沪科版九年级数学上册 22.5 综合与实践 测量与误差 教案
沪科版九年级上册数学22.5 综合与实践 测量与误差

Cα
E
如图CE的长度.
A
N
问题4:测量旗杆的高度的步骤是怎么样的呢?
1.在测点A安置测倾器,测得M的仰角∠MCE=α; 2.量出测点A到物体底部N的水平距离AN=l; 3.量出测倾器的高度AC=a,可求出MN的高度.
M MN=ME+EN=l·tanα+a
Cα
E
A
N
当堂练习
1. 小明身高 1.5 米,在操场的影长为 2 米,同时测得
A
D E
B
C
课堂小结
利用阳光下的影子
利用相似三角 形测高
利用标杆 利用镜子的反射
利用测角器(下章讲如何计算)
B
C
解:如图:过点 D 作 DE∥BC,交 AB 于点 E,
∴ DE = CB = 9.6 m,BE = CD = 2 m,
∵ 在同一时刻物高与影长成正比例,
∴ EA : ED=1 : 1.2,
∴ AE = 8 m,
∴ AB = AE + EB = 8 + 2 = 10 (m),
∴ 学校旗杆的高度为 10 m.
试一试:
如图是小明设计用手电来测量某古城墙高度的
示意图,点 P 处放一水平的平面镜,光线从点 A出
发经平面镜反射后,刚好射到古城墙的顶端 C 处,
已知 AB = 2 米,且测得 BP = 3 米,DP = 12 米,那
么该古城墙的高度是
(B)
A. 6米 B. 8米 C. 18米 D. 24米
归纳总结
B E
┐
平面镜
F
A
ห้องสมุดไป่ตู้
△ABO∽△AEF
OB EF
=
沪科版数学九上22.5综合与实践 测量与误差 教案

第22章相似形22.5综合与实践测量与误差教学目标1.通过测量旗杆的高度,使学生综合应用三角形相似的判定和性质解决实际问题.2.通过探究加深学生对三角形相似的认识和理解.教学重难点重点:综合运用相似三角形的判定、性质解决实际问题.难点:在实践过程中如何与课本中有关知识相联系.教学过程导入新课【问题】课题:同学们,怎样利用相似三角形的有关知识测量旗杆(或路灯、或树、或烟囱)的高度?活动方式:全班同学分成六人小组,选出组长,分头进行户外实际测量,被测物不一定是旗杆.如楼房、树、电线杆等.先集中讨论方案,再分散实际操作,最后集中总结交流.探究新知【尝试】(引导学生分析数据,抽象出基本模型)例如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在教学反思同一竖直平面内.从标杆CD后退2米到点G处,在G处测得建筑物项端A、标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一直线上,求建筑物的高度.解:设高为x米,根据题意易得△CDG∽△ABG,∴CD DGAB BG=.∵CD=DG=2,∴BG=AB=x.再由△EFH∽△ABH可得EF FHAB BH=,即24x BH=,∴BH=2x,即BD+DF+FH=2x,即x-2+52+4=2x,解得x=54.答:建筑物的高度为54米.课堂练习1.小敏测得2 m高的标杆在太阳光下的影长为1.2 m,同时又测得一颗树的影长为12 m,请你计算出这棵树的高度.2.如图,在距离AB 18米的地面上平放着一面镜子E,人退后到距镜子2.1米的D处,在镜子里恰看见树顶.若人眼距地面1.4米,求树高.3.如图,左、右并排的两棵大树的高分别是AB =8 m和CD=12 m,两树底部的距离BD=5 m,一个人估计自己的眼睛距地面1.6 m.他沿着正对这两棵树的一条水平马路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶点C了?教学反思参考答案1.20 m2.12米3.解:如图,假设观察者从左向右走到点E时,他的眼睛的位置点E 与两棵树的顶端A,C恰在一条直线上.∵AB⊥l,CD⊥l,∴AB∥CD,∴△AEH∽△CEK,∴EH AH EK CK=,即8 1.6 6.4512 1.610.4 EHEH-+-==.解得EH=8 m.由此可知如果观察者继续前进,当他与左边的树距离小于8 m时,由于这棵树的遮挡,他就看不到右边树的顶点C了.课堂小结1.活动评价(评价自己与他人).2.本节课你有哪些收获(知识方面和操作方面)?3.在运用科学知识进行实践的过程中,你具有了哪些能力?你是否想到最优的方法?4.把自己在与同伴合作交流中,最满意的表现说给大家听听.5.你的同伴中你认为最值得你学习的是哪几个人?板书设计测量旗杆的高度方法1 方法2 方法3 教学反思。
沪教版九年级数学上22.5综合与实践-测量与误差优秀教学设计

22.5综合与实践测量与误差教学目标【知识与技能】进一步巩固相似三角形的知识;能够运用三角形相似的知识解决不能直接测量的物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等一些实际问题.【过程与方法】通过把实际问题转化成有关相似三角形的数学模型进一步了解数学建模的思想,培养学生分析问题、解决问题的能力.【情感、态度与价值观】体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心.重点难点【重点】运用三角形相似的知识计算不能直接测量的物体的长度和高度.【难点】灵活运用三角形相似的知识解决实际问题,即如何把实际问题抽象为数学问题.教学过程一、问题引入问:世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时的条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高度的吗?二、新课教授【例1】(测量金字塔高度的问题)根据史料记载,古希腊数学家、天文学家泰勒斯利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形来测量金字塔的高度.如图,木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度.分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定定理和性质,根据已知条件求出金字塔的高度.解法一:∵AB∥DE,∴∠BAO=∠EDF.又∵∠AOB=∠DFE=90°,∴△ABO∽△DEF,∴=,∴BO===134.答:此金字塔的高度为134m.问:你还可以用什么方法来测量金字塔的高度?(如用身高等)解法二:用镜面反射.(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形,解法略)【例2】(测量河宽的问题)如图,为了估算河的宽度,我们可在河对岸选定一个目标点P,在近岸处取点Q和S,使点P、Q、S共线且直线PS与岸垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直于PS的直线b交于点R,测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.分析:设河宽PQ长为xm,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有=,即=.再解x的方程可求出河宽.解法一:∵∠PQR=∠PST=90°,∠P=∠P,∴△PQR∽△PST,∴=,即=,即=,∴PQ×90=(PQ+45)×60,解得PQ=90,因此河的宽度PQ为90m.问:你还可以用什么方法来测量河的宽度?解法二:如图,构造相似三角形.(解法略)【例3】(盲区问题)如图,左、右并排的两棵大树的高分别是AB=8m和CD=12m,两树根部的距离BD=5m.一个身高1.6m的人沿着正对这两棵树的一条水平直线l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?分析:AB⊥l,CD⊥l⇒AB∥CD,△AFH∽△CFK,=,即==,解得FH=8.解:如图所示,假设观察者从左向右走到点E时,他的眼睛的位置点F与两棵树的顶端点A、C 恰好在一条直线上.由题意可知,AB⊥l,CD⊥l,∴AB∥CD,△AFH∽△CFK,∴=,即==,解得FH=8.由此可知,如果观察者继续前进,即他与左边的树的距离小于8m时,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,观察者看不到它.三、巩固练习1.如图所示,身高1.6m的小华站在距灯杆5m的C点处,测得她在灯光下的影长CD为2.5m,则路灯的高度AB为.【答案】4.8m2.在同一时刻,物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?【答案】36m3.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高.【答案】30m四、课堂小结本节课主要让学生了解:利用三角形的相似可以解决一些不能直接测量的物体的高度和长度的问题.指导思想是利用相似三角形对应边的比相等,如果四条对应边中已知三条,则可求得第四条.具体研究了如何测量金字塔高度的问题、测量河宽的问题、盲区问题.通过具体事例加强有关相似三角形知识的应用.教学反思本节课主要是让学生学会运用两个三角形相似的知识解决实际问题,在解决实际问题的过程中经历从实际问题到建立数学模型的过程,培养学生的抽象概括能力.因此在教学设计中突出了“审题⇒画示意图⇒明确数量关系⇒解决问题”的数学建模过程,学生可以从中锻炼把生活中的实际问题转化为数学问题的能力.另外,学生在富有故事性或现实性的数学情景问题中,探究解决问题的方法,这一过程有利于培养学生学习数学的兴趣.。
沪科版数学九年级上册22.5《综合与实践 测量与误差 》教学设计

沪科版数学九年级上册22.5《综合与实践测量与误差》教学设计一. 教材分析《测量与误差》是沪科版数学九年级上册第22.5节的内容,主要讲述了测量中产生误差的原因以及如何减小误差的方法。
教材通过实例让学生了解测量误差的普遍性,掌握误差的概念和产生原因,以及利用多次测量求平均值的方法来减小误差。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数、几何等概念有一定的了解。
但在实际操作中,对测量和误差的概念可能还不够清晰。
因此,在教学过程中,需要结合实际情况,让学生更好地理解误差的概念和减小误差的方法。
三. 教学目标1.了解测量误差的产生原因,知道误差与错误的不同。
2.学会利用多次测量求平均值的方法来减小误差。
3.提高学生解决实际问题的能力,培养学生的合作意识和团队精神。
四. 教学重难点1.教学重点:误差的概念、误差产生的原因、减小误差的方法。
2.教学难点:如何利用多次测量求平均值的方法来减小误差。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究误差的产生原因和减小误差的方法。
2.利用实际测量活动,让学生亲身体验和感受误差的存在,提高学生的实践操作能力。
3.采用小组合作的学习方式,培养学生的团队协作能力。
六. 教学准备1.准备测量工具,如尺子、量筒等。
2.准备实际测量场景,如测量教室的长宽高。
3.准备相关教学课件和资料。
七. 教学过程1.导入(5分钟)利用一个实际测量场景,如测量教室的长宽高,引出测量中存在误差的问题。
提问:在测量过程中,为什么我们会得到不同的测量结果?让学生思考并回答,从而引入误差的概念。
2.呈现(10分钟)讲解误差的概念和产生原因。
通过示例和讲解,让学生了解误差是测量值与真实值之间的差异,不同于错误。
误差产生的原因可能有测量工具的精度、测量者的操作技能、环境因素等。
3.操练(15分钟)让学生进行实际测量活动,如测量课本的长、宽、高。
要求学生多次测量,并记录测量结果。
22.5 综合与实践 测量与误差-2020秋沪科版九年级数学上册教案

22.5综合与实践测量与误差◇教学目标◇【知识与技能】1.进一步巩固相似三角形的知识;2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度的一些实际问题.【过程与方法】经历分析实际问题中已知条件,建立数学模型,进而利用相似三角形知识解决问题.【情感、态度与价值观】体会数学和现实生活的紧密联系,增强应用意识,提高用代数方法解决问题的能力.◇教学重难点◇【教学重点】运用三角形相似的知识计算不能直接测量的物体的长度和高度.【教学难点】灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).◇教学过程◇一、情境导入胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代七大奇观之一”.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”这在当时的条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔的高度的吗?二、合作探究探究点1测量物体高度典例1有一棵高大的松树,要测出它的高度,但不能爬到树上去,也不能将树砍倒,你能说出几种方法吗?说一说你的这些方法.[解析]方法一:如图,将一个小木棒A'B'也立在阳光下,测量小木棒A'B'此时的影子长B'C'和树的影子长BC,测量小木棒A'B'的长,则易知△ABC∽△A'B'C',故有ABA'B'=BCB'C',所以AB=A'B'·BCB'C'.因为A'B',BC及B'C'都已经测量出来,从而可计算得到树高AB.方法二:为了方便计算,还可将方法一改进一下,即不断测量小木棒的影长B'C',直到它与A'B'相等时,此时测量树的影长BC,则树高AB恰好等于此时的影长BC.方法三:找一根比你身体高一点的木棒,将它竖直立在地上,你沿CE方向,从木棒DF的F处往后退到G点,使眼睛可以看到木棒顶端D与树尖A在同一条直线上,同时,测出水平方向与木棒DF和树AB的交点E,C,HG为眼睛离地面的高度,易知△HDE∽△HAC,从而HEHC =DEAC,故AC=HC·DEHE,所以只要测出HC,DE,HE,就可以用上式求得AC,从而树高AB=AC+BC,这样,树高就可以求得了.探究点2测量河宽典例2为了测量一条河的宽度,测量人员发现,该河两岸有一段是平行的,在河的一岸每隔4 m有一棵树,在河的另一岸每隔40 m有一根电线杆,你能想办法,测出河的宽度吗?测量人员是这样做的:他们发现,站在离有树的河岸30 m处看对岸,看到对岸相邻的两根电线杆恰好被两棵树遮住,并且在这两棵树之间还有一棵树,利用相似三角形的知识计算河宽,请你帮助测量人员计算一下河宽.[解析]如图,点P为观测点,CD=40 m,AB=8 m,作PF⊥CD于点F,交AB于点E,则PE=30 m.∵AB∥CD,∴△PAB∽△PCD,∴PE PF =ABCD,即30PF=840,∴PF=150,∴EF=PF-PE=150-30=120(m).答:河宽为120 m.在解决某些不能直接度量的物体的高度或宽度等测量类问题时,可以借助其他物体间接测量, BD,再测出这名同学的高度CD和影长ED,由于此时△ABD∽△CDE,即可求出旗杆高AB.三、板书设计测量与误差1.利用相似三角形测量物体的高度2.利用相似三角形测量河的宽度◇教学反思◇通过本节知识的学习,可以使学生综合运用三角形相似的判定和性质解决问题,发展学生的应用意识,加深学生对相似三角形的理解和认识.基本达到了预期的教学目标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题.。
沪科版九年级数学教案-综合与实践 测量与误差

22.5 綜合與實踐測量與誤差教學目標【知識與技能】進一步鞏固相似三角形的知識;能夠運用三角形相似的知識解決不能直接測量的物體的長度和高度(如測量金字塔高度問題、測量河寬問題、盲區問題)等一些實際問題.【過程與方法】通過把實際問題轉化成有關相似三角形的數學模型進一步瞭解數學建模的思想,培養學生分析問題、解決問題的能力.【情感、態度與價值觀】體會數學在生活中的作用,增強學習數學的興趣,樹立學好數學的信心.重點難點【重點】運用三角形相似的知識計算不能直接測量的物體的長度和高度.【難點】靈活運用三角形相似的知識解決實際問題,即如何把實際問題抽象為數學問題.教學過程一、問題引入問:世界現存規模最大的金字塔位於哪個國家,叫什麼金字塔?胡夫金字塔是埃及現存規模最大的金字塔,被喻為“世界古代七大奇觀之一”.塔的4個斜面正對東南西北四個方向,塔基呈正方形,每邊長約230多.據考證,為建成大金字塔,共動用了10萬人花了20年時間.原高146.59米,但由於經過幾千年的風吹雨打,頂端被風化吹蝕,所以高度有所降低.在古希臘,有一位偉大的科學家叫泰勒斯.一天,希臘國王阿馬西斯對他說:“聽說你什麼都知道,那就請你測量一下埃及金字塔的高度吧!”,這在當時的條件下是個大難題,因為是很難爬到塔頂的.你知道泰勒斯是怎樣測量大金字塔的高度的嗎?二、新課教授【例1】 (測量金字塔高度的問題)根據史料記載,古希臘數學家、天文學家泰勒斯利用相似三角形的原理,在金字塔影子的頂部立一根木杆,借助太陽光線構成兩個相似三角形來測量金字塔的高度.如圖,木杆EF 長2m,它的影長FD 為3m,測得OA 為201m,求金字塔的高度.分析:根據太陽光的光線是互相平行的特點,可知在同一時刻的陽光下,豎直的兩個物體的影子互相平行,從而構造相似三角形,再利用相似三角形的判定定理和性質,根據已知條件求出金字塔的高度.解法一:∵AB ∥DE,∴∠BAO=∠EDF.又∵∠AOB=∠DFE=90°,∴△ABO ∽△DEF,∴EFOB DF AO =, ∴BO=32201⨯=•DF EF AO ==134. 答:此金字塔的高度為134m.問:你還可以用什麼方法來測量金字塔的高度?(如用身高等)解法二:用鏡面反射.(如圖,點A 是個小鏡子,根據光的反射定律:由入射角等於反射角構造相似三角形,解法略)【例2】 (測量河寬的問題)如圖,為了估算河的寬度,我們可在河對岸選定一個目標點P,在近岸處取點Q 和S,使點P 、Q 、S 共線且直線PS 與岸垂直,接著在過點S 且與PS 垂直的直線a 上選擇適當的點T,確定PT 與過點Q 且垂直於PS 的直線b 交於點R,測得QS=45m,ST=90m,QR=60m,求河的寬度PQ.分析:設河寬PQ 長為xm,由於此種測量方法構造了三角形中的平行截線,故可得到相似三角形,再解x 的方程可求出河寬.解法一:∵∠PQR=∠PST=90°,∠P=∠P,∴△PQR ∽△PST,∴ST QR PS PQ =, 即STQR QS PQ PQ =+, ∴PQ ×90=(PQ+45)×60,解得PQ=90,因此河的寬度PQ 為90m.問:你還可以用什麼方法來測量河的寬度?解法二:如圖,構造相似三角形.(解法略)三、鞏固練習1.如圖所示,身高1.6m 的小華站在距燈杆5m 的C 點處,測得她在燈光下的影長CD 為2.5m,則路燈的高度AB 為 .【答案】4.8m2.在同一時刻,物體的高度與它的影長成正比例.在某一時刻,有人測得一高為1.8米的竹竿的影長為3米,某一高樓的影長為60米,那麼高樓的高度是多少米?【答案】36m3.小明要測量一座古塔的高度,從距他2米的一小塊積水處C看到塔頂的倒影,已知小明的眼部離地面的高度DE是1.5米,塔底中心B到積水處C的距離是40米.求塔高.【答案】30m四、課堂小結本節課主要讓學生瞭解:利用三角形的相似可以解決一些不能直接測量的物體的高度和長度的問題.指導思想是利用相似三角形對應邊的比相等,如果四條對應邊中已知三條,則可求得第四條.具體研究了如何測量金字塔高度的問題、測量河寬的問題、盲區問題.通過具體事例加強有關相似三角形知識的應用.教學反思本節課主要是讓學生學會運用兩個三角形相似的知識解決實際問題,在解決實際問題的過程中經歷從實際問題到建立數學模型的過程,培養學生的抽象概括能力.因此在教學設計中突出了“審題⇒畫示意圖⇒明確數量關係⇒解決問題”的數學建模過程,學生可以從中鍛煉把生活中的實際問題轉化為數學問題的能力.另外,學生在富有故事性或現實性的數學情景問題中,探究解決問題的方法,這一過程有利於培養學生學習數學的興趣.。
沪科版数学九年级上册22.5《综合与实践 测量与误差》教学设计

沪科版数学九年级上册22.5《综合与实践测量与误差》教学设计一. 教材分析《综合与实践测量与误差》这一节的内容,主要让学生了解测量中的误差概念,掌握基本的测量方法和常用测量工具的使用,以及学会通过多次测量求平均值的方法来减小误差。
教材通过生活中的实例,引导学生认识到测量误差的存在,并通过实际操作,让学生掌握测量工具的使用和误差的减小方法。
二. 学情分析九年级的学生已经有一定的数学基础,对数学概念和数学方法有一定的理解能力。
但是,他们对测量和误差的概念可能还比较陌生,需要通过实际的操作和观察,来理解和掌握。
此外,学生可能对一些测量工具的使用不太熟悉,需要教师进行讲解和示范。
三. 教学目标1.让学生了解测量中的误差概念,知道误差产生的原因。
2.让学生掌握基本的测量方法和常用测量工具的使用。
3.让学生学会通过多次测量求平均值的方法来减小误差。
4.培养学生的动手能力和观察能力,提高学生解决实际问题的能力。
四. 教学重难点1.误差的概念和误差的产生原因。
2.常用测量工具的使用方法。
3.通过多次测量求平均值的方法来减小误差。
五. 教学方法采用“问题驱动”的教学方法,通过生活中的实例,引导学生认识到测量误差的存在,然后让学生亲自动手进行测量,观察误差的存在,最后引导学生思考如何减小误差。
六. 教学准备1.准备一些测量工具,如尺子、量筒、天平等。
2.准备一些实际测量的问题,如测量教室的长度、测量一瓶水的体积等。
七. 教学过程1.导入(5分钟)通过一个实际的问题,如测量教室的长度,引导学生思考测量中的误差问题。
让学生认识到误差是客观存在的,不能完全避免,但可以通过一些方法来减小。
2.呈现(10分钟)教师讲解和示范常用测量工具的使用方法,如尺子、量筒、天平等。
让学生了解这些工具的使用规则和注意事项。
3.操练(15分钟)学生分组进行实际测量,如测量一瓶水的体积。
让学生在实际操作中感受误差的存在,并尝试用所学的测量方法来进行测量。
22.5综合与实践测量与误差-沪科版九年级数学上册教案

22.5 综合与实践测量与误差 - 沪科版九年级数学上册教案一、教学目标1.了解测量的基本概念,明白测量的意义和目的。
2.掌握测量的方法和标准。
3.学会计算测量误差,并且能够运用误差控制技术。
4.了解测量在各个领域的应用。
二、教学重难点1.测量误差的计算和运用。
2.测量在各个领域的应用。
三、教学过程1.引入(5分钟)测量是我们日常生活中经常使用的一种方法。
请同学们谈谈自己生活中都使用过哪些测量工具,为什么需要测量。
2.测量的方法和标准(15分钟)在测量中,我们需要使用到一些常用的测量工具,例如尺子、卷尺、量杯等。
请同学们自行搜集关于这些测量工具的相关知识,分享给大家。
同时,我们还需要了解测量的一些基本标准,例如精度、准确度等。
请同学们通过百度百科等工具来了解这些概念,并且进行简单的讲解。
3.测量误差的计算和运用(30分钟)在测量过程中,可能会存在一些误差,这些误差是会影响到我们测量结果的准确性的。
接下来,请同学们通过一些案例来进行误差计算的练习,并且掌握误差控制的技术。
例如,我们可以使用卷尺、尺子等工具来进行长度测量。
然而,这些工具的刻度可能存在一定的误差。
请同学们分别使用几种不同的工具来进行长度测量,并且计算误差,并且探讨一下如何控制误差。
4.测量在各个领域中的应用(30分钟)测量不仅仅在日常生活中有着广泛的应用,同时还在各个领域中也有着很重要的作用。
请同学们通过搜索和课程讲解来了解测量在一些具体领域中的应用,例如地质探测、建筑施工、生产制造等,来展示测量领域的广泛应用。
5.总结(10分钟)请同学们就今天所学内容进行总结,并且分享一下自己的体会。
四、作业1.完成课堂上相关的练习。
2.自己设计一个简单的测量实验,并且记录测量过程和结果,计算误差并且控制误差。
3.搜集有关测量在不同领域中的应用,并且写一篇300字左右的文章来进行展示。
五、教学反思本课程对于学生来说,相对来说比较新颖和有趣。
其中,测量误差的计算和运用内容相对难度较高,建议在教学之前做好充分的准备,并且提供更多练习机会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.5综合与实践测量与误差
教学目标
【知识与技能】
进一步巩固相似三角形的知识;能够运用三角形相似的知识解决不能直接测量的物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等一些实际问题.
【过程与方法】
通过把实际问题转化成有关相似三角形的数学模型进一步了解数学建模的思想,培养学生分析问题、解决问题的能力.
【情感、态度与价值观】
体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心.
重点难点
【重点】
运用三角形相似的知识计算不能直接测量的物体的长度和高度.
【难点】
灵活运用三角形相似的知识解决实际问题,即如何把实际问题抽象为数学问题.
教学过程
一、问题引入
问:世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?
胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.
在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时的条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高度的吗?
二、新课教授
【例1】(测量金字塔高度的问题)根据史料记载,古希腊数学家、天文学家泰勒斯利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形来测量金字塔的高度.
如图,木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度.
分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定定理和性质,根据已知条件求出金字塔的高度.
解法一:∵AB∥DE,
∴∠BAO=∠EDF.
又∵∠AOB=∠DFE=90°,∴△ABO∽△DEF,
∴BO OA EF DF
=,
∴BO=OA
EF
DF
=
201
2
3
⨯=134(m).
答:此金字塔的高度为134m.
问:你还可以用什么方法来测量金字塔的高度?(如用身高等)
解法二:用镜面反射.(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形,解法略)
【例2】(测量河宽的问题)如图,为了估算河的宽度,我们可在河对岸选定一个目标点P,在近岸处取点Q和S,使点P、Q、S共线且直线PS与岸垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直于PS的直线b交于点R,测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.
分析:设河宽PQ长为xm,由于此种测量方法构造了三角形中的平行截线,故可得到相
似三角形,因此有PQ QR
PS ST
=,即PQ=
QR
PS
ST
.再解方程可求出河宽.
解法一:∵∠PQR=∠PST=90°,∠P=∠P,∴△PQR∽△PST,
∴PQ QR PS ST
=,
即PQ=QR
PS
ST
,即PQ ST PS QR
=,
∴PQ×90=(PQ+45)×60,
解得PQ=90.
因此河的宽度PQ为90m.
问:你还可以用什么方法来测量河的宽度?解法二:如图,构造相似三角形.(解法略)
【例3】(盲区问题)如图,左、右并排的两棵大树的高分别是AB=8m和CD=12m,两树根部的距离BD=5m.一个身高1.6m的人沿着正对这两棵树的一条水平直线l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?
分析:AB⊥l,CD⊥l⇒AB∥CD,△AFH∽△CFK,=,即==,解得FH=8.
解:如图,假设观察者从左向右走到点E时,他的眼睛的位置点F与两棵树的顶端点A、C恰好在一条直线上.
由题意可知,AB⊥l,CD⊥l,
∴AB∥CD,△AFH∽△CFK,
解得FH=8.
由此可知,如果观察者继续前进,即他与左边的树的距离小于8m时,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,观察者看不到它.
三、巩固练习
1.如图,身高1.6m的小华站在距灯杆5m的C点处,测得她在灯光下的影长CD为
2.5m,则路灯的高度AB为.
【答案】4.8m
2.在同一时刻,物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?
【答案】36m
3.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高.
【答案】30m
四、课堂小结
本节课主要让学生了解:利用三角形的相似可以解决一些不能直接测量的物体的高度和长度的问题.指导思想是利用相似三角形对应边的比相等,如果四条对应边中已知三条,则可求得第四条.具体研究了如何测量金字塔高度的问题、测量河宽的问题、盲区问题.通过具体事例加强有关相似三角形知识的应用.
教学反思
本节课主要是让学生学会运用两个三角形相似的知识解决实际问题,在解决实际问题的过程中经历从实际问题到建立数学模型的过程,培养学生的抽象概括能力.因此在教学设计中突出了“审题⇒画示意图⇒明确数量关系⇒解决问题”的数学建模过程,学生可以从中锻炼把生活中的实际问题转化为数学问题的能力.另外,学生在富有故事性或现实性的数学情景问题中,探究解决问题的方法,这一过程有利于培养学生学习数学的兴趣.。