(完整版)2.2.3独立重复试验与二项分布
课件5:2.2.3 独立重复试验与二项分布

(2)“5 次预报中至少有 2 次准确”的对立事件为“5 次预报 全部不准确或只有 1 次准确”,
其概率为 P=C05×(0.2)5+C15×0.8×0.24=0.006 72≈0.01. 所以所求概率为 1-P=1-0.01=0.99. 所以 5 次预报中至少有 2 次准确的概率约为 0.99.
(3)说明第 1,2,4,5 次中恰有 1 次准确. 所以概率为 P=C14×0.8×0.23×0.8=0.02 048≈0.02, 所以恰有 2 次准确,且其中第 3 次预报准确的概率约为 0.02.
P(X=2)=C32(34)2·14=2674, P(X=3)=C33(34)3=2674. 所以 X 的分布列为
X0 1 2 3
P
1 64
9 64
27 64
64
类型3 二项分布的综合应用
例 3 某车间有 10 台同类型的机床,每台机床配备的电 动机功率为 10 kW,已知每台机床工作时,平均每小时实际 开动 12 min,且开动与否是相互独立的.
P(ξ=2)=P(η=1)=C13(13)(23)2=49,
P(ξ=3)=P(η=0)=C03(23)3=287. 故 ξ 的分布列是
ξ0 12 3
P
1 27
2 9
4 9
8 27
【错因分析】 (1)对事件关系判断不明确,3 人选择项 目所属类别互不相同的事件 AiBjCk(i,j,k 互不相同)共有 A33 =6 种情形,误认为只有 A1B2C3 发生,导致计数错误.
2.2.3独立重复试验与二项分布

如果将上题改为:在相同条件下,抛5次骰子,出现 两次1点的概率为多少? 抛10次骰子出现两次1点的概率为多少?
若改为抛n(n≥3)次骰子,出现两次1点的概率为多 少呢? 出现三次一点的概率为多少呢?
进而出现k次1点的概率为多少呢?(0≤k ≤n)
学到了什么
1.理解n 次独立重复试验的概念 2.理解伯努利概型是哪一类问题?并会求其
概率 3.体会从题目中分析概率模型,并会求一些
简单的概率应用问题
作业
P57 练习A.T4 P57 练习B.T2
击,已知至少命中一次的概率为 80 ,则
此射手的命中率为______
81
3.假定人在一年365天中的任意一天出生的概率是相同 的,某班级有50名同学, (1)其中至少有两个同学生于元旦的概率是多少? (2)其中至少有两个同学生于同一天的概率是多少?
4.某运动员练习射击,他的命中率为0.8,在 相同条件下,他射击了5次,求他命中三次且 连续命中两次的概率?
独立重复试验
鞍山一中 周兴奎
复习旧知
如何求互斥事件中至少有一个发生的概率? P(A1∪A2)=P(A1)+P(A2) P(A1∪A2∪···∪An)=P(A1) +P(A2)+ ···+
P(An)
如何求相互独立事件同时发生的概率 P(A1∩A2)=P(A1) × P(A2)
P(A1∩A2∩···∩An)=P(A1) ×P(A2)× ···× P(An)
③某气象站天气预报的准确率为80%,5次预报中 一次都没预报成功的概率?
④已知某种疗法的治愈率是பைடு நூலகம்0%,在对10位病人采 用这种疗法后,至少有8人治愈的概率是多少?
2.2.3独立重复试验与二项分布(二)2013.5.29

C42 p2 1 p2 C43 p3 1 p p4
二发动机正常飞行的概率P2= C21 p1 p p2
∵ P1>P2 ∴ 整理得 3 p4 8 p3 7 p2 2 p 0
即 p p 12 3p 2 0 ∵ 0<p<1 ∴ 2/3<p<1
∴ 2/3<p<1时,四发动机飞机比两发动机飞机更安全.
A
1
C 50 365
36550
0.97
例2(05,北京)甲乙两人各进行3次射击,甲每次击中目
标的概率为 1 ,乙每次击中目标的概率为 2 ,求:
2
3
(1)甲恰好击中目标2次的概率;
(2)乙至少击中目标2次的概率;
(3)乙恰好比甲多击中目标2次的概率;
(4)甲、乙两人共击中5次的概率。
练:甲、乙两个篮球远动员投篮命中率分别为0.7和0.6,每
解:(2)该学生在途中至少遇到一次红灯的事件为{X≥1}
(2)该学生在途中至少遇到一次红灯的概率。
分析:(2)该学生在途中至少遇到一次红灯的事件 为{X≥1}
所以所求概率为
P(X≥1)=1-P(X=0)=
1
2 3
4
65 81
(3)设Y为该学生在首次停车前经过的路口次数, 求Y的分布列.(若没有停车,认为Y=4)
例5 某人抛掷一枚硬币,出现正面和反面的概率都是0.5,构
造数列{an},使 an
1,当第n次出现正面 -1,当第n次出现反面
记 Sn a1 a2 ... an (n N *)
(1)求 S8 2 时的概率;
(2)求S2 0且S8 2 时的概率。
(2)求S2≠0, 且S8=2时的概率. 分析: ∵S2≠0, ∴前两次抛掷硬币为2次都是正面或2次都是反面.
《2.2.3独立重复实验与二项分布》教案

2.2.3独立重复实验与二项分布教学目标:知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题 教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立14.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ 二、讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项 3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).三、讲解范例:例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)解:设X 为击中目标的次数,则X ~B (10, 0.8 ) .(1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 ) =88108100.8(10.8)0.30C -⨯⨯-≈. (2)在 10 次射击中,至少有 8 次击中目标的概率为P (X ≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-0.68≈.例2.(2000年高考题)某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量ξ~B (2,5%).所以,P (ξ=0)=02C (95%)2=0.9025,P (ξ=1)=12C (5%)(95%)=0.095,P (2=ξ)=22C (5%)2=0.0025.因此,次品数ξ例3.>3).解:依题意,随机变量ξ~B ⎪⎭⎫ ⎝⎛61,5.∴P (ξ=4)=6561445⋅⎪⎭⎫ ⎝⎛C =777625,P (ξ=5)=55C 561⎪⎭⎫ ⎝⎛=77761. ∴P (ξ>3)=P(ξ=4)+P (ξ=5)=388813 例4.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): (1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈ 答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.328=+≈+≈答:5次预报中至少有4次准确的概率约为0.74.例5.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次 ∴从低层到顶层停不少于3次的概率 3364455549999991111111()()()()()()()2222222P C C C C =++++ 3459990129999999911()()2()()22C C C C C C C ⎡⎤=+++=-++⎣⎦+991233(246)()2256=-= 设从低层到顶层停k 次,则其概率为k 9999111C ()()()222k k k C -=, ∴当4k =或5k =时,9k C 最大,即991()2k C 最大, 答:从低层到顶层停不少于3次的概率为233256,停4次或5次概率最大. 例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++,又因为事件A 、B 、C 彼此互斥, 故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 答:按比赛规则甲获胜的概率为12. 例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=)解:记事件A =“种一粒种子,发芽”,则()0.8P A =,()10.80.2P A =-=,(1)设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.∵每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则00()(0)0.8(10.8)0.2n n n n P B P C ==-=. ∴()1()10.2nP B P B =-=-.由题意,令()98%P B >,所以0.20.02n <,两边取常用对数得, lg0.2lg0.02n <.即(lg 21)lg 22n -<-, ∴lg 22 1.6990 2.43lg 210.6990n ->=≈-,且n N ∈,所以取3n ≥. 答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为2230.80.20.384P C =⨯⨯==,答:每穴种3粒,恰好两粒发芽的概率为0.384四、课堂练习:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+ ()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球数不少于9个的概率为 .7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率为 .8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为31,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率10.(1)设在四次独立重复试验中,事件A 至少发生一次的概率为8081,试求在一次试验中事件A 发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为13,求在第n 次才击中目标的概率 答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.0467. 23 8.(1)()323551240333243P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(2)()()5552211113243P B P B C ⎛⎫=-=-= ⎪⎝⎭ 9.⑴5550.90.59049C =; ⑵5550.10.00001C =;⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+=10.(1) 23P = (2) 112()33n P -=⋅ 五、小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的不发生2.如果1次试验中某事件发生的概率是P ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为k n k k n n P P C k P --=)1()(对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n k -次中A 没有发生,即A 发生,由()P A P =,()1P A P =-所以上面的公式恰为n P P ])1[(+-展开式中的第1k +项,可见排列组合、二项式定理及概率间存在着密切的联系六、课后作业:课本58页 练习1、2、3、4第60页 习题 2. 2 B 组2、3七、板书设计(略)八、课后记:教学反思:1. 理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
独立重复事件与二项分布

例3、甲、乙两人进行五次比赛,如果甲或
乙无论谁胜了三次,比赛宣告结束。假定甲
获胜的概率是 2 ,乙获胜的概率是 1 ,
试求下列概率。3
3
(I)比赛以甲3胜1败而结束的概率;
(II)比赛以乙3胜2败而结束的概率;
(III)设甲先胜3次的概率为a,乙先胜3次
的概率为b,求a:b的值。
预备:冰箱内两格放着甲、乙两种饮料各5瓶,每次饮 新疆 王新敞 奎屯 用时从两格中任取1瓶甲种或乙种饮料,取甲种或乙 种饮料概率相等。
n=1时即为二点分布
3.Pn (k ) Cnk Pk (1 P)nk与二项式定理间的关系:
Pn
(k
)
C
k n
P
k
(1
P)
nk
是二项展开式
[(1
P)
P]n
的第k+1项。
3.例题分析:
直接用公式求概率
例1.某射手每次射击,没击中目标的概率是0.2,
求这名射手在10次射击中,
(1)恰有8次击中目标的概率
2.2.3 独立重复事件与二项分布
1.独立重复试验:一般地,在相同条件下可以重 复进行的,各次之间是相互独立的一种试验,称 为独立重复试验
2.n次独立重复试验:一般地,在相同条件下重 复做的n次试验称为n次独立重复试验
说明:
1。要有一系列试验,每次试验只有发生或不发生两 种结果
2。事件的概率在整个系列的试验中保持不变。 每次试验结果与其它各次试验结果无关。
小结:
1.n次独立重复试验:一般地,在相同条件下重 复做的n次试验称为n次独立重复试验
说明:
1。要有一系列试验,每次试验只有发生或不发 生两种结果
2.2.3独立重复试验与二项分布课件人教新课标B版

ξ
0
1
2
3
P 0.001 0.027 0.243 0.729
数学 选修2-3
第二章 随机变量及其散布
自主学习 新知突破
合作探究 课堂互动
二项散布的应用
甲、乙两人各射击一次击中目标的概率分别是23和 34,假设两人每次射击是否击中目标,相互之间没有影响.
第二章 随机变量及其散布
自主学习 新知突破
合作探究 课堂互动
采用有放回的取球,每次取得红球的概率都
相等,均为35,取得红球次数 X 可能取的值为 0,1,2,3,4.
由以上分析,知随机变量 X 服从二项分布,
4分
P(X=k)=Ck435k·1-354-k(k=0,1,2,3,4).
6分
数学 选修2-3
自主学习 新知突破
合作探究 课堂互动
[问题2] 3次中恰有1次针尖向上,有几种情况?
[提示 2] 共有 3 种情况:A1 A2 A3 ,A1 A2 A3 ,A1 A2 A3. [问题3] 它们的概率分别是多少? [提示3] 概率都是0.61×(1-0.6)2.
数学 选修2-3
第二章 随机变量及其散布
第二章 随机变量及其散布
自主学习 新知突破
合作探究 课堂互动
(2)3 局比赛相当于进行 3 次独立重复试验,因为顺序一定, 所以在前 3 局比赛中,直至第 3 局甲才胜 1 局的概率为:
P=1-123-1121=18. (3)4 局比赛相当于进行 4 次独立重复试验,但甲在第 4 局 比赛一定取胜,而前 3 局为 2 胜 1 负,故甲打完 4 局取胜的概 率为: P=C23122×1-121×12=136.
数学 选修2-3
第二章 随机变量及其散布
(完整)2.2.3 独立重复试验与二项分布

C32
3 5
(1
3
5 )2
5
54 125
5
5
125
(4)刚好在第二、第三两次击中目标。
(1 3) 3 3 18 5 5 5 125
11 [普通高中课程数学选修课2-3堂] 练2.2习二项分布及其应用
1、每次试验的成功率为P(0<P<1),重复进行10次 试验,其中前七次未成功后三次成功的概率( C )
C
n n
pn
注: P( X k ) cnk pkqnk是( p q)n展开式中的第 k 1 项.
8 [普通高中课程数学选修2-3] 2.2 二项分布及其应用
二项分布与两点分布、超几何分布有什么区别和联系? 1.两点分布是特殊的二项分布 (1 p)
2.一个袋中放有 M 个红球,( N M )个白球,依次从袋中 取 n 个球,记下红球的个数 .
P(B0) P(A1 A2 A3) q3, P(B1) P(A1 A2 A3) P(A1A2 A3) P(A1 A2 A3) 3q2 p, P(B2) P(A1A2 A3) P(A1A2 A3) P(A1 A2 A3) 3qp2,
P(B3 ) P( A1A2 A3 ) p3.
所以,连续掷一枚图钉3次,仅出现1次针尖向上的概率是 3q2 p.
6 [普通高中课程数学选修2-3] 2.2 二项分布及其应用
思考?
上面我们利用掷1次图钉,针尖向上的概率为p,求 出了连续掷3次图钉,仅出现次1针尖向上的概率。类
似地,连续掷3次图钉,出现 k(0 k 3) 次针尖向
上的概率是多少?你能发现其中的规律吗?
(2)在10次射击中,至少8次击中目标的概率为:
2.2.3独立重复试验与二项分布

√ A. X~B ( 5,0.5 )
A. 0.192
C. X~B ( 2,0.5 )
B. X~B (0.5,5 ) D. X~B ( 5,1 )
(2)随机变量X~B ( 3, 0.6 ) ,P ( X=1 ) =( )
B. 0.288
√
情感、态度与价值观
(1)通过主动探究、合作学习、相互交 流,感受探索的乐趣与成功的喜悦,体会数 学的理性与严谨,养成实事求是的科学态度 和契而不舍的钻研精神; (2)培养学生对新知识的科学态度,勇 于探索和敢于创新的精神. 让学生了解数学来 源于实际,应用于实际的唯物主义思想.
教学重难点
独立重复试验、二项分布的理 解及应用二项分布模型解决一些简 单的实际问题. 二项分布模型的构建.
继续
P(ξ=1)=C21(95%)(5%)=0.095;
P(ξ=2)=C22(5%)2=0.0025.
因此,次品数ξ的概率分布是
ξ P 0 0.9025 1 0.095 2 0.0025
课堂练习
1.填空
(1)某人考试,共有5题,解对4题为及格,若 243 他解一道题正确率为0.6,则他及格概率为_____. 625
2.能力总结
① 分清事件类型; ② 转化复杂问题为基本的互斥事件与相互 独立事件.
3.思想、方法
① 分类讨论、归纳与演绎的方法; ② 辩证思想.
高考链接
1. (2000年高考题)某厂生产电子元件,其 产品的次品率为5%.现从一批产品中任意地连 续取出2件,写出其中次品数ξ的概率分布.
解:
依题意,随机变量ξ~B(2,5%).所以, P(ξ=0)=C20(95%)2=0.9025;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(
1 2
)3
1 8
.
②甲打完4局才能取胜,相当于前3局为2胜1负且第4局比赛甲取 胜,∴甲打完4局才能取胜的概率为
P(B)
C32
(1)2 2
1 2
1 2
3 16
③甲打完5局才能取胜,相当于前4局恰好2胜2负且第5局比赛甲 取胜,∴甲打完5局才能取胜的概率为
P(C)
于是得到随机变量X的概率式分布如下:
X
0
1…
k
…
n
p
… Cn0 p0qn Cn1 p1qn1
Cnk pk qnk
…
Cnn pnq0
此时我们称随机变量X服从二项分布,
记作: X ~ B(n, p) 其中p为成功概率.
ቤተ መጻሕፍቲ ባይዱ
二项分布与两点分布、超几何分布有什么区别和联系?
1.两点分布是特殊的二项分布 (1 p)
高二数学 选修2-3
2.2.3独立重复试验 与二项分布
1、独立重复试验的概念
引例分析下面的试验,它们有什么共同特点? ⑴投掷一个骰子投掷 5 次; ⑵某人射击 1 次,击中目标的概率是 0.8,他射 击 10 次; ⑶实力相等的甲、乙两队参加乒乓球团体比赛, 规定 5 局 3 胜制(即 5 局内谁先赢 3 局就算胜 出并停止比赛); ⑷一个盒子中装有 5 个球(3 个红球和 2 个黑 球),有放回地依次从中抽取 5 个球; ⑸生产一种零件,出现次品的概率是 0.04,生产 这种零件 4 件.
共同特点是: 多次重复地独立做同一个试 验.
1、独立重复试验的概念
在相同的条件下,重复地做n次试验,各次试验的结 果相互独立,那么一般就称它们为n次独立重复试验.
独立重复试验的特点
1).每次试验是在相同的条件下重复进行的; 2).各次试验中的结果是相互独立的; 3).每次试验都只有两种结果:发生与不发生; 4).每次试验某事件发生的概率是相同的.
记为 A1A2 A3 A4 记为 A1A2 A3 A4 记为 A1 A2 A3 A4 记为 A1A2 A3 A4
用Ai(i=1,2,3,4)表示第i次命中的事件
B3表示“恰好命中3次”的事件
P B3 P A1A2 A3 A4 P A1A2 A3 A4 P A1 A2 A3 A4
推导n次独立重复试验中事件A发生k次的概率公式
姚明投篮1次成功 的概率是p,他在某场 比赛中得到4次罚篮机 会,假设每次投篮都互 不影响,那么他投中3 次的可能性有多大呢?
他在某场比赛中得到4次罚篮机会,假设每次投篮都 互不影响,那么他投中3次的可能性有多大呢?
第一次 第二次 第三次 第四次 用Ai(i=1,2,3,4)表示第i次命中的事件
例2.已知随机变量 ~ B(4, 1),则P( 2) ( D ).
3
(A)19 (B) 62 (C) 1 (D) 8
81
81
9
9
3、二项分布
在n次独立重复试验中,设事件A发说生说的与次两数点是分X布,且 在每次试验中事件A发生的概率是p,那的么区事别件和A联恰系好发生 k次的概率是为
P( X k) Cnk pk (1 是p)(nq+kp, k)n展 0开,1, 2, ..., n q 1 p
C41 p1q 41
C42 p2q42 C44 p4q44
他在n次投篮中,投中 k(k n, k N )次的概率是多少?
Cnk pk qnk
2、n次独立重复试验的概率公式及结构特点:
如果在1次试验中,事件A发生的概率为p, 则 在n次独立重复试验中,A恰好发生k次的概率为:
事件 A 发生的概率 事件A发生的概率
Pn (k)
C
k n
pk
(1
p)nk
实验总次数
(其中k = 0,1,2,···,n ) 事件 A 发生的次数
基本概念
2、伯努利概型: 一般地,在n次独立重复试验中,设事件A发生的
次数为X,在每次试验中事件A发生的概率为p,那么 在n次独立重复试验中,事件A恰好发生k次的概率为
P( X k) Cnk pk (1 p)nk , k 0,1, 2,..., n.
2.一个袋中放有 M 个红球,( N M )个白球,依次从袋中 取 n 个球,记下红球的个数 .
⑴如果是有放回地取,则 B(n, M )
N ⑵如果是不放回地取, 则 服从超几何分布.
P (
k)
C C k nk M NM
C
n N
(k
0,1, 2,L
,m)
(其中 m
min(M , n)
例3 实力相等的甲、乙两队参加乒乓球团体比赛,规定5 局3胜制(即5局内谁先赢3局就算胜出并停止比赛). (1)试分别求甲打完3局、4局、5局才能取胜的概率; (2)按比赛规则甲获胜的概率.
P A1A2 A3 A4 4 p3q q 1 p
C43 p3q43
他在5次投篮中,投中3次的可能性有多大呢?
C53 p3q53
他在n次投篮中,投中3次的可能性有多大呢?
Cn3 p3qn3
他在4次投篮中,未投中、投中1次、2次、4次的可能性 分别是多少呢?
未投中的概率: C40 p0q40
投中1次的概率: 投中2次的概率: 投中4次的概率:
解:(1)甲、乙两队实力相等,所以每局 比赛甲获胜的概率为 1 ,乙获胜的概率为
1
.
2
2
记事件 A =“甲打完3局才能取胜”,记事件 B =“甲打完4局
才能取胜”,记事件C =“甲打完5局才能取胜”.
①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛
甲均取胜∴甲打完3局取胜的概率为
P( A)
C33
家谱简图:
尼古拉·伯努利(父)
雅各布·伯努利 (兄)约翰·伯努利 (弟)
丹尼尔·伯努利(次子)
例题
2.某一批花生种子,如果每1粒发芽的概率为45,那么播下3
粒种子恰有2粒发芽的概率是
()
12 A.125
16 B.125
C.14285
D.19265
解析:P=C23(45)2(15)1=14285. 答案: C
符合独立重复试验的概率模型称为伯努利概型
雅各布•伯努利
1654年12月27日,雅各布•伯努利生于 巴塞尔,毕业于巴塞尔大学,1671年17 岁时获艺术硕士学位。这里的艺术指 “自由艺术”,包括算术、几何学、天 文学、数理音乐和文法、修辞、雄辩术 共7大门类。雅各布对数学最重大的贡 献是在概率论方面的研究。他从1685年 起发表关于赌博游戏中输赢次数问题的 论文,后来写成巨著《猜度术》。