初一数学-导学案有理数
[精品]初一七年级数学(上册)导学案[含答案][131页]
![[精品]初一七年级数学(上册)导学案[含答案][131页]](https://img.taocdn.com/s3/m/55a1b61ea6c30c2259019ede.png)
初中数学七年级(上册)导学案第一章 有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念 【导学指导】: 一、知识链接:1、小学里学过哪些数请写出来: 、 、 。
2、阅读课本P 1和P 2三幅图(重点是三个例子,边阅读边思考) 回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数? 二、自主学习1、正数与负数的产生 (1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要 2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. (3)阅读P3练习前的内容 3、正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
《有理数》 导学案

《有理数》导学案一、学习目标1、理解有理数的概念,能区分正有理数、零和负有理数。
2、掌握有理数的分类方法,会对给定的数进行分类。
3、理解数轴的概念,能正确画出数轴,能用数轴上的点表示有理数。
4、理解相反数和绝对值的概念,会求一个数的相反数和绝对值。
二、学习重难点1、重点(1)有理数的概念及其分类。
(2)数轴的概念及应用。
(3)相反数和绝对值的概念及计算。
2、难点(1)对负数概念的理解。
(2)绝对值的性质及其应用。
三、知识梳理(一)有理数的概念整数和分数统称为有理数。
整数包括正整数、零和负整数。
例如:5、0、-3 等。
分数包括正分数和负分数。
例如:1/2、-3/4 等。
(二)有理数的分类1、按定义分类:有理数分为整数和分数。
整数分为正整数、零和负整数。
分数分为正分数和负分数。
2、按性质分类:有理数分为正有理数、零和负有理数。
正有理数分为正整数和正分数。
负有理数分为负整数和负分数。
(三)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三要素:原点、正方向、单位长度。
3、数轴上的点与有理数的关系:数轴上的点与有理数一一对应,即任何一个有理数都可以用数轴上的一个点来表示;反之,数轴上的任意一个点都表示一个有理数。
(四)相反数1、定义:只有符号不同的两个数叫做互为相反数。
例如:5 和-5 互为相反数,0 的相反数是 0。
2、性质:(1)互为相反数的两个数的和为 0。
(2)在数轴上,互为相反数的两个数位于原点的两侧,且到原点的距离相等。
(五)绝对值1、定义:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。
2、性质:(1)正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
即:当 a>0 时,|a| = a;当 a = 0 时,|a| = 0;当 a<0 时,|a| = a。
(2)绝对值具有非负性,即|a|≥0。
四、典型例题例 1:把下列各数分别填入相应的集合里:+5,-314,0,-7,12/13,-20%,-001,21,-98,314159正数集合:{________________}负数集合:{________________}整数集合:{________________}分数集合:{________________}解:正数集合:{+5,12/13,21,314159}负数集合:{-314,-7,-20%,-001,-98}整数集合:{+5,0,-7,21,-98}分数集合:{-314,12/13,-20%,-001,314159}例 2:画出数轴,并用数轴上的点表示下列各数:-3,2,0,-15,5/2解:先画出数轴,然后在数轴上找到对应的点。
初一数学《有理数的加减混合运算》导学案

学案课题: 2.6 有理数数混合运算的法则及运算顺序,能够熟练地进行有理数的加、减、乘、除、乘方运算,在运算过程中合理使用运算律,从而简化运算。
2、进行有理数的混合运算时,应认真审题,快速而准确地寻找解题途径,养成具体问题具体分析的习惯。
明确学习目的,
3、有理数的乘法法则:(1)两数相乘,_____得正,____得负,并把_______相乘,任何数同0相乘都得0。
(2)几个不为零的有理数相乘,负因数个数为_____时积为正,负因数个数为______时积为负,如果有一个因数为零,积就为零。
4、有理数的除法法则:除以一个不为零的数,等于乘以这个数的______。
探究(二)
例 计算
(-3) ×【( )+( )】
师生共同分析
讨论:
通过对上面例题的解题思路分析,你能得到些什么?
牛刀小试
(1)(-3- )÷( )×3
(2)( )×36—1.45×6+3.95×6
(3)【1-(1-0.5× )】×【2-(-3) 】
课堂小结
5、有理数的乘方:求n个_______因数a的积的运算叫做乘方。
学会温故知新
探究(一):怎样运算最合适
3+2 ×( )=?
学会独立思考
归纳总结(一)
依据法则进行计算:
先算乘方,再算乘除,最后算加减;
如果有括号,先算括号里面的。
例题小练
(1)18-6÷(-2)×( ) (2)-7 +2×(-3) +(-6)÷( )
注重学习过程。
前置备学:
1、有理数的加法法则:同号两数相加,取_____的符号,并把______相加。异号两数相加,绝对值相等时和为____;绝对值不相等时,取绝对值_____的数的符号,并用较大的绝对值_____较小的绝对值。一个数同零相加,仍的这个数。2、有理数的减法法则:减去一个数等于加上这个数的________。
初一数学导学案有理数的运算

运用结合律括号前最好用加号,否则注意变好
数学门诊
1、计算-12- .
错:-12- =1- .
错误原因:
改:-12- =
2、计算 .
错: = .
出现错误的原因是.
改: =.
3、计算 .
错: =-1÷(-1)-(-1)3=1-(-1)=2.
2、会运用有理数乘法分配率解下列问题吗?
10
①原式=10-( )=10-
②原式=10+=
学生练习
学生交流
教师点拨
没有理解幂的意义(1)-12=1;(2)(-32)=11.
运算加法的结合律时,注意交换加数的位置应连同加数前面的符号一起交换. 时违背了同级运算从左到右的运算顺序时违背 了“先算乘方后算乘除”的运算顺序.
反思总结
布置作业
P237 总复习5 ⑶⑸⑹⑻
上交作业
-32×23=(+=
6、写出公式:加法的交换率结合律
乘法的交换率结合律乘法对加法的分配率:
学生5分钟记忆运算法则,5分钟口算解答题目
条条大路通罗马
1、填空
举例
法则
加法的交换率
看成省略加号的形式
填括号
--3-5=
=-3+()=
-3+(-5)=
=-( )=
-5+8=
异号两数相加,绝对值不同时:
=
=-()=
初一数学导学案
课 题:有理数的运算(期中测试)复习课
课型复习课时间使用媒体 多媒体备课授课人 鞠桂仁安排1课时
项目
内容
师生活动、心得
学习目标
七年级数学(上册)导学案参考答案.doc

七年级数学(上册)导学案参考答案第一章有理数P2.课堂练习2.-2力'元;支取4力'元1 33.正数有3. 14, +3065;负数有,- 2—, -239;5 44. D5. B拓展训练1.-15°C; -4°C2.甲;丙3.甲比乙小3岁4.潜水艇高度:-40米;鲨鱼的高度-30米;P4拓展训练1 > - 17 °C 2、9.05 (mm); 8.95 (mm );P6拓展训练1. CP8拓展训练1. 42. AP10拓展训练2. 1.6 ; -2x; b-a3. 0;负数4. 13;5.4 ; 6 ;・9 5・5;P12拓展训练1. c2. ±7;± 7 ;3・a-3;a-3 ;4・c 5. BP14拓展训练1.对;错;错;错2.10 ;-10; 6;・6P16拓展训练1. 5 ; - ;21; 062.>;<;>;<;3.3250P30 拓展训练 A ; B17;P32拓展训2. -16;- 273.-25; - 3. 08X 10P18 拓展训练 1. 10; -69; -297; 3.9; -1.25 2. 5; 1;P20 拓展训练 1. -30;P22 拓展训练 1. a 、b 都为正; 2. ・6; P24 拓展训练 ―、1. c 2. B 3. B 55 —、1. — 2. —38P26 拓展训练 10 1. —;173;11;P28 拓展训练P34拓展训练 1. -11;拓展训练(6) 7. 805X 101. ( 1) 4. 65X 10(2) 1. 2X 10 (3) 1. 000001 X 10(4) -7. 89P38 拓展训练 1. ( 1) 0. 036; (2) (3) 3. 9; ( 4) 0. 057; (5) 0. 29; ( 6) 0. 290;6, 4, 9;(2)百位;3; 2,3, 6;(3) 力'位;2;5, 7; P40拓展训练1. C2. c3. ±7;P42 拓展训练1.3.4X 105 2. 3.40 X 104 3. 5或1;4. C ;10 15.4—13 84;3, ±7;P43,P443.40 X 1052. (1)万位; 4. c ; 5.第一章有理数检测试卷 1. B 2.A 3.B 4. B 5.B 6. D 7. D8. B 2. a 2 < 丄;3. 10 月 1 a日2:00, 4.65.4; 5;1. 四 1.2.3. 6. -1 -2 2. (1) 第二章 711 — 16守门员回到了原来的位置;(2) 12 米;(3) 54米;(1)-- 7 a=2,b 二1; 整式加减 P46 拓展训练 1. B 2. c8 9 20082009 (2 ) --------- ; 0 ;20101. D2.c3.—;1;——a2b ;3 4b;4.1.2;3.-32x6 y;(-2)叫(-2)叫n+11.17;2.-0.001.2.B;3.5xy21. c 2.3.-271.三;四; 2. (m+2 )3. -X2+5X~3;4.4;5.6.他的说法有道理,原式为7 . a=-2;b二1;8.这个数是11 (a +6.11;-2.75(2) 2. 5 17. 原式为-2b+b+3;P48拓展训练P50拓展训练P52拓展训练P54拓展训练P56拓展训练P60拓展训练9. 6.5m-4.5n;29;10. 6bc~9ac;P61; P62第二章整式加减检测试卷2 12一、1. x-2; 2. —一;2; 3•二;三;2; 4. 2;2; 5. 1;57.-4 a2+ab+10b2;8.4(a+20); 3(a-20);二、9. B 10. c 11. D 12. c 13. c 14. D三、15. ( 1) 6m2-3m;(2) 2x2-2y2-7xy;16.(2. 60千米/时1.(1)错;3x 二-(2)错;2x-x=-(3)对;2. 15, 16, 22,23;第三章一元一次方程 P64 拓展训练 1. 500; P66 拓展训练2.设小华要x 分钟才能完成;列方程700+50x=2000; x=26P68 拓展训练3. x=・5 ; x=9 ; P70 拓展训练 1. x ;3x ;5x ;3x+5x=32;8x=32;x=4; 12; 20; 2. x ; — x+2; 丄 x ・l ; (— x+2)+ (丄 x ・ l)+23=x ;3 2 3 2 P72 拓展训练P74 拓展训练 1.8, 10, 12;P76 拓展训练 1.当学生16人时,两家公司一样; 当学生数大于16人时,甲公司省钱; 当学生数小于16人时,乙公司省钱; P78 拓展训练 (1) x 二0;( 2 ) x= —; (3) y=10;7P80拓展训练1.安排16天生产甲种零件;安排14天生产乙种零件;P82拓展训练9(1) x=- ;(2) x=-20;5P84拓展训练1. 28 人P86拓展训练1.该股民在这次交易中是亏损,亏损150元;2.书费大于91元时,办卡划算;书费小于91元时,不办卡划算;3.这件商品的成本价是200元;P88拓展训练1.此工厂原计划生产零件700个,预定期限是30天;P90拓展训练1.该队胜了4场;2.(1)小华答对了50题;(2)小胡这个说法正确,因为小胡只要答对54题;P94拓展训练1.(1) y=3;(2) x=—;82.这种鞋的标价是105元,优惠价是84元;3.原来甲水池有30吨水,原来乙水池有200吨水;4.他选对23题;现有500名学生参加考试,没有得83分的同学;P95 ;P96第三章一元一次方程检测试题一、1.B 2. D 3. B 4. A 5. B 6. A二、7. 3x-7=2x+5 : 8. 2;9.2 ;10. 4;11. -1;12. 4;三、(1) x=8; (2) y=0; (3) x=55; (4) y=3;四、1. m=2,x=-4,代数式(X +3)2010=1;2.这种商品的进价为5000元;3.共有多320宿舍,有2565住宿生;第四章图形认识初步P98拓展训练1. D;P100拓展训练1. CP102拓展训练1. D;2. D;P104拓展训练1.线,点动成线;2.面;线;点;3.线;面;体;4. B;P106拓展训练1. 6 条2. 10 种;20 种;P108拓展训练1•两点之间,线段最短;2.线段DE=8cm;P110 拓展训练1. (37. 145) 0 度生分 42 秒;98°30' 18' ' = 98. 50 5 度;2. B ;3. CD 与CE 垂直; P112 拓展训练1. ZDOE=90°; P114 拓展训练1. 这个角的度数是75°;2. Za=70°; ,0=2"; P116 拓展训练1. Z1=Z3;理由:等角的余角相等; P120 拓展训练1. (1) AAOD 的补角 ZBOZ), ZBOE 的补角 ZAOE ; (2) Z COZ)=34°; ZEOC=56°; (3) ZCOD+ZEOC=90°;2. (1) 10; 15; (2);2P121; P122第四章图形认识初步检测试卷一、1.长方形; 2.49°45 <3.60°; 4.10; 5. 1; 6.两;两点确定一条直线;7. 22; 30;8. 12. 4;9. 15 ;二、 10. B 11. C12. A13. D14. A三、15.(略);16.(略);17.ZB0F=56°;ZE0F=90°;18. (1) MN=5 (cm) ;(2)+ ");(3) MN=1 (cm);。
人教版初中七年级上册数学《有理数大小的比较》导学案

第一章有理数1.2 有理数1.2.4 绝对值第2课时有理数的大小比较学习目标1、理解有理数的绝对值与该数的关系,把握绝对值的代数意义2、会利用绝对值比较2 个负数的大小,理解其中的转化思想[比较负数→比较正数学习难点绝对值与相反数意义的理解,数形结合的思想教学过程【情景创设】1、说出绝对值的几何含义2、互为相反数的2个数在数轴上有什么位置关系3、书本第23页,根据绝对值与相反数的意义填空。
(做在书上)二、思考问题:一个数的绝对值与这个数本身、或与它的相反数之间有什么关系? 用符号表示为 |a|=三.问题:求下列各数的绝对值+6, -3, -2.7, 0, -2/3, 4.3, -8四.议一议:互为相反数的两个数的绝对值有什么关系?五.随堂练习①一个数的绝对值是它本身,这个数是( )A、正数B、0C、非负数D、非正数②一个数的绝对值是它的相反数,这个数是 ( )A、负数B、0C、非负数D、非正数③什么数的绝对值比它本身大?什么数的绝对值比它本身小?④绝对值是4的数有几个?各是什么?绝对值是0的数有几个?各是什么?有没有绝对值是-1的数?为什么?六.讨论 :两个数比较大小,绝对值大的那个数一定大吗?七.做一做分别找出到原点的距离为3和5的数,并比较它们的大小 。
【知识巩固】一、 选择题1、 如果|a|=-a ,那么 ( )A a 〉0B a <0C a ≥0D 0≤a2、下列各数中,一定互为相反数的是 ( )A -(-5)和-|-5|B |-5|和|+5|C -(-5)和|-5|D |a|和|-a|3、若一个数大于它的相反数,则这个数是 ( )A 正数B 负数C 非负数D 非正数4、下列判断中:(1)负数没有绝对值;(2)绝对值最小的有理数是0;(3)任何数的绝对值都是非负数;(4)互为相反数的两个数的绝对值相等,其中正确的个数有( )A 1个B 2个C 3个D 4个二、填空题1.(1)-3_______-0.5; (2)+(-0.5)_______+|-0.5| (3)-8_______-12(4)-5/6______-2/3 (5) -|-2.7|______-(-3.32)2、有理数a 、b 在数轴上如图,用 > 、= 或 < 填空(1)a____b , (2) |a|___|b| ,(3)–a___-b, (4)|a|___a ,(5) |b|____b3、如果|x|=|-2.5|,则x=______4、绝对值小于3的整数有____个,其中最小的一个是____5、|-3|的相反数是 ;若|x|=8,则x= .6、 的相反数等于它本身, 的绝对值等于它本身.7、绝对值小于3的非负整数是 .8、-3.5的绝对值的相反数是 .-0.5的相反数的绝对值是 .9、|-3|-|-4|= - = .10、在-37,-0.42,-0.43,-194中,最大的一个数是 . 三、解答题11、比较-32与-23的大小,并说明理由.12、用“〈”将-4,12,324,-|-3|连接起来,并说明理由.13、已知a、b、c在数轴上的位置如图所示,试求|a|+|c-3|+|b|的值.作者留言:非常感谢!您浏览到此文档。
初一数学教案 第二章有理数导学案 (2)

§2.2数轴(第2课时)学习目标:1.能进一步掌握数轴的三个要素,并正确画出数轴;2.学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.会利用数轴比较有理数的大小;4.学生通过对温度计的观察,探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想。
学习重、难点:重点:由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;难点:会利用数轴比较有理数的大小。
课前预习:1.阅读课本P17-182.完成课本17的议一议。
学习过程:一、创设情境:复习提问:1.指出数轴上的点A、B、C、D分别表示什么数.2.画出数轴,并在数轴上画出表示下列各数的点:再按数轴上从左到右的顺序,将这些数重新排列成一行.3.指出在数轴上表示下列各数的点分别位于原点的哪边,与原点距离多少个单位长度.二、新知讲解:在小学里,我们已学会比较两个正数的大小,那么,引进负数以后,怎样比较任意两个有理数的大小呢?例如,1与-2哪个大?-3与-4哪个大?想一想:1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上为怎样的情形?把温度计横过来放,就好比一条数轴.从中能否发现在数轴上怎样比较两个有理数的大小?让学生从讨论中发现,在数轴上表示的两个数,右边的数总比左边的大.由此容易得到以下的有理数大小的比较法则:正数都大于零,负数都小于零,正数大于负数.三、实践应用:在数轴上画出表示这些数的点,再比较大小,结果怎样?例2比较下列各数的大小:解将这些数分别在数轴上表示出来(如图).可以看出例3观察数轴,能否找出符合下列要求的数:(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数;(3)最大的整数和最小的整数;(4)最小的正分数和最大的负分数.四、交流反思:师生共同总结:1.在数轴上表示的两个数,右边的数总比左边的大;2.正数都大于零,负数都小于零,正数大于负数.五、随堂练习:1.课本P18的练一练;2.下列各式是否正确:3.用“<”或“>”填空4.下表是某年一月份我国几个城市的平均气温,请将各城市按平均气温从高到低的顺序排列.学后记:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------§2.3绝对值与相反数(第1课时)学习目标:1.理解有理数的绝对值概念,并掌握其表示方法;2.熟练掌握求一个有理数的绝对值的方法;3.渗透数形结合等思想方法,培养学生的概括能力.学习重、难点:重点:理解有理数的绝对值概念,并掌握其表示方法;难点:熟练掌握求一个有理数的绝对值的方法。
七年级数学第一章有理数1.2有理数1.2.4绝对值2第2课时有理数的大小比较导学案

绝对值一、新课导入1.课题导入:看教材第12页未来一周天气预报图,你能将这一周的温度按从低到高的顺序排列吗?这节课我们学习有理数的大小比较。
2.学习目标:(1)进一步理解绝对值的意义。
(2)会进行有理数的大小比较.3。
学习重、难点:重点:进一步理解绝对值的意义;掌握有理数的大小比较方法.难点:两个负数的大小比较方法。
二、分层学习1。
自学指导:(1)自学内容:教材第12页“思考”到教材第13页第4行的内容.(2)自学时间:8分钟.(3)自学要求:借助数轴来归纳比较两个数大小的方法,看数轴上的点表示的数的大小有什么规律.(4)自学参考提纲:①说出数轴上各点所表示的数的大小顺序。
a。
把温度按从低到高的顺序排列后,在温度计上所对应的点是从下到上的;按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序应该是从左到右的。
b。
数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.②根据数轴上的点表示数的特征(原点右边的数表示正数,原点左边的数表示负数)和上述规定(即左边的数小于右边的数),可得到有理数的大小比较法则一:正数大于0,0大于负数,正数大于负数.对于两个负数,在数轴上的对应点离原点越远,说明这个数的绝对值越大(填“大”或“小”),表示该数的点越往左(填“左"或“右”),因此可以得到有理数的大小比较法则二:两个负数,绝对值大的反而小。
③填空:(填“>”或“<”)—100<0 -50<120<0。
0001④-78和—89这两个负数谁大?怎样来比较?解:∵-|78|<|—89|,∴—78>—89⑤你能总结两个有理数的大小比较的基本思路和方法吗?相互交流一下。
2。
自学:同学们可结合自学指导进行自学和交流探讨.3.助学:(1)师助生:①明了学情:巡视课堂、关注学生的自学过程,了解学生的学习方法和进度,收集自学中存在的问题。
②差异指导:a。
指导部分未找到有理数的大小比较方法的学生观察数轴上两个点表示的数的位置与它们的大小关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学
1.2.1 有理数
教学目的:
(一)知识点目标:
1.进一步加深对负数的认识。
2.理解有理数的意义,并能将给出的有理数进行分类。
(二)能力训练目标: 1.体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求做到不重不漏。
2.能按不同的标准对有理数进行分类。
(三)情感与价值观要求:
通过师生合作,使整数、分数在引入负数后能够达到完善,从而体验获得成功的快乐。
教学重点:有理数的分类。
教学难点:有理数的分类及其分类标准。
教学方法:启发式教学。
教学过程:
创设问题情境,引入新课:分小组派代表回答,注意数学语言规范。
1、你所知道的数可以分成哪些种类?你是按照什么划分的?
讲授新课:问题1:整数包括什么数?负数包括什么数?
问题2:什么叫做整数?什么叫做分数?什么叫做有理数?
问题3:有理数如何分类?
1、按形式(整或分)来分类可分为
⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⋅⋅⋅---⋅⋅⋅⎪⎩⎪⎨⎧⋅⋅⋅---⋅⋅⋅),,负分数(如:),,,正分数(如:分数),,,负整数(如:),,,正整数(如:整数有理数766.32143.532213210
321 2、按符号(“正”或“负”)来分类可分为:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0
尝试反馈, 巩固练习:练习:课本P10练习
课时小结:这节课我们学习了哪些内容?你最大的体会和收获是什么?
课后作业:课本P17习题1.2 的第1 题。
课后反思:—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————。