全功率变流器风电机组的工作原理及控制策略
永磁同步风力发电系统的组成、工作原理及控制机理

永磁同步风⼒发电系统的组成、⼯作原理及控制机理永磁同步风⼒发电系统的系统基本组成、⼯作原理、控制模式论述1.系统的基本组成:直驱式同步风⼒发电系统主要采⽤如下结构组成:风⼒机(这⾥概括为:叶⽚、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。
其中全功率变流器⼜可分为发电机侧整流器、直流环节和电⽹侧逆变器。
就空间位置⽽⾔,变流器和风机总控系统⼀般放在塔筒底部,其余主要部件均位于塔顶。
2.⼯作原理:系统中能量传递和转换路径为:风⼒机把捕获的流动空⽓的动能转换为机械能,直驱系统中的永磁同步发电机把风⼒机传递的机械能转换为频率和电压随风速变化⽽变化的不控电能,变流器把不控的电能转换为频率和电压与电⽹同步的可控电能并馈⼊电⽹,从⽽最终实现直驱系统的发电并⽹控制。
3.控制模式:风⼒发电机组的控制系统是综合性控制系统。
它不仅要监视电⽹、风况和机组运⾏参数,对机组运⾏进⾏控制。
⽽且还要根据风速与风向的变化,对机组进⾏优化控制,以提⾼机组的运⾏效率和发电量。
风⼒发电控制系统的基本⽬标分为三个层次:分别为保证风⼒发电机组安全可靠运⾏,获取最⼤能量,提供良好的电⼒质量。
控制系统主要包括各种传感器、变距系统、运⾏主控制器、功率输出单元、⽆功补偿单元、并⽹控制单元、安全保护单元、通讯接⼝电路、监控单元。
具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、⾃动最⼤功率点跟踪控制、功率因数控制、偏航控制、⾃动解缆、并⽹和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。
⼀、系统运⾏时控制:1、偏航系统控制:偏航系统的控制包括三个⽅⾯:⾃动对风、⾃动解缆和风轮保护。
1)⾃动对风正常运⾏时偏航控制系统⾃动对风,即当机舱偏离风向⼀定⾓度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,⾃动对风停⽌。
2)⾃动解缆当机舱向同⼀⽅向累计偏转2~3圈后,若此时风速⼩于风电机组启动风速且⽆功率输出,则停机,控制系统使机舱反⽅向旋转2~3圈解绕;若此时机组有功率输出,则暂不⾃动解绕;若机舱继续向同⼀⽅向偏转累计达3圈时,则控制停机,解绕;若因故障⾃动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,⾃动停机,等待⼈⼯解缆操作。
全功率变流器风电机组的工作原理及控制策略

全功率变流器风电机组的工作原理及控制策略CATALOGUE 目录•全功率变流器风电机组概述•全功率变流器风电机组的工作原理•全功率变流器风电机组的控制策略•全功率变流器风电机组的性能评估与优化•全功率变流器风电机组的发展趋势与挑战CHAPTER全功率变流器风电机组概述风能发电简介风能是一种清洁、可再生的能源,具有广泛的应用前景。
风力发电技术经过多年的发展,已经逐渐成熟并被广泛应用于电力领域。
风能发电的基本原理是利用风能驱动风力发电机转动,进而驱动发电机产生电能。
全功率变流器是风电机组中重要的组成部分,主要作用是将风力发电机产生的电能进行变换和调节,以满足电网的需求。
全功率变流器具有高效率、高可靠性、高灵活性等特点,能够有效提升风电机组的整体性能。
全功率变流器的作用风电机组与电网的交互风电机组需要与电网进行良好的配合,以保证电能的质量和稳定性。
风电机组需要适应电网的运行要求,如电压、频率、相位等参数,以保证风电场的稳定运行。
风电机组与电网的交互是实现风能发电的重要环节之一。
CHAPTER全功率变流器风电机组的工作原理风轮齿轮箱将风轮的转速提升,并将其传递给发电机。
齿轮箱通常位于风轮和发电机之间。
齿轮箱发电机01020303开关全功率变流器的电力电子器件01整流器02逆变器最大风能追踪电力控制全功率变流器的控制原理CHAPTER全功率变流器风电机组的控制策略最大风能追踪控制变速恒频控制1直交轴电流控制23直交轴电流控制是一种用于抑制风电机组运行过程中产生的谐波电流的控制策略。
该控制策略通过实时监测发电机电流,将其中谐波电流分量消除或减弱,以减小谐波对电网的污染。
直交轴电流控制通常采用PWM整流器来实现,通过控制PWM的占空比和相位,实现谐波电流的抑制和功率因数的优化。
矢量控制策略CHAPTER全功率变流器风电机组的性能评估与优化性能评估方法发电效率评估01电网稳定性评估02抗干扰能力评估03控制策略优化最大风能追踪控制滑模变结构控制电力电子器件的优化与保护电力电子器件的选型与配置全功率变流器风电机组需要选择适当的电力电子器件,如IGBT、IGCT等,并配置相应的保护电路,以确保其在高电压、大电流等极端环境下能够安全、可靠地运行。
风电系统PWM并网变流器

第二章风电系统PWM并网变流器2.1直驱风力发电变流系统概述直驱型风力发电机组需要做全功率的变流器变换"其交/直整流既可以采用IGBTPWM整流器,也可以采用二极管不控整流与升压斩波"后者使用的大功率IGBT开关管少,因而性价比更高"本文研究的MW 级风力发电变流系统采用二极管不控整流,升压斩波与两重并网逆变器的功率变换拓扑结构"通过控制升压斩波器的输入电流以控制有功功率,调节无功则通过控制作为电网接口的电压型PWM变流器"系统变流部分拓扑如图2一1所示"图2一1直驱风力发电变流系统拓扑结构发电机采用多极永磁同步电机"发.出的交流电的电压幅值与频率随风速的变化而改变"经电容滤波后,六相二极管桥式整流器将幅值与频率变化的交流电变换为直流"不控整流输出的卜直流电压往往不能达到网侧逆变(PWM变换)对直流侧电压的要求,需要升压斩波器提高直流侧电压"三相电压型PWM变流器将直流电逆变为电压幅值和频率恒定的交流电馈入电网"图2一1所示的网侧逆变器采用特殊的直流侧中点接地的拓扑结构"另外在升压斩波与网侧逆变器中间有制动单元"一旦电网电压跌落,制动单元IGBT导通,电阻消耗能量,从而减小并网电流"网侧采用LCL滤波技术可以有效地滤除PWM变换中产生的高频谐波"系统结构具有以下特点:1.电机采用多极永磁同步结构:实现了电机的低速运转,无齿轮箱:不需励磁,无滑环和电刷;大大减少了系统的机械维护成本"2.电机与整流桥均采用六相结构,可减小电压脉动并降低对直流侧滤波电容量的要求"3.升压斩波器和并网逆变器采用并联多重化结构,一方面分担电流;另一方面采用合理的调制模式可以有效地抑制高频谐波"4.PWM变流器直流侧中点接地使三相电流独立控制,且对多重化结构能抑制环流,同时由于对直流电压中点的箱位降低了对直流母线绝缘性能的要求;而将直流电压分为两个独立变量,在控制上必须增加一个直流电压控制环或直流电压补偿器,加大了控制难度,且由于中线的连接,引入了零序电流"5.斩波器输出之后加入了制动单元"当电网电压突然跌落时,由于风轮机的机械惯性,传递功率不变而使并网电流突增"此时使制动单元IGBT导通,旁路PWM变流器,电阻能耗制动,降低并网电流"待电网电压恢复后再断开制动单元开关管,系统正常运行"6.PWM变流器网侧采用LCL滤波,实现了风电变流系统与电网的隔离:既滤除PWM变换的高频谐波,又滤除电网尖峰信号对功率变换系统的干扰"变流系统控制主要针对斩波器和逆变器"斩波器通过调节输入电流控制系统传输的有功功率"因为斩波器输出侧直流电压由PWM变流器控制恒定,所以控制输入电流时,调节IGBT开关管的占空比即控制了升压斩波器的输出电流,进而控制输入风能的功率"对变速恒频系统,斩波器输入电压会随风速的变化而改变"为了控制系统的有功功率,其输入电流指令也必然会相应的改变"所以快速的动态跟随性是斩波器的重要指标"网侧逆变器有两个控制要求,其一要求控制直流侧电压恒定,其二要求控制并网输出电流谐波畸变(THD)小,且保持单位功率因数(unitypowerfactor),以控制系统无功功率为零"当然在必要的情况下,也应可以向电网发出需要的感性无功或容性无功"而网侧逆变器由于与风轮机和同步发电机隔离,其主要控制目标是保持良好的抗扰性能"当然在系统指令改变时,PWM变流器也应具有快速的动态响应"2.2PwM变流器的分类及其拓扑从电力电子技术的发展来看,变流器较早应用的一种形式就是AC 心C变换装置,即整流器"它的发展经历了由不控整流器(二极管整流)!相控整流器(采用半控开关器件,如晶闸管)到PwM整流器(采用全控开关器件,如IGBT)的发展历程"传统的相控整流器,应用的时间较长,技术也较为成熟,但存在以下问题:图2一1直驱风力发电变流系统拓扑结构发电机采用多极永磁同步电机"发.出的交流电的电压幅值与频率随风速的变化而改变"经电容滤波后,六相二极管桥式整流器将幅值与频率变化的交流电变换为直流"不控整流输出的卜直流电压往往不能达到网侧逆变(PWM变换)对直流侧电压的要求,需要升压斩波器提高直流侧电压"三相电压型PWM变流器将直流电逆变为电压幅值和频率恒定的交流电馈入电网"图2一1所示的网侧逆变器采用特殊的直流侧中点接地的拓扑结构"另外在升压斩波与网侧逆变器中间有制动单元"一旦电网电压跌落,制动单元IGBT导通,电阻消耗能量,从而减小并网电流"网侧采用LCL滤波技术可以有效地滤除PWM 变换中产生的高频谐波"并网变流器作用(l)晶闸管换相引起网侧电压波形畸变;(2)网侧谐波电流对电网产生谐波污染;(3)深控时功率因数很低;(4)闭环控制时动态响应慢;虽然二极管整流器改善了网侧功率因数,但是仍会产生网侧谐波电流而污染电网,另外二极管整流的不足还在于直流侧电压的稳定性差"针对上述不足,PWM整流器已对传统的相控及二极管整流器进行了全面改进"其关键性的改进在于用全控型功率开关管取代了半控型功率开关管或二极管,以PWM斩控整流取代了相控整流或不控整流,功能上也已经远远超过了最初的整流,所以名称也渐渐演变成变流器"PWM变流器可以取得以下优良性能:(l)网侧电流近似正弦波;(2)网侧功率因数控制(如单位功率因数控制);(3)电能双向传输;(4)较快的动态响应;(5)可进行并网逆变;目前已设计出多种的PWM变流器,电压型和电流型是最基本的分类方法"这两种类型的PWM变流器无论是在主电路结构!PWM信号发生以及控制策略等方面均有着各自的特点,并且两者存在着电路上的对偶性"电压型的PWM变流器研究和应用较多,因此本文主要介绍电压型PWM变流器(VSR)"1.单相半桥!全桥VSR拓扑图2一2分别示出了vsR单相半桥和单相全桥主电路拓扑结构I.4>"两者交流侧具有相同的电路结构,其中交流侧电感主要用以滤除网侧电流谐波"由图2一2(a)可看出,单相半桥VSR拓扑只有一个桥臂采用了功率开关,另一桥臂则由两电容串联组成,同时串联电容又兼作直流侧储能电容;单相全桥VSR拓扑结构则如图2一2(b)所示,它采用了具有4个功率开关的/H0桥结构"值得注意的是:电压型PWM 变流器主电路功率开关必须反并联一个续流二极管以缓冲PWM过程中的无功电能"比较两者,显然半桥电路具有较简单的主电路结构,!1.功率开关数只有全桥电路的一半,因而造价相对较低,常用于低成本!小功率应用场合"进一步研究表明,在相同的交流侧电路参数条件下,要使单相半桥VSR以及单相全桥VSR获得同样的交流侧电流控制特性,半桥电路直流电压应是全桥电路直流电压的两倍,因此单相半桥VSR 的直流侧电压利用率低,功率开关管耐压要求相对提高,另外,为使半桥电路中电容中点电位基本不变,还需引入电容均压控制,可见单相半桥VSR的控制相对复杂"2.三相桥式VSR拓扑结构图2-3为三相桥式VSR拓扑结构,其交流侧采用三相对称的无中线连接方式,采用6个功率开关管,这是一种最常用的三相电压型PWM整流器,广泛应用于电力系统的有源滤波和谐波补偿,以及作为大功率拖动设备的前端整流。
全功率变流器介绍

43
l 车载振动试验 l 正弦振动试验 l 随机振动试验
振动测试
44
电磁兼容测试
静电放电枪
l 静电放电 l 电快速瞬变脉冲群
l 射频电磁场辐射抗扰度试验
l 射频场感应传导抗扰度试验
接收机(人工电源网络)
45
综合测试仪
综合测试
l 浪涌(冲击)抗扰度试验 l 电压跌落试验 l电快速瞬变脉冲群抗扰度试验 l 电压跌落试验
盐雾环境 • 适应严酷的风场运行
30
采用先进的控制技术
双PWM控制, 四象限运行, 确保低风速时 多发电
自适应无速度传 感器控制方法, 精确检测发电机 转速,实现磁场 定向
复合矢量控制技 术,快速实现 MPPT控制,提 高发电效率
自动软并网、软 解列控制,对电 网冲击小
31
完善的保护功能
具有完善的保护功能 配置有源撬棒,支持LVRT功能。
40
通过了电科院实地检测和用户报告
41
测试项目
外观结构
功能测试
电磁兼容 (EMS)
性能测试
变流器 测试项目
安规检查 环境试验
运输振动
防护
42
高低温交变湿热试验箱(21m3 ) 高低温湿热试验箱(1m3 )
环境测试
l 恒温试验 l 高低温交变试验 l 恒定湿热试验 l 交变湿热试验 l 盐雾试验
WT1600 数字功率计
46
内容导航
阳光风电简介 WG2000KFP变流器
测: 六鳌位于福建省漳州市,是大陆的边缘地带即半岛地形, 岛上环境优美、风力资源丰富,发展潜力巨大。
产品应用: 我公司2MW全功率水冷 风机变流器,在风场运 行稳定,并通过电科院 测试。
风力发电原理(控制)

风力发电原理(控制)一、风力发电的基本原理风力发电是指利用风能转换成电力的一种清洁能源,其基本原理是将风能转化为机械能,再由发电机将机械能转化为电能。
因此,风力发电系统主要包括风能转化系统和发电系统两大部分。
风能转化系统风能转化系统一般由风轮、变桨机构和转速限制器组成。
具体来说,风轮是通过风能驱动旋转,变桨机构可以改变风轮叶片的角度以便控制风轮的旋转速度和转向,而转速限制器则可以限制风轮的旋转速度,以防风轮过快损坏风力发电系统。
发电系统发电系统由发电机、变流器和电子控制系统组成。
发电机将机械能转化为电能并输出到电网中,变流器则将交流电转化为直流电,并控制电能输出的电压和频率。
电子控制系统则可以实现对风力发电系统的监控和维护。
二、风力发电的控制风力发电系统的控制方案主要分为以下几种:1. 恒功率控制恒功率控制是指在风速超过额定风速时,通过调节风轮的旋转速度来控制风力发电系统的输出功率,以便让发电机输出恒定的电功率。
这种控制方式可以保证风力发电系统的稳定运行,但是当风速超过一定限制时,风轮的旋转速度会超过允许范围,从而导致发电系统的停机或受损。
2. 变桨控制变桨控制是指通过改变风轮叶片的角度来控制风力发电系统的输出功率。
当风速超过额定风速时,风力发电系统会自动调节叶片角度,以减小叶片受到的风力,从而控制风力发电系统的输出功率。
这种控制方式可以确保风力发电系统的安全运行,但是其控制精度相对较低,且需要涉及到大量的机械运动部件,容易受到外部环境的影响。
3. 惯性控制惯性控制是指通过测量风轮旋转速度和转向来控制发电机的输出功率。
当风速超过额定风速时,惯性控制系统会立即闸掉风轮,以避免风力发电系统受到损坏。
这种控制方式可以使风力发电系统的响应速度更快,但是需要消耗大量的电能,不太适合长期运行。
三、风力发电系统的优点相比于传统的化石能源和核能发电技术,风力发电有以下几个优点:1.清洁能源。
风力发电不会产生任何污染物,对环境更加友好。
全功率变流器风电机组的工作原理及控制策略

全功率变流器风电机组的工作原理及控制策略全功率变流器是一种将风力发电机产生的交流电能转换为电网所需的直流电能的电子装置。
它的主要功能是实现风电机组的功率调节、保护以及与电网的连接。
全功率变流器由三个主要的模块组成:整流器、逆变器和控制单元。
整流器模块将风电机组产生的交流电能转换为直流电能,通过控制交流电能的整流部件(如晶闸管或IGBT)的导通角度,可以实现对输出直流电压的控制。
整流器的输出直流电压通过一个滤波电容进行平滑,以减小输出的脉动。
逆变器模块将整流器输出的直流电能转换回交流电能,通过控制逆变部件(如IGBT)的开关状态和频率,可以实现对输出交流电压和频率的控制。
逆变器的输出交流电能经过一个输出滤波器进行滤波,以去除输出的高次谐波。
控制单元对整个全功率变流器进行监测和控制。
它通过读取风电机组和电网的各种参数,如转速、电压、电流等,来实现对整流器和逆变器的控制。
控制单元采用先进的控制算法,如PID控制算法,来实现对全功率变流器的稳定运行和动态响应。
调频控制方式是通过控制风电机组的转速来实现对输出功率的控制。
该控制方式根据电网的需要,调节风电机组的转速,以使输出功率与电网的需求匹配。
调频控制可以使风电机组在不同的风速下运行在最佳转速范围内,提高风电机组的发电效率。
功率控制方式是通过控制全功率变流器的输出功率来实现对风电机组的控制。
该控制方式通过调节变流器的导通角度或输出电压,以控制风电机组的输出功率。
功率控制可以使风电机组根据电网的需求进行平稳的功率输出,提高电网的稳定性。
此外,全功率变流器还具有多种保护功能,如过电流保护、过电压保护、过温保护等,以确保风电机组和电网的安全运行。
控制单元还可以实现对功率输出的统计和调度,以优化风电机组的运行效果。
总之,全功率变流器通过整流器和逆变器的转换作用,将风力发电机产生的交流电能转换为电网需要的直流电能,并通过控制单元的监测和控制实现对全功率变流器的稳定运行和动态响应。
风电体系变流调控策略

风电体系变流调控策略1引言由于直驱永磁同步风力发电机组与电网之间通过背靠背(双PWM)全功率变流器实现了隔离,在发生电网电压跌落时,如果采取相应的措施,可使风力机与发电机的运行基本不受电网故障的影响,从而使系统在故障消除后能迅速恢复正常工作,因此直驱永磁风电机组在低电压运行能力上相对于双馈风力发电机组具有一定的优越性[1-6],因而获得了海上风场的青睐。
在直驱风电系统中,传统的控制策略是,机侧变流器实现对永磁同步发电机的无功、有功功率的解耦控制[1-5],网侧变流器实现输出并网和直流侧电压控制。
当风电机组在额定运行情况下发生电网电压跌落时,变流器的电流将会增加,考虑到变流器热容量有限,必须对变流器的电流进行限制;这样一来就会使得直流母线环输入功率大于输出功率,直流侧电压将会升高。
当电压跌落幅度较大时,如果直流侧不采取措施,就会损坏变流器和直流环电容[5-7]。
目前有许多文献对直驱风电机组在电网故障下的保护策略进行了研究,比较适用的方法是在直流母线上接耗能电阻[2-4]。
有时也通过在机侧变流器和网侧变流器之间设计一个交叉耦合控制器[8],当出现电网故障时,将故障信号传递到机侧变流器,机侧变流器开始对发电机功率进行控制以避免直流电容器内部的功率剩余。
另外,由于驱动链的扭矩特性,当系统受到激励,如风速变化或端电压变化时,变速风轮的发电机速度容易出现振荡[9,10]。
由于直驱永磁同步发电机的结构特点,不能像传统的方法那样在同步发电机中安装阻尼绕组去抑制速度振荡,因此必须从功率变流器控制方面采取措施。
目前国内直驱风机的控制策略中还未考虑这个问题。
本文提出了一种新的控制策略,即机侧变流器控制直流母线电压Udc和发电机定子电压Us,而用网侧变流器控制流向电网的有功和无功功率[11],并对电网故障时功率变流器的控制和保护策略进行研究;最后用仿真和实验方法对该控制策略的可行性进行了验证。
2新型直驱风电系统控制策略采用新型控制策略的直驱永磁同步风电系统(DDPMSG)控制框图如图1所示,控制包括两个大部分:桨距角控制系统和功率变换器控制系统。
风电变流器常见故障原因及解决策略

风电变流器常见故障原因及解决策略1. 引言随着全球经济的发展,对环境保护的需求也越来越高。
风力发电作为一种可再生能源,在近年来得到了越来越广泛的应用。
风电变流器是风力发电装置中最为关键的部件之一,它将风轮机输出的交流电信号变换成适合于电网连接的直流电信号。
然而,在打开风电场监测页面时,你会发现风电变流器产生了多种不同的故障,如电流过载、电压过高、温度过高等等。
这时就需要专业的维修人员进行处理和维修。
2. 风电变流器常见的故障原因2.1 电流过载风电变流器的功率一般比风轮机的功率高得多。
如果出现问题,就会出现电流过大的情况,从而导致变流器的过热和继电器的跳闸。
电流过载的原因主要有以下几种:2.1.1 风轮机转速过高如果风轮机转速过高,就会导致过多的电压和电流,给风电变流器造成压力,从而导致电流过载。
这种情况通常在风场中断电或者风速突然增强时发生。
2.1.2 变电站电压过高或过低由于变电站的电压过高或过低导致风电变流器的输出电流过大,从而导致电流过载。
2.1.3 电缆插头接触不良电缆插头接触不良也是导致电流过载的一种常见原因。
在运行时,可能会出现电缆插头松动的情况,从而导致电流过载。
2.2 温度过高风电变流器在长时间运行中,会产生很多热量,如果风电变流器的散热设计不良,就会造成散热不良,导致温度过高,引起变流器故障。
温度过高的原因主要有以下几种:2.2.1 环境温度过高在环境温度过高的情况下,变流器硅的温度会上升,可能会造成关键部件损坏,从而导致变流器故障。
2.2.2 内部机件设计不良如果风电变流器内部机件的散热设计不良,就会导致温度过高、内部损坏,从而引起故障。
2.2.3 风机冲击风量不足在风力不足或风机冲击风量不足时,风电变流器的半导体器件负载过小,从而导致散热不当,发生温度过高的情况。
2.3 电压过高、过低如果风电变流器的电压过高或过低,就会引起变流器故障,导致风力发电停机。
风电变流器的电压过高或过低的原因主要有以下几种:2.3.1 电网电压波动在电网电压波动的情况下,变流器的电压波动范围很大,如果变流器不能识别电压波动并及时调整,就会出现电压过高或过低的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章全功率变流器风电机组的工作原理及控制策略5.1 全功率变流器风电机组的工作原理 (1)5.1.1全功率变流器风电机组传动链形式 (1)5.1.2同步发电机 (1)5.1.3永磁同步风力发电机结构及特点 (3)5.1.4电励磁同步风力发电机结构及特点 (5)5.2 全功率变流器风电机组变流器 (5)5.2.1 电机侧变流器控制策略 (6)5.2.1 电网侧变流器控制策略 (7)5.1 全功率变流器风电机组的工作原理5.1.1全功率变流器风电机组传动链形式随着现代风电机组的额定功率呈现上升趋势,风轮桨叶长度逐渐增加而转速降低。
例如:额定功率为5MW的风电机组桨叶长度超过60米,转子额定转速为10rpm左右。
当发电机为两对极时,为了使5MW风力发电机通过交流方式直接与额定频率为50Hz的电网相连,机械齿轮箱变速比应为150。
齿轮箱变速比的增加,给兆瓦级风电机组变速箱的设计和制造提出了挑战。
风电机组功率及变速箱变速比增大时,其尺寸、重量及摩擦磨损也在增加。
作为另外一种选择,风力发电机可以采用全功率变流器以AC/DC/AC的方式与电网相连。
全功率变流器是一种由直流环节连接两组电力电子变换器组成的背靠背变频系统。
这两个变频器分别为电网侧变换器和发电机侧变换器。
发电机侧变换器接受感应发电机产生的有功功率,并将功率通过直流环节送往电网侧变换器。
发电机侧变换器也用来通过感应发电机的定子端对感应发电机励磁。
电网侧变换器接受通过直流环节输送来的有功功率,并将其送到电网,即它平衡了直流环节两侧的电压。
根据所选的控制策略,电网侧变换器也用来控制功率因数或支持电网电压。
5.1.2同步发电机发电系统使用的同步发电机绝大部分是三相同步发电机。
同步发电机主要包括定子和转子两部分。
定子是同步发电机产生感应电动势的部件,由定子铁芯、三相电枢绕组和起支撑及固定作用的机座组成。
转子的作用是产生一个强磁场,并且可以由励磁绕组进行调节,主要包括转子铁心、励磁绕组、滑环等。
同步发电机的励磁系统一般分为两类,一类是用直流发电机作为励磁电源的直流励磁系统,另一类是用整流装置将交流变成直流后供给励磁的整流励磁系统。
发电机容量大时,一般采用整流励磁系统。
同步发电机是一种转子转速与电枢电动势频率之间保持严格不变关系的交流电机。
同步发电机的转子基木上是一个大的电磁铁。
磁极有凸极和隐极两种结构。
凸极转子结构和加工比较简单,制造成本低。
中小容量电机一般采用凸极以降低成本;对大容量、高转速原动机,高速旋转的发电机转子将承受很大的离心力,采用隐极可以更好地固定励磁绕组。
同步发电机转子结构示意图当转子励磁绕组中流过直流电流时,产生磁极磁场或称为励磁磁场。
原动机拖动转子旋转时,主磁场同转子一起旋转,就得到一个机械旋转磁场。
该磁场对定子发生相对运动,在定子绕组中感应出三相对称的交流电势。
由于定子三相对称绕组在空间上相差120°,因此三相电势也在时间上相差120°电角度。
这个交流电势的频率取决于电机的极对数p 和转子转速n ,即由于我国电网电源频率为50Hz ,发电机的转速必须保持恒定。
根据电机理论,图给出隐极同步发电机的等效电路。
图中,0E &为发电机空载时定子绕组一相感应的电动势,I &为负载电流,U &为一相端电压,R 为定子绕组一相的电阻,cX 为同步电机的同步电抗。
通常定子绕组的电阻比同步电抗小很多,因此可以忽略。
图为忽略电阻后隐极同步发电机简化的相量图。
U &和I &之间的夹角ϕ叫做功率因数角。
0E &和U &之间的夹角θ叫做功率角。
隐极同步发电机的等效电路与简化的向量图攻角特性:在忽略电枢电阻的情况下,根据电机学理论,同步发电机输出的电磁功率等于输出的有功功率其中,m 为发电机的相数。
经推导,有功功率表达式为对于并联于无限大电网上的同步发电机,发电机的端电压U 即为电网电压,保持不变,在恒定励磁电流条件下,根据上式可知,隐极式同步发电机输出的电磁功率与攻角θ的正弦成正比。
这可以通过下图所示的攻角特性曲线描述。
当0E U 和不变时,由M P ()f θ=画出的曲线称为攻角特性曲线。
当90θ=°时,隐极发电机输出的电功率最大。
图 攻角特性 有功功率的调节 由式0cos sin M cUE P UI X ϕθ==可知,对于一台并联到无限大电网上的同步发电机,如果想增加发电机的输出有功功率,当励磁不作调节时,就必须增大功率角θ。
功率角的物理意义可以从时间和空间两个角度来进行理解。
对于发电机而言,θ是励磁电动势0E &超前于端电压U&的时间角;从空间上,θ可看作转子磁极轴线与电枢等效合成磁极轴线之间的空间角。
因此,增大功率角意味着必须增加来自原动机的输入功率,使转子加速,从而使功率角增大,从而增大发电机的有功功率。
但需注意,90θ<°区域是发电机稳定工作范围,因此功率角的增加不能超过稳定极限90°,如果再增加来自原动机的输入功率,则无法建立新的平衡,电机转速将继续上升而失速。
无功功率的调节接到电网上的负载,除了阻性负载外,还有感性负载和容性负载,所以一个电力系统除了要能提供负载有功功率外,还要有提供和调节无功功率的能力。
通过改变同步发电机的励磁电流,可调节同步发动机输出的无功功率。
当cos ϕ=1时,定子的电流I &最小,这种情况称为负载时的正常励磁。
在正常励磁基础上增加励磁电流,称为过励。
在正常励磁基础上较少励磁电流,称为欠励。
无论增大和减小励磁电流,都将使定子电流增大。
发电机输出的无功功率可通过sin Q mUI ϕ=描述。
在正常励磁时,发电机只输出有功功率。
过励时,电枢反应为去磁作用,定子电流I &落后于端电压U&,发电机除了向电网发出有功功率外,还向电网发出感性无功功率。
欠励时,电枢反应为增磁作用,定子电流I &超前于端电压U&,发电机除了向电网发出有功功率外,还向电网发出容性无功功率。
5.1.3永磁同步风力发电机结构及特点(1)直驱式外转子永磁风力发电机结构外转子电机的特点是定子在靠轴中间不动,转子在外围旋转。
在下图中展示了内定子的构造,内定子由硅钢片叠成,与常见的外定子相反,其线圈槽是开在铁芯圆周的外侧。
内定子铁芯通过定子的支撑体固定在底座上,在底座上有转子轴承孔用来安装外转子的转轴。
在定子铁芯的槽内嵌放着定子绕组,绕组是按三相规律分布,与外定子绕组类似。
外转子如同一个桶套在定子外侧,由导磁良好的铁质材料制成,在“桶”的内侧固定有永久磁铁做成的磁极,这种结构的优点是磁极固定较容易,不会因为离心力而脱落。
按多极发电机的原理,磁极的布置如下图把外转子转轴安装在定子机座的轴承上在实际风力机制造中往往把外转子磁軛直接与风轮轮毂(包括轮毂外罩)制成一体,使结构更紧凑。
(2)直驱永磁中间定子盘式风力发电机结构直驱永磁盘式风力发电机的定子与转子都呈平面圆盘结构,定子与转子轴向交替排列,这里介绍中间定子盘式发电机。
下图是一个盘式定子。
由于盘式发电机通过定子绕组的的磁力线是轴向走向,在电机旋转时是绕轴运行的,所以定子的硅钢片是绕制的,在两侧有绕组的嵌线槽。
在定子线槽内分布着定子绕组,按三相布置连接。
定子铁芯固定在机座的支架上盘式转子由磁軛与永久磁铁组成,下图为左面转子图下图为磁极的分布图右面转子结构与左面转子结构相同,只是反个面而已。
下图为左右转子间的磁力线走向图。
为更清楚的看清磁力线走向,下图为稍侧面的磁力线走向图。
把转子与定子摆在一起安装上左右端盖,下图为组装好的永磁中间定子盘式发电机。
下图为永磁中间定子盘式发电机的剖面图。
下图为侧视的剖面图,为看清内部结构隐藏了右转子。
(3)直驱永磁中间转子盘式风力发电机结构盘式永磁直驱式风力发电机的定子与转子都呈平面圆盘结构,定子与转子轴向交替排列,这里介绍中间转子盘式发电机。
下图是一个盘式定子,由于盘式发电机的通过定子绕组的磁力线是轴向走向,在电机旋转时是绕轴运行的,所以定子的硅钢片是绕制的,在一侧有绕组的嵌线槽。
在定子线槽内分布着定子绕组,按三相布置,单个绕组呈扇形状。
定子有两个,右定子与左定子结构一样,只是反个面而已。
转子由永久磁铁组成,磁铁固定在非导磁材料制成的转子支架上,下图是转子的结构图。
每块磁铁的磁极在转子的两面,下图表示了磁力线在转子与定子间的走向,下图是转子与定子的布置图先把左定子固定在左端盖中,再装上转子,把右定子固定在右端盖中,左右端盖扣紧固定,发电机就组装好了,下图为发电机外观图。
下图为中间转子盘式永磁发电机的剖面图下图为侧视的剖面图。
5.1.4电励磁同步风力发电机结构及特点电励磁同步发电机(Electrically Excited Synchronous Generator ,EESG),通常在转子侧进行直流励磁。
使用EESG 相比使用PMSG 的优势在于,转子励磁电流可控,可以控制磁链在不同功率段获得 最小损耗;而且不需要使用成本较高的永磁材料,也避免了永磁体失磁的风险,Enercon 公司主要经营这类产品。
但是EESG 需要为励磁绕组提供空间,会使电机尺寸更大,转子绕组直流励磁需要滑环和电刷。
永磁同步电机的数学模型定子电压方程为其中,sd u 、sq u 分别为定子d 、q 轴电压分量;sd i 、sq i 分别为定子d 、q 轴电路分量;s R 为定子电阻;d L 、q L 分别为定子d 、q 轴自感;ω为转子角速度;ψ为转子永磁体的磁链最大值。
电磁转矩方程为其中,p 为电机的极对数。
忽略附加损耗后的功率平衡方程为其中,e P 、1P 、s P 分别为电机的电磁功率、输入功率和输入功率;Fe p 、m p 、cus p 分别为电机的铁耗、机械损耗和定子铜耗。
电磁功率与电磁转矩的关系为5.2 全功率变流器风电机组变流器电力电子变流器作为风力发电与电网的接口,作用非常重要,既要对风力发电机进行控制,又要向电网输送优质电能,还要实现低电压穿越等功能;随着风力发电的快 速发展和风电机组单机容量的不断增大,变流器的容量也要随之增大,因此大容量多电平变流器也开始得到应用,以下将对一些典型变流器拓扑结构进行讨论。
从 图1中可以看到,典型的永磁直驱变速恒频风电系统中,采用背靠背双PWM 变流器,包括电机侧变流器与电网侧变流器,能量可以双向流动。
对PMSG 直驱系统,电机侧PWM 变流器通过调节定子侧的dq 轴电流,实现转速调节及电机励磁与转矩的解耦控制,使发电机运行在变速恒频状态,额定风速以下具有最大风能捕获功能。
电网侧PWM 变流器通过调节网侧的dq 轴电流,保持直流侧电压稳定,实现有功和无功的解耦控制,控制流向电网的无功功率,通常运行在单位功率因数状态,还要提高注入电网的电能质量。