振动检测仪表原理、结构和应用

合集下载

振动传感器工作原理

振动传感器工作原理

振动传感器工作原理振动传感器作为一种重要的测量设备,被广泛应用于机械、汽车、航空航天等领域。

它能够感知物体的振动,并将其转化为相应的电信号,实现振动信号的测量和分析。

本文将介绍振动传感器的工作原理及其应用。

一、振动传感器的工作原理振动传感器的工作原理基于物体的振动与形变之间的关系。

通常采用压电式和电阻式两种工作原理。

1. 压电式振动传感器压电式振动传感器利用压电材料的压电效应实现振动信号的转换。

当物体振动时,压电材料会产生电荷分布的变化,进而生成电压信号。

这个电压信号的振幅和频率与物体的振动情况密切相关。

2. 电阻式振动传感器电阻式振动传感器则是通过物体的振动引起电阻值的变化,进而反映振动信号的大小。

一般采用杨氏效应或皮尔森效应等原理实现。

当物体振动时,电阻值会随之发生变化,电流通过电阻产生的电压信号也相应改变。

二、振动传感器的应用振动传感器在诸多领域都有广泛应用。

下面列举几个典型的例子:1. 机械设备的振动监测机械设备的振动监测对于保证设备的正常运行和预防故障非常重要。

振动传感器可以安装在设备关键位置,实时监测设备的振动状态。

通过分析振动信号的频率、幅值等参数,可以判断设备是否存在异常,及时采取措施进行修理或维护。

2. 汽车工业中的应用振动传感器在汽车工业中起到至关重要的作用。

它可以被用于发动机的振动监测,以及车辆悬挂系统、制动系统等重要部件的振动检测。

准确地监测和分析振动信号可以帮助提高汽车性能,延长零部件的使用寿命。

3. 结构工程中的振动测量在结构工程领域,振动传感器用于测量建筑物、桥梁等结构的振动响应。

通过对结构振动的监测,可以评估结构的稳定性和安全性,及时发现隐患并采取措施进行修复,确保建筑物的正常运行。

4. 科学研究中的应用振动传感器在科学研究中也扮演着重要的角色。

比如,在地震研究中,振动传感器可以用来监测地壳的振动情况,以及识别地震的发生与规模。

而在物理实验中,振动传感器可以被用来测量物体的共振频率等参数。

振动测试技术学习资料

振动测试技术学习资料

一、简谐振动有时域测试参数简谐振动中常用的参数为位移、速度、加速度、激振力、振幅和振动频率,其中前五个参数属于时域测试参数。

二、振动测试及信号分析的任务振动测试及信号分析主要有以下五个方面的任务:(1)验证振动理论和计算结果的准确性,也被称为实验验证或工程振动测试中的正问题。

(2)为改进结构优化设计提供充分的实验依据。

(3)查清外界干扰力的激振水平和规律,以便采取措施来减少或控制振动。

(4)检测诊断设备故障。

(5)振动控制。

三、压电式、涡流式及磁电式传感器的机电变化原理。

1、压电式传感器的机电变换原理某些晶体(如人工极化陶瓷、压电石英晶体等)在一定的方向的外力作用下或承受变形时,它的晶体面或极化面上将有电荷产生。

这种从机械能(力或变形)到电能(电荷或电场)的变换称为正压电效应。

而从电能(电场或电压)到机械能(变形或力)的变换称为逆压电效应。

因此利用晶体的压电效应,可以制成测力传感器。

在振动测量中,由于F=ma,所以压电式传感器是加速度传感器。

2、电涡流传感器的机电变换原理电涡流传感器是一种相对式的非接触传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的,主要应用于静位移的测量、振动位移的测量、旋转机械中检测转轴的振动测量。

3、电动式(磁电式)传感器的机电变换原理电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感应出电动势,因此利用这一原理而产生的传感器称之为电动式(磁电式)传感器。

它实际上是速度传感器。

四、选择振动传感器的原则选择拾振器类型时,要根据测试的要求(如要求测位移、或测速度、加速度、力等)及被测物体的振动特性(如待测的频率范围,估计的振幅范围等),应用环境情况(如环境温度、湿度、电磁场干扰情况等)结合各类拾振器本身的各项特性指标来考虑。

下列情况可用位移拾振器:(1)位移幅值特别重要时(例如,不允许某振动部件在振动时碰到别的物体,即要求振幅时)。

内科大安全环境监测技术教案第7章 振动检测

内科大安全环境监测技术教案第7章 振动检测

【课堂教学小结】3分钟)1、振动与噪音本质上相同,只是频率和传播介质不同。

2、我们所学振动检测,重点掌握环境振动的检测,适合我们矿业的作业场所。

参考位置等优点,由于它的脉冲响应优异,更适合于冲击的测量。

CI=史=2力V=Q时)2Adt4)拾振器的充分利用一般情况尽量用同参数相应的传感器进行测量,也可用电学微积分原理进行测量,但测量误差较大。

7.4拾振器7.4.1 压电式加速度计1.1.1 工作原理(1)组成:压电晶体、弹簧元件、外壳、引线。

(2)原理:(图示说明)2)特点体积小、灵敏度高、测量频率宽。

3)主要参数(1)灵敏度:输出量的变化与输入量变化的比值(2)安装方法与上限频率(3)前置放大器与下限频率(4)横向灵敏度(5)动态范围(6)环境影响程度1.1.2 磁电式速度计1)结构原理(1)组成:线圈、磁钢、顶杠、弹簧片、附件。

(2)原理:切割磁力线产生感生电动势(图示说明)。

2)特点a.只能测量质点振动b.可以做成相对和绝对两种(约20分钟) (约20分钟)c.输出幅度大d.输出阻抗低e.体积较压电式大1.1.3 拾振器的合理选择1)自振频率和工作频率的选择2)灵敏度的选择3)测量范围的选择4)测量内容的选择(本节无作业)【课堂教学小结】(3分钟)1、振动测量主要是根据振动类型正确选择拾振器;2、合理布置拾振器;3、准确分析测量结果。

(约12分钟)举例课程名称:安全环境监测技术7∙6测振仪的校准与标定1)标定内容X⑴拾振器灵敏度标定在振动台上进行,fW200Hz,a≤10g灵敏度Sv=U∕Xa=4π2f2A A为振幅读书;U为输出电压;f为频率(2)实验室条件下的二次标定2)频率特性的标定(1)频率响应:测频带(带宽)⑵谐振频率7.7振动允许标准(约20分钟)D人体允许振动标准(246页)人体可以通过各种感受器接收振动的信息,并通过大脑对振动作出相应的反应和判断。

根据振动对人影响的程度,可以建立振动的评价标准。

电磁振动试验台的原理是怎样的

电磁振动试验台的原理是怎样的

电磁振动试验台的原理是怎样的概述电磁振动试验台是一种实验设备,在很多领域应用很广泛,例如材料力学、疲劳寿命、荷载寿命、光学、声学等领域。

电磁振动试验台主要是用于模拟机械结构在振动环境下的情况,进行强度、可靠性、疲劳寿命等方面的测试。

电磁振动试验台的结构电磁振动试验台可以分为悬挂式和台式两种。

悬挂式电磁振动试验台主要由震源、同步移动平台、支撑系统、刚度补偿系统、传感器等部分组成。

震源主要是通过电机、摆线减速器和齿轮传动装置产生振动力;同步移动平台是将被测物体悬挂在其上,使被测物体的位移与振动相匹配;支撑系统主要是承受被测物体的重量和振动冲击在振动过程中的作用;刚度补偿系统则是保证被测物体在振动过程中具有一定的刚度。

台式电磁振动试验台主要包括震源、测量仪表、振动传递板、支撑系统等部分。

震源同样是由电机、摆线减速器和齿轮传动装置产生振动力;测量仪表则是用来实时测量被测物体振动的数据;振动传递板是将震源产生的振动力传导到被测物体上,保证被测物体可以进行正常的振动实验;支撑系统同样是承受被测物体的重量和振动冲击。

电磁振动试验台的原理电磁振动试验台主要利用电磁感应原理进行工作。

首先,震源产生一定频率和振幅的电磁场,在电磁场作用下被测物体中的导线会受到电磁力的作用,并与震源一起运动,从而使被测物体产生振动。

在振动过程中,被测物体将产生机械波,这些波将通过振动传递板传递到支撑系统中,并最终通过传感器进行测量。

最终,电磁振动试验台将得到被测物体在不同频率、振幅下的振动特性。

除了电磁感应原理之外,电磁振动试验台还利用了弹性介质的弹性特性进行工作。

被测物体在振动过程中将以弹性形变为主要特征。

支撑系统和刚度补偿系统的作用则是保证被测物体在振动过程中具有一定的刚度、稳定性和可靠性。

电磁振动试验台的应用电磁振动试验台的应用非常广泛,在工业、军事、医药、航空、航天、科学研究等领域都有应用。

例如,电磁振动试验台可以用于模拟工程机械在工作时的振动情况,以及物体在自然环境中的振动情况;可以用于研究药品在振动环境下的特性,以及器官在振动环境下的生理反应等等。

振动传感器原理及应用

振动传感器原理及应用

振动传感器原理及应用
1振动传感器的简介
振动传感器是集振动测量、调节、控制、保护、诊断及记录等功能于一体的测量仪表,它能够振动检测、采集和控制回路中传输信息,用以确定被测介质(如机械设备、土壤,结构等)的动态特性及参数。

振动传感器通常以弹簧陀螺或小型电机介质为激发源,利用独特的检测结构,被设置其中,它能够检测出测量体表面的微小振动,它的输出通过放大器及滤波装置,分离有用的振动信号,并且将其转换成电信号;
2振动传感器的原理
振动传感器是一种非接触式的测力传感器,它在无接触的状态下,通过安装在特定位置上的振动检测元件,来使用振动信号来进行检测测量,从而检测出位置上的机械振动及其变化信息。

它在实际应用时,将振动检测元件安装在某处,一旦发生了一定的位移、速度或加速度变化,振动检测元件就会产生电信号,通过放大器进行放大再传输,从而获取所需的信息。

3振动传感器的应用
振动传感器有着广泛的应用,常用于汽车发动机振动、摆线针轮轴承、电机轴承、空调机组振动及扇叶转速等机械设备的状况检测,以此来调整设备的操作,以及对结构的稳定性做出观测和监控。

在山地机械中,振动传感器也可以用来监测机器人的位置及运动状况,这
样一来就可以精确测量出机器人在不同情况下的高度及横向滑动的位置,从而为其它的机械设备或动作提供参考跟随的信息。

振动传感器原理

振动传感器原理

振动传感器原理
振动传感器原理是通过感知和检测物体的振动信号,将其转化为电信号输出。

其主要原理是基于质量与弹簧的耦合振动系统。

振动传感器通常由质量块、弹簧和感应电路组成。

当物体发生振动时,质量块会随之振动,从而导致弹簧发生形变。

形变的弹簧会产生力的变化,这些力会通过感应电路转化为电信号。

具体而言,当物体振动引起弹簧发生形变时,弹簧所受的力也会相应变化。

传感器中的感应电路会检测这些力的变化,并将其转化为电流或电压信号。

这些电信号可以被进一步处理和测量,用于分析振动的频率、幅值、周期等参数。

常见的振动传感器包括压电传感器、惯性传感器和电感传感器等。

压电传感器利用压电效应将物体的机械振动转化为电信号;惯性传感器则基于质量块的惯性原理,通过测量物体在振动中的位移、速度和加速度等信息来获取振动信号;而电感传感器则是通过磁感应原理来实现振动信号的检测。

振动传感器广泛应用于机械设备、车辆、电子产品等领域,用于检测、监测和控制振动的状态。

例如,在工业生产中,振动传感器可以用于实时监测设备的振动情况,以便及时发现异常振动并采取相应的维修或保养措施。

在汽车领域,振动传感器可以用于检测车辆引擎的振动情况,提供数据用于诊断和改善发动机的性能。

总之,振动传感器通过感知物体的振动并将其转换为电信号输
出,可广泛应用于不同领域中对振动状态的监测与控制。

其原理基于质量与弹簧的耦合振动系统,通过感应电路将振动力转化为电信号。

浅析结构振动控制技术的原理和应用

浅析结构振动控制技术的原理和应用

技术改造浅析结构振动控制技术的原理和应用李维赞 谢 永(隔而固(青岛)振动控制有限公司,山东 青岛 266108)摘 要:当前建筑行业在振动控制技术方面还有很多问题有待进一步研究。

过去的抗振结构体系只通过提高结构本身的抗振性能来抵抗。

此方法影响有限,安全性较差。

因此,目前只有地震调整技术才能满足当前建设项目的需要,其发展前景和强大的经济效益日益突出。

关键词:结构振动;控制技术;原理;应用引言:近年来结构振动控制技术的应用日益广泛,结构振动控制技术的应用对象日益增多。

针对这一趋势,本研究介绍了常用的结构振动控制技术的原理,并对其优缺点进行了全面的说明;并简要介绍了相关应用。

1振动控制技术的必要性在中国,随着城市化进程的逐步加快,振动控制技术在建筑业中发挥着越来越大的作用。

第一,在建筑中应用防振技术,不仅可以有效地减少地震、水灾等自然灾害的破坏,还可以大大提高建筑的抗外部冲击能力。

第二,在建筑中应用防振控制技术可以有效地分配地震产生的能量。

近年来,国际建筑专家对这类结构监管的研究备受关注。

借助于结构本身和控制系统来承受荷载,结构处于不良状态,并能在发生大地震时保持球形的霍尔灵,有效地分配了地震带来的能量。

此外,该技术的工作原理和概念非常明确,适用于不同的建筑结构和不同程度的地震强度。

2被动控制2.1隔振技术所谓的减振,是指放置在建筑结构中有效地消耗地震能量的柔性连接,并通过设置这些柔性连接来降低地震能量。

此原则可控制建筑的变形,由于柔性连接可以起到"隔震"、"吸震"的作用,能够最大限度地减少地震产生的能量,保护建筑结构,并确保建筑结构的安全和稳定。

减轻地震对上部结构造成损坏的目的,而且建筑装修及室内设备也得到有效保护。

结构最常用的隔振技术是使用隔振支座来延长结构的自然振动周期,并避免土体的运动高峰时间,从而降低结构的地面运动能量。

此隔振方法减小了结构在地震荷载作用下的响应也存在一定的不足,仅适用于4层中低的剪力墙结构。

振动测量及频谱分析

振动测量及频谱分析

振动测量及频谱分析振动测量及频谱分析是一个在工程领域中广泛应用的技术领域。

振动测量能够对物体的振动行为进行准确测量,并通过频谱分析来分析振动信号的频率分布及能量大小。

本文将从振动测量的原理、频谱分析的方法和应用领域等方面来进行介绍。

一、振动测量的原理振动测量是利用传感器将物体的振动变化转化为电信号,再通过相应的测量仪表来实现对振动的测量。

常用的振动传感器有加速度传感器、速度传感器和位移传感器。

加速度传感器是最常见的振动传感器,它通过感受物体的加速度来测量振动。

速度传感器则通过测量物体的速度来间接测量振动,位移传感器则直接测量物体的位移变化。

振动测量通常可以采用两种方式进行:点测法和场测法。

点测法是通过将传感器直接固定在被测物体上来测量振动,适用于机械系统中的部件振动测量。

场测法则是将传感器固定在离被测物体一定距离的固定点上,通过测量传感器所在点的振动来间接测量被测物体的振动。

场测法适用于较大物体或结构的振动测量。

二、频谱分析的方法频谱分析是将振动信号转换为频谱图以进行分析的方法。

常用的频谱分析方法有傅里叶变换、功率谱密度分析和包络分析等。

1.傅里叶变换:傅里叶变换是一种将时域信号转化为频域信号的方法。

通过傅里叶变换,可以得到振动信号的频率分布特性。

傅里叶变换可以表示为:\[ X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt \]其中,X(f)是频域上的信号,x(t)是时域上的信号,f是频率。

2.功率谱密度分析:功率谱密度分析是一种分析振动信号频率分布密度的方法,它描述了频域上各个频率的能量大小。

功率谱密度可以通过直接对振动信号进行傅里叶变换得到,也可以通过相关函数计算得到。

3.包络分析:包络分析是一种分析振动信号包络曲线的方法。

在振动信号中,常常会存在着多个频率分量,包络分析可以将各个频率分量分离出来,得到振动信号的主要振动频率。

三、频谱分析的应用领域1.机械故障诊断:通过振动测量及频谱分析可以检测机械系统中的振动异常,进而判断机械系统的故障类型和严重程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3振动检测仪表原理、结构和应用3.1振动检测仪表原理、结构3.1.1振动检测概述振动传感器是将机械振动量转换为成比例的模拟电气量的机电转换装置。

传感器至少有机械量的接收和机电量的转换二个单元构成。

机械接收单元感受机械振动,但只接收位移、速度、加速度中的一个量;机电转换单元将接收到的机械量转换成模拟电气量,如电荷、电动势、电阻、电感、电容等;另外,还配有检测放大电路或放大器,将模拟电气量转换、放大为后续分析仪器所需要的电压信号,振动监测中的所有振动信息均来自于此电压信号。

(1)振动传感器种类振动传感器的种类很多,且有不同的分类方法。

按工作原理的不同,可分为电涡流式、磁电式(电动式)、压电式;按参考坐标的不同,可分为相对式与绝对式(惯性式);按是否与被测物体接触,可分为接触式与非接触式;按测量的振动参数的不同,可分为位移、速度、加速度传感器;以及由电涡流式传感器和惯性式传感器组合而成的复合式传感器,等等。

在现场实际振动检测中,常用的传感器有磁电式速度传感器(其中又以绝对式应用较多)、压电式加速度传感器和电涡流式位移传感器。

其中,加速度传感器应用最广,而大型旋转机械转子振动的测量几乎都是涡流式传感器。

振动传感器设计时采用的机电变换原理不同,在输出电量时也就会有所区别。

振动传感器接收机械量变化信息,转化为电动势变化、电荷变化、电阻变化等电参量变化。

振动传感器的测量线路会接收这些电信号,并放大和转换为分析、显示仪表所能接受的电压信号。

振动传感器在工作原理和工作过程上的这些差别,如振动传感器的不同机械接收原理、不同测量机械量、不同机电变换原理,为振动传感器的种类划分提供了基本依据,是目前振动传感器最主要的三种分类方式。

①振动传感器的机械接收原理有两种,分别是相对式机械接收原理和惯性式机械接收原理,振动传感器按此分类也就是相对式振动传感器和惯性式振动传感器。

相对式机械接收原理:由于机械运动是物质运动的最简单的形式,因此人们最先想到的是用机械方法测量振动,从而制造出了机械式测振仪(如盖格尔测振仪等)。

传感器的机械接收原理就是建立在此基础上的。

相对式测振仪的工作接收原理是在测量时,把仪器固定在不动的支架上,使触杆与被测物体的振动方向一致,并借弹簧的弹性力与被测物体表面相接触,当物体振动时,触杆就跟随它一起运动,并推动记录笔杆在移动的纸带上描绘出振动物体的位移随时间的变化曲线,根据这个记录曲线可以计算出位移的大小及频率等参数。

相对式机械接收部分所测得的结果是被测物体相对于参考体的相对振动,只有当参考体绝对不动时,才能测得被测物体的绝对振动。

这样,就发生一个问题,当需要测的是绝对振动,但又找不到不动的参考点时,这类仪器就无用武之地。

例如:在行驶的内燃机车上测试内燃机车的振动,在地震时测量地面及楼房的振动……,都不存在一个不动的参考点。

在这种情况下,我们必须用另一种测量方式的测振仪进行测量,即利用惯性式测振仪。

惯性式机械接收原理:惯性式机械测振仪测振时,是将测振仪直接固定在被测振动物体的测点上,当传感器外壳随被测振动物体运动时,由弹性支承的惯性质量块将与外壳发生相对运动,则装在质量块上的记录笔就可记录下质量元件与外壳的相对振动位移幅值,然后利用惯性质量块与外壳的相对振动位移的关系式,即可求出被测物体的绝对振动位移波形。

②振动传感器按测量的机械量不同,能分为振动位移传感器、振动速度传感器、振动加速度传感器、振动力传感器、振动应变传感器、扭振传感器和扭矩传感器等。

③振动传感器的机电变换原理比较多,分类也比较复杂,常见的有电压式振动传感器、压电式振动传感器、电涡流式振动传感器、电感式振动传感器、电容式振动传感器、电阻式振动传感器、光电式振动传感器等。

振动传感器的机电变换原理:于传感器内部机电变换原理的不同,输出的电量也各不相同。

有的是将机械量的变化变换为电动势、电荷的变化,有的是将机械振动量的变化变换为电阻、电感等电参量的变化。

一般说来,这些电量并不能直接被后续的显示、记录、分析仪器所接受。

因此针对不同机电变换原理的传感器,必须附以专配的测量线路。

测量线路的作用是将传感器的输出电量最后变为后续显示、分析仪器所能接受的一般电压信号。

因此,振动传感器按其功能可有以下几种分类方法:按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式;按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。

以上三种分类法中的传感器是相容的。

①相对式电动传感器电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。

相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。

②电涡流式传感器:电涡流式振动传感器是涡流效应为工作原理的振动式传感器,电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。

电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。

③电感式振动传感器:电感式振动传感器是依据电磁感应原理设计的一种振动传感器。

电感式振动传感器设置有磁铁和导磁体,对物体进行振动测量时,能将机械振动参数转化为电参量信号。

电感式振动传感器能应用于振动速度、加速度等参数的测量。

④电容式振动传感器电容式振动传感器是通过间隙或公共面积的改变来获得可变电容,再对电容量进行测定而后得到机械振动参数的。

电容式振动传感器可以分为可变间隙式和可变公共面积式两种,前者可以用来测量直线振动位移,后者可用于扭转振动的角位移测定。

⑤惯性式电动传感器:惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。

为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。

根据电磁感应定律,感应电动势为:u=Blx&r,式中B为磁通密度,l为线圈在磁场内的有效长度,r x&为线圈在磁场中的相对速度。

从传感器的结构上来说,惯性式电动传感器是一个位移传感器。

然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动时,所感生的电动势与线圈切割磁力线的速度成正比。

因此就传感器的输出信号来说,感应电动势是同被测振动速度成正比的,所以它实际上是一个速度传感器。

⑥压电式加速度传感器:压电式加速度传感器的机械接收部分是惯性式加速度机械接收原理,机电部分利用的是压电晶体的正压电效应。

其原理是某些晶体(如人工极化陶瓷、压电石英晶体等,不同的压电材料具有不同的压电系数,一般都可以在压电材料性能表中查到。

)在一定方向的外力作用下或承受变形时,它的晶体面或极化面上将有电荷产生,这种从机械能(力,变形)到电能(电荷,电场)的变换称为正压电效应。

而从电能(电场,电压)到机械能(变形,力)的变换称为逆压电效应。

因此利用晶体的压电效应,可以制成测力传感器,在振动测量中,由于压电晶体所受的力是惯性质量块的牵连惯性力,所产生的电荷数与加速度大小成正比,所以压电式传感器是加速度传感器。

⑦压电式力传感器:在振动试验中,除了测量振动,还经常需要测量对试件施加的动态激振力。

压电式力传感器具有频率范围宽、动态范围大、体积小和重量轻等优点,因而获得广泛应用。

压电式力传感器的工作原理是利用压电晶体的压电效应,即压电式力传感器的输出电荷信号与外力成正比。

⑧阻抗头:阻抗头是一种综合性传感器。

它集压电式力传感器和压电式加速度传感器于一体,其作用是在力传递点测量激振力的同时测量该点的运动响应。

因此阻抗头由两部分组成,一部分是力传感器,另一部分是加速度传感器,它的优点是,保证测量点的响应就是激振点的响应。

使用时将小头(测力端)连向结构,大头(测量加速度)与激振器的施力杆相连。

从“力信号输出端”测量激振力的信号,从“加速度信号输出端”测量加速度的响应信号。

注意,阻抗头一般只能承受轻载荷,因而只可以用于轻型的结构、机械部件以及材料试样的测量。

无论是力传感器还是阻抗头,其信号转换元件都是压电晶体,因而其测量线路均应是电压放大器或电荷放大器。

⑨电阻应变式传感器:电阻式应变式传感器是将被测的机械振动量转换成传感元件电阻的变化量。

实现这种机电转换的传感元件有多种形式,其中最常见的是电阻应变式的传感器。

电阻应变片的工作原理为:应变片粘贴在某试件上时,试件受力变形,应变片原长变化,从而应变片阻值变化,实验证明,在试件的弹性变化范围内,应变片电阻的相对变化和其长度的相对变化成正比。

3.1.2常用位移检测仪表的工作原理及其结构(1)测量系统结构振动传感器是用来测量工业振动的速度、加速度和其他振动参量的重要工具。

振动传感器的种类较多,彼此之间的工作原理和物理性质各有不同,但各种振动传感器的测量系统结构基本相似,都包括了拾振、测量放大线路和显示记录三个环节。

①振动传感器的拾振环节振动传感器的拾振环节主要是指传感器探头及配套的感应装置。

振动传感器的拾振环节,是振动传感器的感知部分,它能探测到机械振动的各个参量,并将机械振动参量转化为机械信号、光学信号或电信号,传导给测量线路。

②振动传感器的测量线路振动传感器的测量线路有很多分类,各个种类的测量线路都有自己针对的传感器变换原理。

振动传感器的测量线路的作用是对拾振环节传导来的信号进行放大及其他处理。

振动传感器的测量线路包括放大器、积分线路、微分线路、滤波线路、归一化装置等。

③振动传感器的信号分析及显示、记录环节振动传感器的信号分析环节是根据振动传感器拾振环节工作原理而设计的,它的作用是在接收到测量线路的机械信号、光学信号或电信号后,按照设定的公式对信号进行分析和计算,得到测量的振动参量终。

振动传感器的显示和记录环节,按照传感器设计的原理不同,可分别从测量线路和信号分析环节接收参量信号,并将信号反应到显示设备或记录设备上,如示波器、相位计、磁带记录仪等。

振动传感器的种类丰富,按照工作原理的不同,能分为电涡流式振动传感器、电感式振动传感器、电容式振动传感器、压电式振动传感器和电阻应变式振动传感器等。

(2)磁电式速度传感器检测仪表磁电式速度传感器的工作原理是,传感器固定在被测物体上,物体振动时,固定在壳体上的磁钢随壳体与物体一起振动,而由弹簧片和线圈组成的弹簧—质量元件,与磁钢的振动并不同步,而是发生相对运动,线圈切割磁钢的磁力线而产生电动势,在磁通量及线圈参数均为常数的情况下,电动势的大小与线圈切割磁力线的相对速度成正比。

相关文档
最新文档