张都是2元的, 所以P (ξ=6)=C 38C 310=715,ξ=9代表事件为取出的三张有两张2元的,一张5元的,所以P (ξ=9)=C 28C 12C 310=715.答案:715 71512.设随机变量ξ~B (2,p ),η~B (4,p ),若P (ξ≥1)=59,则P (η≥2)的值为________.解析:因为随机变量ξ~B (2,p ),η~B (4,p ),又P (ξ≥1)=1-P (ξ=0)=1-(1-p )2=59,解得p =13,所以η~B ⎝ ⎛⎭⎪⎫4,13,则P (η≥2)=1-P (η=0)-P (η=1)=1-⎝ ⎛⎭⎪⎫1-134-C 14×⎝ ⎛⎭⎪⎫1-133×13=1127.答案:112713.某地区气象台统计,该地区下雨的概率是415,刮四级以上风的概率为215,既刮四级以上风又下雨的概率为110,设事件A 为下雨,事件B 为刮四级以上的风,那么P (B |A )=________.解析:由题意知P (A )=415,P (B )=215,P (AB )=110,所以P (B |A )=P (AB )P (A )=38.答案:3814.一批玉米种子的发芽率是0.8,每穴只要有一粒发芽,就不需补种,否则需要补种.则每穴至少种________粒,才能保证每穴不需补种的概率大于98%.(lg 2=0.301 0) 解析:记事件A 为“种一粒种子,发芽”,则P (A )=0.8,P (A )=1-0.8=0.2.因为每穴种n 粒相当于做了n 次独立重复试验,记事件B 为“每穴至少有一粒种子发芽”,则P (B )=C 0n 0.80(1-0.8)n =0.2n, 所以P (B )=1-P (B )=1-0.2n.根据题意,得P (B )>98%,即0.2n<0.02. 两边同时取以10为底的对数,得n lg 0.2<lg 0.02,即n (lg 2-1)<lg 2-2,所以n >lg 2-2lg 2-1=1.699 00.699 0≈2.43.因为n ∈N *,所以n 的最小正整数值为3. 答案:3 三、解答题15.已知甲、乙两人在一次射击中命中目标的概率分别为23和34,假设两人射击相互独立,且每人各次射击互不影响.(1)若甲、乙两人各射击1次,求至少有一人命中目标的概率;(2)若甲、乙两人各射击4次,求甲命中目标2次,且乙命中目标3次的概率.解:(1)若甲、乙两人各射击1次,由题意可得他们都没有命中目标的概率为⎝ ⎛⎭⎪⎫1-23·⎝ ⎛⎭⎪⎫1-34=112,故至少有一人命中目标的概率为1-112=1112. (2)若甲、乙两人各射击4次,则甲命中目标2次,且乙命中目标3次的概率为C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫1-232·C 34·⎝ ⎛⎭⎪⎫343·⎝ ⎛⎭⎪⎫1-34=18.16.为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:(1)从这18(2)中国女排奋力拼搏,战胜了韩国队获得冠军,若要求选出两位队员代表发言,设其中来自北京队的人数为ξ,求随机变量ξ的分布列.解:(1)“从这18名队员中选出两名,两人来自同一队”记作事件A ,则P (A )=C 24+C 26+C 23+C 25C 218=29. (2)ξ的所有可能取值为0,1,2.因为P (ξ=0)=C 214C 218=91153,P (ξ=1)=C 14C 114C 218=56153,P (ξ=2)=C 24C 218=6153,所以ξ的分布列如下:17.甲、5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率; (2)记X 为比赛决出胜负时的总局数,求X 的分布列.解:用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”.则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3) +P (A 1)P (B 2)P (A 3)P (A 4) =(23)2+13×(23)2+23×13×(23)2=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59.P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29.P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081.P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为18.一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求随机变量ξ的分布列;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解:(1)由题设知ξ的可能取值为0,1,2,3,P (ξ=0)=(1-34)(1-23)(1-12)=124,P (ξ=1)=34(1-23)(1-12)+(1-34)×23×(1-12)+(1-34)(1-23)×12=14, P (ξ=2)=34×23×(1-12)+34×(1-23)×12+(1-34)×23×12=1124, P (ξ=3)=34×23×12=14,所以随机变量ξ的分布列为(2)B , 则P (A )=14×C 33×(23)3+1124×C 23×(23)2×(1-23)+14×C 13×23×(1-23)2=13.P (AB )=14×C 13×23×(1-23)2=118, P (B |A )=P (AB )P (A )=11813=16.。

高二数学人选修课件独立重复试验与二项分布

高二数学人选修课件独立重复试验与二项分布

1. 根据组合数公式计 算成功次数为2的组合 方式数量:C(10, 2)。
2. 计算成功和失败的 概率:p=0.05,1p=0.95。
3. 将上述结果代入二 项分布概率公式进行 计算,得到恰好抽到2 个次品的概率为: P(X=2) = C(10, 2) * 0.05^2 * 0.95^(102)。
生活中独立重复试验与二项分
其他领域应用举例
产品质量检验
在生产线上,为了保证产品质量,会 对每个产品进行多次独立的重复检验 。每次检验的结果为合格或不合格, 符合二项分布的特点。
市场营销调查
在市场营销中,为了了解消费者对某 种产品的接受程度,会进行多次独立 的重复调查。每次调查的结果为购买 或不购买,也符合二项分布的特点。
谢谢聆听
递推关系式应用举例
通过已知的初始条件$P(A_0)=q^n$和递推关系式,可以逐步求出 $P(A_1),P(A_2),ldots,P(A_n)$的值。
案例分析:射击比赛问题
问题描述
某射手进行射击比赛,每次射击的命中率为0.8,若命中则得10分,否则扣4分。设该射 手射击10次,求其总得分的数学期望和方差。
VS
二项分布的概率计算
二项分布描述了在n次独立重复试验中成 功k次的概率。其概率计算公式为C(n, k) * p^k * (1-p)^(n-k),其中C(n, k)表示从 n个不同元素中取出k个元素的组合数,p 表示每次试验成功的概率。
案例分析:投掷硬币问题
问题描述
假设我们有一个均匀的硬币,正面朝上的概率为p,反面朝上的概率为1-p。现在我们 进行n次投掷,求正面朝上k次的概率。
概率模型建立
该射手每次射击得分是一个随机变量,取值为10或-4,且命中得10分的概率为0.8,未命 中扣4分的概率为0.2。因此,该射手10次射击的总得分也是一个随机变量,服从二项分 布。

人教课标版高中数学选修2-3《独立重复实验与二项分布(第1课时)》教学设计

人教课标版高中数学选修2-3《独立重复实验与二项分布(第1课时)》教学设计

2.2.2 独立重复试验与二项分布(第1课时)一、教学目标1.核心素养根据由特殊到一般的思维方式,归纳二项分布的概念及其概率计算公式,从而提升学生数学建模能力和逻辑推理能力.2.学习目标(本课时的目标应与后面的“问题探究”对应,每个探究解决一个目标)(1)从具体情境中理解n次独立重复试验及其特点及二项分布,并能解决一些简单的实际问题.(2)从具体情境中理解二项分布及其概率计算公式.(3)能解决一些简单与n次独立重复试验的模型及二项分布有关的实际问题3.学习重点理解掌握n次独立重复试验的模型及其基本特点,正确掌握二项分布.4.学习难点能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算.二、教学设计(一)课前设计预习任务任务1(可以多个任务,问是学生提问,编者不用考虑)阅读教材,思考:n次独立重复试验的定义是什么?二项分布的内容是什么?任务2归纳出n次独立重复试验的基本特点,默写二项分布的计算公式.预习自测1.n次独立重复试验应满足的条件:①每次试验之间是相互独立的;②每次试验只有发生与不发生两种结果之一;③每次试验发生的机会是均等的;④各次试验发生的事件是互斥的.其中正确的是()A .①②B .②③C .①②③D .①②④ 解:C .2.二项分布计算公式()=(1)kn k k n P X k C p p -=-中,,,1,n p p k -分别表示的是( )①事件不发生的概率;②事件发生的概率;③实验总次数;④事件发生的次数. A .①②③④ B .③①②④ C .③②①④ D .①②④③ 解:C . (二)课堂设计 1.知识回顾(1)不可能同时发生的事件A 与事件B 称为互斥事件,且()=()()P A B P A P B ++.(2)在事件A 发生的条件下事件B 发生的概率叫做“在A 条件下B 发生的概率”,记作(|)P B A ,且()(|)=()P AB P B A P A . (3)事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件,且()=()()P AB P A P B .(4)事件12,,n A A A ⋅⋅⋅是相互独立的,则1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. (5)二项式定理. 2.问题探究问题探究一 独立重复试验的定义及其基本特点? ●活动一 观察探究(1)某篮球队员罚球3次,每次命中率为0.7.(2)投掷一枚相同的硬币4次,每次正面向上的概率为0.5. (3)某射击选手射击6次,每次射击击中的概率为0.9. (4)一纸箱内装有5个白球、3个黑球,有放回地抽取5个球. (5)投掷一枚图钉8次,每次时针尖向上的概率为0.4. 问题:上面这些试验有什么共同的特点? 提示:从下面几个方面探究:(1)实验的条件; (2)每次实验间的关系; (3)每次试验可能的结果; (4)每次试验的概率;通过归纳发现:(1)每个例中的每次试验在相同条件下发生的; (2)每个例中的每次试验是相互独立的;(3)每个例中的每次试验都只有两种结果:发生与不发生; (4)每个例中的每次试验发生的概率都是相同的. ●活动二 归纳总结(1)定义:一般地,在相同条件下重复做的n 次试验,各次试验的结果相互独立,就称n 次独立重复试验.(2)特点:①条件相同;②相互独立;③结果有二;④概率相等. ●活动三 学以致用例1 判断下列试验是不是独立重复试验:(说明理由) (1)依次投掷四枚质地不同的硬币,3次正面向上;(2)姚明作为中锋,他职业生涯的每次罚球命中率为0.9,他连续投篮3次,恰有2次命中; (3)一纸箱内装有5个白球,3个黑球,2个红球,从中依次抽取5个球,恰好抽出4个白球; (4)一纸箱内装有5个白球,3个黑球,2个红球,从中有放回地抽取5个球,恰好抽出4个白球. 【知识点:独立重复试验】详解:(1)不是,因为条件不相同;(2)是;(3)不是,因为每次发生的概率不等;(4)是; 问题探究二 什么是二项分布?其概率计算公式是什么? ●活动一 计算观察问题:姚明作为中锋,他职业生涯的每次罚球命中率为0.9, (1)他连续投篮3次,恰有1次命中的概率是多少; (2)他连续投篮3次,恰有2次命中的概率是多少; (3)他连续投篮3次, 3次都命中的概率是多少; 解答:(1)3次中恰有1次命中有几种情况?共有3种情况:123A A A ,123A A A ,123A A A (设(1,2,3)i A i =表示事件“第i ”次命中)每一种情况的概率都是:120.9(10.9)⨯- 则恰有1次命中的概率是:1230.9(10.9)P =⨯⨯- (2)3次中恰有2次命中有几种情况?共有3种情况:123A A A ,123A A A ,123A A A (设(1,2,3)i A i =表示事件“第i ”次命中)每一种情况的概率都是:210.9(10.9)⨯-则恰有1次命中的概率是:2130.9(10.9)P =⨯⨯-;(3)3次都命中只有1种情况,即:123A A A (设(1,2,3)i A i =表示事件“第i ”次命中) 则概率是:310.9P =⨯; 观察三个试验的共同点: (1)都是独立重复试验;(2)每次试验分别有3(1,2,3)iC i =种情况;(3)每次试验的每种情况发生的概率相同.(4)他连续投篮n 次,恰有k 次命中的概率是多少;此次试验有k n C 种情况,每种情况发生的概率都是:0.9(10.9)k n k -⨯- 则此次试验发生的概率是:0.9(10.9)k k n k n P C -=-●活动二 归纳总结归纳:一般地,在n 次独立重复试验,设事件A 发生的次数是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)k k n k n P X k C p p -==-,其中n k ,,2,1,0⋅⋅⋅=.此时称随机变量X 服从二项分布,记作(,)X B n p ,并称p 为成功概率.理解:1)公式()(1)k k n k n P X k C p p -==-中各字母的含义,n —试验发生的总次数;k —试验中事件A 恰好发生的次数;p —事件A 发生概率;(1-p )—事件A 恰不发生的概率. 2)二项式()1-np p ⎡⎤+⎣⎦的展开式中第k +1项为1(1)kn k k k n T C p p -+=-,那么()(1)k kn k n P X k C p p -==-就是二项式()1-np p ⎡⎤+⎣⎦展开式中中第k +1项,所以公式()(1)k k n k n P X k C p p -==-(),0,1,2,...,.k n =所以公式叫做二项分布.3)当n =1时,二项分 布就是两点分布.问题探究三 初步利用n 次独立重复试验的模型及二项分布解决一些简单的问题 例2 某射手每次射击击中目标的概率是0.9,求这名射手在5次射击中,(1)恰有4次击中目标的概率;(2)至少有4次击中目标的概率.(列出算式即可) 【知识点:二项分布,互斥事件的概率;数学思想:分类讨论】详解:设X 为击中目标的次数,则(5,0.9)X B(1)在5次射击中,恰有4次击中目标的概率为:44(54)540.9(10.9)P X C -==⨯⨯-(). (2)在5次射击中,至少有4次击中目标的概率为:44(54)55(55)5544+5=0.9(10.9)+0.9(10.9)P X P X P X C C --≥===⨯⨯-⨯⨯-()()()例3 重复抛掷一枚骰子6次,求至少4次得到点数为6的概率. 【知识点:二项分布,互斥事件的概率;数学思想:分类讨论】 详解:设X 为得到点数6的次数,则1(6,)6XB重复抛掷一枚骰子6次,至少4次得到点数为6的概率为:4(64)5(65)6(66)45666644+5+6111111=1+1+1666666P X P X P X P X C C C ---≥====⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()()例4 重复抛掷一枚骰子6次,求至少1次得到点数为6的概率.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 详解:设X 为得到点数6的次数,则1(6,)6XB重复抛掷一枚骰子6次,至少1次得到点数为6的概率为:1(61)2(62)3(63)1256664(64)456641+2+3+4+5+6111111=1+1+1666666111 +1+66P X P X P X P X P X P X P X C C C C C ----≥=======⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭()()()()()()() 5(65)6(66)661111+16666C --⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭另解:设X 为得到点数6的次数,则1(6,)6X B记事件A 为“至少1次得到点数为6”,则事件A 为 “没有1次得到点数为6”,又由于0(60)6110=166P A P X C -⎛⎫⎛⎫==⨯⨯- ⎪ ⎪⎝⎭⎝⎭()()则0(60)06111=1166P A P A C -⎛⎫⎛⎫=--⨯⨯- ⎪ ⎪⎝⎭⎝⎭()()例5 重复抛掷一枚骰子6次,求至少2次得到点数为6的概率.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】详解:设X 为得到点数6的次数,则1(6,)6XB记事件A 为“至少2次得到点数为6”,则事件A 为 “没有1次得到点数为6和恰好有1次得到点数为6”,又由于0(60)1(61)16611110+1=1+16666P A P X P X C C --⎛⎫⎛⎫⎛⎫⎛⎫===⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()则0(60)1(61)16611111=1116666P A P A C C --⎛⎫⎛⎫⎛⎫⎛⎫=--⨯⨯--⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()3.课堂总结 【知识梳理】(1)一般地,在相同条件下重复做的n 次试验,各次试验的结果相互独立,就称为n 次独立重复试验.(2)一般地,在在n 次独立重复试验,设事件A 发生的次数是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)k kn k n P X k C p p -==-,其中n k ,,2,1,0⋅⋅⋅=.此时称随机变量X 服从二项分布,记作(,)X B n p ,并称p 为成功概率.【重难点突破】(1)独立重复试验的判断①每次试验是在相同的条件下进行的;②每次试验的结果不会受其他试验的影响,即每次试验是相互独立的; ③基本事件的概率可知,且每次试验保持不变; ④每次试验只有两种结果,要么发生,要么不发生. (2)二项分布的判断①在一次试验中,事件A 发生与不发生二者必居其一. ②事件A 在每次试验中,发生的概率相同.③试验重复地进行了n 次(n ≥2),且每次试验结果互不影响. 4.随堂检测1.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( )A .3B .4C .5D .6【知识点:二项分布,对立事件的概率;数学思想:正难则反】 解:B2.若某射手每次射击击中目标的概率是0.9,每次射击的结果相互独立,那么在他连续4次的射击中,第一次未击中目标,后三次都击中目标的概率是( )A.33140.90.1C ⨯⨯B.30.9C.130.10.9⨯D.11340.90.1C ⨯⨯【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:C3.有10门炮同时各向目标各发一枚炮弹,如果每门炮的命中率都是0.1,则目标被击中的概率约是( ) A.0.55 B.0.45 C.0.75 D.0.65【知识点:独立重复试验,对立事件的概率】 解:D4.一批产品共有100个,次品率为 3%,从中有放回抽取3个恰有1个次品的概率是( )A.123973100C C CB.1230.030.97C ⨯⨯C.1330.03C ⨯D.1230.030.97C ⨯⨯【知识点:二项分布】 解:B5.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为 8081,则此射手射击一次的命中率是( )A.13B.23C.14D.25【知识点:二项分布,对立事件的概率;数学思想:正难则反】 解:B 4801(1)81p --= (三)课后作业 基础型 自主突破1.已知随机变量ξ~B (6,13),则P (ξ≥2)=( ) A.16143 B.471729 C.473729 D.1243【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:C0(60)1(61)1661111212=101=11+13333P P P P C C ξξξξ--⎛⎫⎛⎫⎛⎫⎛⎫≥=-≤-=-=-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()2.某一试验中事件A 发生的概率为p ,则在n 次试验中,A 发生k 次的概率为( ) A .1-p k B .(1-p )k ·p n -k C .(1-p )kD .C k n (1-p )k ·p n -k【知识点:二项分布,对立事件的概率】 解:D3.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( ) A .(12)5 B .C 25(12)5C .C 35(12)3D .C 25C 35(12)5 【知识点:二项分布】解:D 5次移动中有2次向右,剩下3次向上.4.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第ξ次首次测到正品,则P (ξ=3)的值为( ) A .C 23(14)2×34B .C 23(34)2×14C .(14)2×34 D .(34)2×14【知识点:二项分布,对立事件的概率】 解:D5.某种植物的种子发芽率是0.7,4颗种子中恰有3颗发芽的概率是________. 【知识点:二项分布】解:0.4116 33(43)430.7(10.7)P X C -==⨯⨯-()6.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).【知识点:二项分布】解:0.9477 33(43)44(44)443=3+=4=0.9(10.9)+0.9(10.9)P X P X P X C C --≥=⨯⨯-⨯⨯-()()()能力型 师生共研7.某单位6个员工借助互联网开展工作,每天每个员工上网的概率是0.5(相互独立),则一天内至少3人同时上网的概率为________.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:2132 666012666111X 1012=1222P P X P X P X C C C ⎛⎫⎛⎫⎛⎫≥=-=-=-=-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)()()()8.2013年初,一考生参加北京大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被考生正确做出的概率都是34. (1)求该考生首次做错一道题时,已正确做出了两道题的概率;(2)若该考生至少做出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率. 【知识点:对立、互斥事件的概率,独立重复试验,二项分布;数学思想:分类讨论】 解:(1)记“该考生正确做出第i 道题”为事件A i (i =1,2,3,4),则P (A i )=34,由于每一道题能否被正确做出是相互独立的,所以这名考生首次做错一道题时,已正确做出两道题的概率为 P (A 1A 2A 3)=P (A 1)·P (A 2)·P (A 3)=34×34×14=964.(2)记“这名考生通过书面测试”为事件B ,则这名考生至少正确做出3道题,即正确做出3道或4道题,故P (B )=C 34×(34)3×14+C 44×(34)4=189256. 9.9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种的费用,写出ξ的分布列. 【知识点:对立事件的概率,二项分布】解:每个坑内3粒种子都不发芽的概率为(1-0.5)3=18,所以每个坑不需要补种的概率为p =1-18=78.利用3次独立重复试验的公式求解即可.补种费用ξ的分布列为10.一批玉米种子,其发芽率是0.8.问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(lg2=0.301 0)【知识点:独立重复试验,对立事件的概率,二项分布;数学思想:正难则反】解:记事件A =“种一粒种子,发芽”,则P (A )=0.8,P (A -)=1-0.8=0.2.设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.因为每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则P (B -)=C 0n ·0.80·0.2n =0.2n .所以P (B )=1-P (B -)=1-0.2n .由题意有1-0.2n >98%,所以0.2n <0.02,两边取对数得n lg0.2<lg0.02.即n (lg2-1)<lg2-2.所以n >lg2-2lg2-1≈2.43,且n ∈N ,所以n ≥3. 故每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.探究型 多维突破11.某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中X 名男同学.(1)求X 的分布列;(2)求去执行任务的同学中有男有女的概率.【知识点:对超几何分布】解:(1)X 的可能取值为0,1,2,3,且X 服从超几何分布,因此:P (X =0)=C 33C 38=156,P (X =1)=C 15C 23C 38=1556, P (X =2)=C 25C 13C 38=1528,P (X =3)=C 35C 38=528. ∴X 的分布列为(2)由上面的分布列,可知去执行任务的同学有男有女的概率为P (X =1)+P (X =2)=1556+1528=4556.12.一名学生骑自行车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)设ξ为这名学生在途中遇到的红灯次数,求ξ的分布列;(2)设η为这名学生在首次停车前经过的路口数,求η的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:(1)将遇到每个交通岗看做一次试验,遇到红灯的概率都是13,且每次试验结果相互独立,故ξ~B(6,13).所以ξ的分布列为P(ξ=k)=Ck6·(13)k·(23)6-k(k=0,1,2,…,6).(2)η=k(k=0,1,2,…,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,其概率为P(η=k)=(23)k·13,η=6表示一路没有遇上红灯,故其概率为P(η=6)=(23)6.所以η的分布列为(3)所求概率即P(ξ≥1)=1-P(ξ=0)=1-(23)6=665729.自助餐1.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2.则()A.p1=p2B.p1<p2C.p1>p2D.以上三种情况都有可能【知识点:古典概型】解:B2.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n}:a n =⎩⎨⎧-1,第n 次摸取红球,1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ) A .C 57×(13)2×(23)5 B .C 47×(23)2×(13)5 C .C 27×(23)2×(13)5 D .C 37×(13)2×(23)5 【知识点:独立重复试验,二项分布】解:C3.某厂大量生产某种小零件,经抽样检验知道其次品率是1%,现把这种零件每6件装成一盒,那么每盒中恰好含一件次品的概率是( )A .(99100)6B .0.01C.C 16100(1-1100)5D .C 26(1100)2(1-1100)4 【知识点:对立事件的概率,二项分布】解:C4.在4次独立重复试验中,事件A 出现的概率相同,若事件A 至少发生一次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13B.25C.56D .都不对【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:A5.抛掷三个骰子,当至少有一个5点或一个6点出现时,就说这次试验成功,则在54次试验中成功次数X ~( )A .B (54,427)B .B (52,1927)C .B (54,1927)D .B (54,1724)【知识点:二项分布】解:C6.已知随机变量ξ服从二项分布ξ~B (6,13),则P (ξ=2)=( )A.316B.4243C.16243D.80243【知识点:二项分布】解:D7.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值等于( )A .0B .1C .2D .3【知识点:二项分布】解:C8.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:D9.一个袋中有5个白球,3个红球,现从袋中每次取出1个球,取出后记下球的颜色然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P (ξ=12)=________.(写出表达式不必算出最后结果)【知识点:二项分布】解:C 911(38)9(58)2·3810.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进了3球的概率为________.(用数字作答)【知识点:二项分布】解:1512811.A ,B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片,若某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.【知识点:互斥事件的概率,二项分布】解:P =(12)5×2+2×C 45(12)5(12)2=116+2×5×(12)7=964.12.如图,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.【知识点:互斥事件的概率,二项分布】解:(1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意,P (A )=14.(2)依题意知,X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为:(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.。

高二数学独立重复试验与二项分布(新).ppt

高二数学独立重复试验与二项分布(新).ppt
181h,
发现
在变式一、二中关键词是至少、至多,这类问题通常 需要分类,在情况特别多的情况下可以考虑先求出对 立事件的概率,然后用1减去对立事件的概率求得
181h,
练习
已知一个射手每次击中目标的概率为 p 3 ,
求他在次射击中下列事件发生的概率。
5
(1)命中一次; (2)恰在第三次命中目标; (3)命中两次; (4)刚好在第二、第三两次击中目标。
1 8
3 16
3 16
1 2
.答:按比赛 181h规, 则甲获胜的概率为
1 2

复习引入
前面我们学习了 互斥事件 、相互独 立事件 的定义,这些都是我们在具体求概率时需要考虑 的一些模型,吻 合 模 型用公式去求概率 更简便。
⑴ P( A B) P( A) P(B) (当 A、B 互斥时时)); ⑵ P( AB) P( A)P(B) (当A、B相互独立时)
(5)口袋装有 5 个白球,3 个红球,2 个黑球,从中有放回
地抽取 5 个球,恰好抽出 4 个白球. ( √ )
181h,
独立重复试验的特点:
1)每次试验是在相同条件下进行的; 2)每次试验只有两种结果:要么发生要么不发生; 3)各次试验中的事件是相互独立的; 4)任何一次试验中,事件A发生的概率相同的.
所以 X 的分布列为
P
3 8
3 8
1 8
1 8
181h,
课堂小结:
一、独立重复试验的定义及特点
二、 X服从二项分布则试验n次发生k次的概率运用公式
P(X
k
)
C
k n
p
k
(1
p)nk , k
0,1, 2,..., n.

独立重复试验与二项分布概率作业练习含答案解析高二数学北京海淀

独立重复试验与二项分布概率作业练习含答案解析高二数学北京海淀

课时提升作业十一独立重复试验与二项分布一、选择题(每小题5分,共25分)1.已知随机变量X服从二项分布X~B,则P(X=2)= ( )A. B. C. D.【解析】选D.P(X=2)=×=.2.(2018·威海高二检测)在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为( ) A. B. C. D.【解析】选C.设事件A每次试验发生的概率为p,则1-(1-p)3=,解得p=,故事件A发生一次的概率为××=.3.在一次反恐演习中,三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别是0.9,0.9,0.8,若至少有两枚导弹击中目标方可将其摧毁,则目标被摧毁的概率是( )A.0.998B.0.046C.0.936D.0.954【解析】选D.P=0.9×0.9×0.2+0.9×0.1×0.8+0.1×0.9×0.8+0.9×0.9×0.8=0.954.4.某人参加一次考试,4道题中答对3道题则为及格,已知他的解题正确率为0.4,则他能及格的概率为( )A. B. C. D.【解析】选B.他答对3道题的概率为·0.43·(1-0.4)=0.153 6,他答对4道题的概率为0.44=0.025 6,故他能及格的概率为0.153 6+0.025 6=0.179 2=.5.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n}:a n=如果S n为数列{a n}的前n项和,那么S7=3的概率为( )A.·B.·C.·D.·【解题指南】由数列{a n}的定义,S7=a1+a2+…+a7和S7=3知7次摸球中有2次摸取红球,5次摸取白球.【解析】选B.由S7=3知在7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为,摸取白球的概率为,则S7=3的概率为·.二、填空题(每小题5分,共15分)6.将一枚硬币连续抛掷5次,则正面向上的次数X的分布为__________. 【解析】由题意得,在5次独立重复试验中事件“正面向上”发生的次数为X,每次试验中事件“正面向上”发生的概率是0.5,所以X~B(5,0.5).答案:X~B(5,0.5)7.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前7次都未成功,后3次都成功的概率为__________.【解析】由题意得,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为p3(1-p)7.答案:p3(1-p)78.下列例子中随机变量ξ服从二项分布的有__________.①随机变量ξ表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M<N);④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数.【解析】对于①,设事件A为“抛掷一枚骰子出现的点数是3的倍数”,P(A)= .而在n次独立重复试验中事件A恰好发生了k次(k=0,1,2,…,n)的概率P(ξ=k)=××,符合二项分布的定义,即有ξ~B.对于②,ξ的取值是1,2,3,…,P(ξ=k)=0.9×0.1k-1(k=1,2,3,…),显然不符合二项分布的定义,因此ξ不服从二项分布.③和④的区别是:③是“有放回”抽取,而④是“无放回”抽取,显然④中n 次试验是不独立的,因此ξ不服从二项分布,对于③有ξ~B.故应填①③.答案:①③三、解答题(每小题10分,共20分)9.某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛.答对4题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).(1)求选手甲回答一个问题的正确率.(2)求选手甲可以进入决赛的概率.【解析】(1)设选手甲回答一个问题的正确率为p1,则(1-p1)2=,故选手甲回答一个问题的正确率p1=.(2)选手甲答了4道题进入决赛的概率为=,选手甲答了5道题进入决赛的概率为=;选手甲答了6道题进入决赛的概率为=;故选手甲可进入决赛的概率p=++=.【补偿训练】(2018·武威高二检测)某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5次,求:(1)其中只在第一、三、五次击中目标的概率.(2)其中恰有3次击中目标的概率.【解析】(1)该射手射击了5次,其中只在第一、三、五次击中目标,是在确定的情况下击中目标3次,也即在第二、四次没有击中目标,所以只有一种情况,又各次射击的结果互不影响,故所求概率为P1=××××=.(2)该射手射击了5次,其中恰有3次击中目标,符合独立重复试验概率模型,故所求概率为P2=·=.10.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”“中立”“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率.(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.【解析】(1)该公司决定对该项目投资的概率为P=·+=.(2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:“同意”票张数“中立”票张数“反对”票张数事件A 0 0 3事件B 1 0 2事件C 1 1 1事件D 0 1 2 P(A)==,P(B)==,P(C)==,P(D)==,因为A,B,C,D互斥,所以P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hale Waihona Puke 彩票白菜活动 [问答题]在户外怎样避震? [单选]脂类的生理功能不包括()A.供给热能B.构成组织成分及参加代谢C.供给必需脂肪酸D.促进胃肠蠕动E.协助脂溶性维生素吸收 [问答题,简答题]什么情况下必须正司机操作,副司机监护? [单选]要复制一个被选中的对象用什么:()A.Ctrl+移动B.Shift+移动C.Alt+移动D.Ctrl+Alt+移动 [单选,A1型题]维生素D缺乏性手足搐搦症惊厥发作的急救处理正确方法是()A.止惊、吸氧、通畅气道B.迅速补钙C.迅速补充维生素DD.迅速补充苏打E.迅速补液 [单选,A2型题,A1/A2型题]心律失常最基本的症状是()。A.心源性休克B.气促C.晕厥D.心悸E.急性肺水肿 [单选]《女职工劳动保护特别规定》自公布之日起施行。()国务院发布的《女职工劳动保护规定》同时废止。A、1997年7月1日B、1988年7月1日C、1988年7月21日D、1991年7月1日 [单选]《国务院关于投资体制改革的决定》要求,对使用政府性资金投资建设的项目,实行()管理。A.审批制B.核准制C.备案制D.注册制 [判断题]储蓄存款利率由国家财政部拟订,经国务院批准后公布,或者由国务院授权国家财政部制定、公布。A.正确B.错误 [单选,A1型题]学龄期的保健要点不包括()A.提供良好的学习环境B.预防视力和龋齿C.开展健康教育D.加强体育锻炼E.培养良好的劳动观念 [单选]论文中对重要的公式:()A、应编号B、不应编号 [判断题]计算机制图时,夸大也是通过对制图数据进行修改来实现的。A.正确B.错误 [单选,A1型题]成为重要传染源的肺结核病是()A.结核球B.局灶型肺结核C.支气管内结核D.慢性纤维空洞型肺结核E.浸润型肺结核 [单选]建设工程勘察单位在编制建设工程勘察文件时,不作为编制依据的是()。A.项目批准文件B.城市规划C.项目投资概算D.国家规定的建设工程勘察深度要求 [单选]依照我国的会计准则,利润表采用的格式为()。A.单步式B.多步式C.账户式D.混合式 [单选]某企业2008年度发生以下业务:以银行存款购买将于2个月后到期的国债500万元,偿还应付账款200万元,支付生产人员工资150万元,购买固定资产300万元。假定不考虑其他因素,该企业2008年度现金流量表中“购买商品、接受劳务支付的现金”项目的金额为()万元。A.200B.350C.650D [单选]膀胱癌的恶性程度取决于()A.浸润膀胱癌的深度及组织学等级B.肿瘤的大小和数目C.治疗方法D.血尿的程度E.患者年龄 [单选,A2型题,A1/A2型题]慢性粒细胞白血病Ph染色体阴性病例占().A.90%~95%B.10%~15%C.5%~15%D.5%~10%E.1%~5% [判断题]纵横等分线相交法放样,比较简便,误差也比较小。A.正确B.错误 [单选]X线照片上所指的关节间隙,代表解剖学上的()A.关节腔B.关节囊C.关节软骨D.关节囊和关节腔E.关节腔和关节软骨 [单选]支票磁码的()域,应由提出行打码。A、交易码B、账号C、序号D、银行号 [单选]建筑高度不超过32m的二类高层建筑应设()楼梯间。A、开敞楼梯间B、敞开楼梯间C、封闭楼梯间D、防烟楼梯间 [单选]2010年9月《信托公司净资本管理办法》颁布,这标志着我国信托业的行业监管转变为()。A.窗口指导B.行政调控C.市场调控D.计划调控 [填空题]可燃物体主要有等()、()、()。 [单选]制动轮表面温度不得超过()°C。A.100B.200C.250D.300 [单选]下列各项中,能使企业资产总额增加的是()。A.支付职工工资B.计提行政部门固定资产折旧C.处置固定资产,发生的净损失D.交易性金融资产公允价值上升 [单选]下列不符合发票开具要求的是()。A.开具发票时应按号顺序填开,填写项目齐全、内容真实、字迹清楚B.填写发票应当使用中文C.可以拆本使用发票D.开具发票时限、地点应符合规定 [单选,A型题]隐匿性旁路是指()。A.QRS波群起始部有delta波B.PR间期&lt;0.12sC.房室旁路仅有前向传导功能D.房室旁路仅有逆向传导功能E.既可前向传导,又可逆向传导 [单选]钢中炭的含量超过1.00%时,钢材的性能表现为()。A.塑性大B.强度下降C.硬度大D.易于加工 [单选]广大投资者将资金集中起来,委托给专业的投资机构,并通过商品交易顾问进行期货期权投资交易,投资者承担风险并享受投资收益的这种集合投资方式称为()。A.对冲基金B.共同基金C.对冲基金的组合基金D.商品投资基金 [单选]消费函数描述了()。A.消费与政府购买之间的负向关系B.消费和收入之间的正向关系C.消费和利率之间的负向关系D.消费和收入之间的负向关系 [单选]()是否健全是合同管理的关键所在。A.合同统计考核制度B.合同管理评估制度C.合同管理目标制度D.合同管理质量责任制度 [问答题,简答题]简述培训评估的层级体系的特点和评估标准。 [单选]以下哪一项不属于政府在残疾人就业工作中的职责()?A.将促进残疾人就业纳入国民经济和社会发展规划B.督促有关部门做好残疾人就业工作C.制定优惠政策和具体扶持保护措施,为残疾人就业创造条件D.按照法律负责残疾人工作的事实与监督 [判断题]船员居住舱着火,应立即打开门窗,用水龙往内灌水,以防火势蔓延.A.正确B.错误 [单选,A2型题,A1/A2型题]在形成酶-底物复合物时()。A.酶的构象和底物构象同时发生变化B.主要是酶的构象发生变化C.主要是底物的构象发生变化D.主要是辅酶的构象发生变化E.酶和底物构象都不发生变化 [单选]集中使用残疾人的用人单位中从事全日制工作的残疾人职工,应占本单位在职职工总数的()以上。A.10%B.20%C.30%D.25% [单选]流脑发病季节高峰是()A.11~12月份B.1~2月份C.3~4月份D.5~6月份E.7~9月份 [单选]预防风心病加重的根本措施是().A.积极治疗心力衰竭B.积极锻炼身体C.饮食清淡,避免妊娠D.预防和治疗感染E.卧床休息 [多选]海上航行通告由国家主管机关或者区域主管机关以()等新闻媒介发布。A.广告公司B.报纸C.电报D.广播E.电视
相关文档
最新文档