双曲线知识点归纳总结
高考双曲线知识点总结

高考双曲线知识点总结双曲线方程1. 双曲线的第一定义:⑴①双曲线标准方程:. 一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距两准线的距离;通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程分别为双曲线的左、右焦点或分别为双曲线的上下焦点长加短减原则:构成满足与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.例如:若双曲线一条渐近线为且过,求双曲线的方程?解:令双曲线的方程为:,代入得.⑹直线与双曲线的.位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.2若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.简证: =.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.感谢您的阅读,祝您生活愉快。
双曲线知识点总结

椭 圆一、1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(212F F a =时为线段21F F ,212F F a <无轨迹)。
2.标准方程: 222c a b =-①焦点在x 轴上:12222=+by a x (a >b >0); 焦点F (±c ,0) ②焦点在y 轴上:12222=+bx a y (a >b >0); 焦点F (0, ±c ) 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 二.椭圆的简单几何性质:1.范围(1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性 椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.顶点(1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率(1)我们把椭圆的焦距与长轴长的比22c a ,即ac 称为椭圆的离心率, 记作e (10<<e ),22221()b e a a ==-c 5.三个技巧:(1)用待定系数法求椭圆方程:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件确定关于a 、b 、c 的方程组,解出a 2、b 2,从而写出椭圆的标准方程.(2)椭圆上任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .(3)求椭圆离心率e 时,只要求出a ,b ,c 的一个齐次方程,再结合b 2=a 2-c 2就可求得e (0<e <1).1.椭圆22221x y a b+=的左右焦点分别为12,F F ,过点1F 的直线交椭圆于,A B 两点,若△ABF 2的周长为20,离心率为35,则椭圆方程为( ) A .221259x y += B .2212516x y += C .221925x y += D .2211625x y += 2.已知椭圆2221(02)4x y b b +=<<与y 轴交于,A B 两点,点F 为该椭圆的一个焦点,则△ABF 面积的最大值为( ) A.1 B.2 C.4 D.83.直线y x =与椭圆2222:1x y C a b+=的交点在x 轴上的射影恰好是椭圆的焦点,则椭圆C 的离心率为 A .152-+ B .152+ C .352- D .124.已知P 是以12,F F 为焦点的椭圆22221(0)x y a b a b +=>>上一点,且120PF PF ⋅=,且121tan 2PF F ∠=,则此椭圆的离心率为( )A .12 B .23 C .13D .53 5.设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,过2F 的直线交椭圆于,P Q 两点,若01160,||||F PQ PF PQ ∠==,则椭圆的离心率为( ) A .13B .23C .233D .33 6.已知设12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为( )A .33B .36C .13D . 16 7.已知椭圆22221x y a b +=上的点P 到左、右两焦点1F 、2F 的距离之和为22,离心率22e = (I )求椭圆的方程;(II )过右焦点2F 且不垂直于坐标轴的直线l 交椭圆于A ,B 两点,试问:线段2OF 上是否存在一点M ,使得||||MA MB =?请作出并证明。
双曲线知识点总结

双曲线知识点总结一.双曲线的定义及其性质1. 定义:平面上到两定点F 1(-c,0) ,F 2(c,0)的距离之差等于定值2a(a<c)点的集合。
2. 求轨迹的方法:(1)设点的坐标 ;(2)找条件 ;(3)代入点的坐标,列等式;(4)化简;(5)检验。
3. 双曲线的标准方程及其性质 (1)双曲线的方程标准方程:12222=-by a x (若x 的系数为正,则焦点x 在轴上;若x 的系数为负,则焦点在y 轴上)共焦点双曲线的方程: 12222=--+m b y m a x ; 共离心率双曲线的方程: 12222=-mb y ma x 共渐近线的双曲线的方程:λ=-2222by a x(2)性质: ①c 2=b 2+a 2;②e=a c =2222221⎪⎭⎫ ⎝⎛+=+=a b a b a a c或e=ac =a c22=aR R R PF PF F F sin sin )sin(sin 2sin 2sin 22121-+=-=-ββααβθ③当PF 2⊥x 轴时,|PF 2|=ab 2④若点P (x 0,y 0)在双曲线12222=-by a x 上,则过点P 与双曲线相切的直线方程为12020=-byy a x x ; ⑤若点P (x 0,y 0)双曲线上任一点,以PF 1为直径的圆一定与x 2+y 2=a 2相切。
二.双曲线的焦点三角形(1)若|PF 1|=m , |PF 2|=n , ∠F 1PF 2= Θ ;mn=θcos 122-b ),[2+∞∈b ;θθcos 1cos 2-=b n m ),[2+∞-∈b ;S∆PF 1F 2=2tan 2θb .证明如下:①(2c)2=m 2+n 2-2mncosΘ=(m -n)2-2mn(1-cosΘ)=4a 2+2mn(1-cosΘ)⇒mn=θcos 122-b②S∆PF 1F 2=21mnsinΘ=2tan 2sin 22cos2sin2cos 1sin 2212222θθθθθθb b b ==-三.双曲线的中点弦(1)AB 是不平行于对称轴的弦,P 是AB 的中点,则K AB K OP =b 2/a 2 (2)若A 、B 关于原点O 对称,P 是椭圆上异于A 、B 的任一点,则K PA K PB =b 2/a 2(3)A 、B 为渐近线上的两点,P 是AB 的中点则K AB K OP =b 2/a 2 (4)A 、B 为渐近线上关于原点O 对称的两点,P 为渐近线上任一点,则K PA K PB =b 2/a 2。
双曲线经典知识点总结

其渐近线方程为t?沪ab n d
注意:(1)已知双曲线方程,将双曲线方
程中的“常数”换成“0”,然后因式分解即得渐近线方程。
y轴上。注意:对于双 曲线,a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上。
4.方程Ax2+By2=C(A、B C均不为零)表示双曲线的条件
①待定系数法
:由题目条件确定焦点的位置,从而确定方程的类
车车豹
方程可设为总b(A>U,焦点在X轴上,AvU,焦点在y轴上)(4)等轴双曲线
型,设出标准方程,再由条件确定方程中的参数d
b、C的值。其主要步骤是“先定型,再定量”;
②定义法:由题目条件判断出动点的轨迹是什么图形,
然后再根据定义确定方程。
2 2
双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:
3.如何由双曲线标准方程判断焦点位置
33
-丄二1知识点五:双曲线的渐近线:(1)已知双曲线方程求渐近线方程:若双曲线方程为a, *2,则
双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看
2 2
X项的系数是正的,那么焦点在X轴上;如果y项的系数是正的,那么焦点在
(2)范围:双曲线上所有的点都在两条平行直线
(a>0,b>0),把X换成一
—y,方程都不变,所以双曲线/H且是以原点为对称中心的中心对称图形,
=1
(a>0,b
这个对称中心
x=—a和x=a的两侧,是无限延伸的。
因此双曲线
围成一个矩形(如图),
双曲线的渐近线。 注意:双曲线与它的渐近线无限接近,但永不相交。
J323
双曲线知识点总结

双曲线知识点总结1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是(2) 若|P F1|-|PF2|=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是2.双曲线的标准方程3.双曲线的性质(1)焦点在x轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|= |PF2|= (F1,F2点)(1)焦点在y轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|= |PF2|= (F1,F2分别为双曲线的下上两焦点,P为椭圆上的一点)1.等轴双曲线:22(0)x yλλ-=≠特点①实轴与虚轴长相等②渐近线互相垂直=±③离心率为y x2.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线22221x ya b+=的共轭双曲线是6.双曲线系(1)共焦点的双曲线的方程为2221x yk k c+=-(0<k<c2,c为半焦距)(2)共渐近线的双曲线的方程为2222(0) x ya bλλ-=≠。
双曲线经典知识点总结

双曲线经典知识点总结双曲线是解析几何中的一种重要曲线,是一对非重叠又对称的曲线组成,它有着丰富的性质和应用。
在数学、物理和工程等领域都有广泛的应用。
本文将通过对双曲线的定义、性质、参数方程、极坐标方程以及相关的应用等方面进行详细的总结和解释。
一、双曲线的定义和基本性质1. 双曲线的定义双曲线定义是平面直角坐标系中满足以下方程的点的轨迹:\[\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\]其中a和b是正实数且a≠b。
当a>b时,曲线称为右双曲线;当a<b时,曲线称为左双曲线。
2. 双曲线的基本性质(1)对称性:关于x轴、y轴和原点对称。
(2)渐近线:右双曲线的渐近线为y=±\frac{b}{a}x,左双曲线的渐近线为y=±\frac{a}{b}x。
(3)焦点和准线:右双曲线的焦点为F_{1}、F_{2}(c,0),准线方程为x=c;左双曲线的焦点为F_{1}、F_{2}(0,c),准线方程为y=c。
(4)离心率:离心率ε定义为,ε=\frac{\sqrt{a^2+b^2}}{a}。
二、双曲线的参数方程和极坐标方程1. 双曲线的参数方程(1)右双曲线的参数方程:\[\begin{cases}x=a\text{sec}t \\y=b\tan t\end{cases}\]其中t为参数。
(2)左双曲线的参数方程:\[\begin{cases}x=a\text{csc}t \\y=b\cot t\end{cases}\]其中t为参数。
2. 双曲线的极坐标方程(1)右双曲线的极坐标方程:\[r=\frac{b}{\sin\theta}\](2)左双曲线的极坐标方程:\[r=\frac{a}{\cos\theta}\]三、双曲线的相关应用1. 数学方面双曲线广泛应用于解析几何、微积分、微分方程等数学领域。
在微积分中,双曲线的导数和积分形式复杂,常作为综合练习的一部分。
双曲线的基本知识点总结

双曲线的基本知识点总结双曲线基本知识点总结1. 定义双曲线是二次曲线的一种,它是由一个平面和一个双圆锥面相交,除去与锥面的两个交点(焦点)所得到的曲面。
在笛卡尔坐标系中,标准形式的双曲线方程为 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 或 \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \),其中 \( a \) 和 \( b \) 是实数,且 \( a > 0 \) 和 \( b > 0 \)。
2. 几何性质- 焦点:双曲线有两个焦点,位于主轴上,且距离为 \( 2c \),其中 \( c^2 = a^2 + b^2 \)。
- 实轴:通过双曲线中心的一条轴,且与双曲线的两个分支相切。
- 虚轴:垂直于实轴并通过双曲线中心的轴。
- 半焦距:焦点到双曲线中心的距离,等于 \( c \)。
- 半实轴:实轴的一半,长度为 \( a \)。
- 半虚轴:虚轴的一半,长度为 \( b \)。
- 渐近线:双曲线的两条直线,它们不与双曲线相交,但双曲线的分支趋近于这些线。
渐近线的方程为 \( y = \pm \frac{b}{a}x \)。
3. 标准方程- 横向双曲线:\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \),其中 \( a \) 和 \( b \) 是正实数,且 \( a^2 < b^2 \)。
- 纵向双曲线:\( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \),其中 \( a \) 和 \( b \) 是正实数,且 \( a^2 < b^2 \)。
4. 双曲线的类型- 右双曲线:中心在原点,实轴向右延伸。
- 左双曲线:实轴向左延伸。
- 上双曲线:实轴向上延伸。
- 下双曲线:实轴向下延伸。
5. 双曲线的性质- 双曲线的两个分支是对称的。
数学双曲线知识点 总结

数学双曲线知识点总结一、双曲线的定义1. 定义:双曲线是平面上一个点到两个给定点的距离之差等于一个常数的动点轨迹。
这两个给定点称为焦点,常数称为离心率。
双曲线的离心率小于1。
双曲线有两个分支,每个分支有一组渐近线。
2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1。
其中,a和b分别为双曲线在x轴和y轴上的焦点坐标。
3. 参数方程:双曲线的参数方程为x = a·secθ, y = b·tanθ。
其中,a和b分别为双曲线在x 轴和y轴上的焦点坐标,θ为参数。
4. 极坐标方程:双曲线的极坐标方程为r^2 = a^2·sec^2θ - b^2·tan^2θ。
其中,a和b分别为双曲线在x轴和y轴上的焦点坐标,θ为参数。
二、双曲线的性质1. 对称性:双曲线关于x轴和y轴均对称。
2. 渐近线:双曲线有两条渐近线。
两条渐近线的夹角等于双曲线的离心率e的反正切值。
第一条渐近线的斜率为b/a,第二条渐近线的斜率为-b/a。
3. 凹凸性:双曲线的两个分支分别为凹曲和凸曲。
4. 渐进性质:当x趋于正无穷时,双曲线的y趋于无穷;当x趋于负无穷时,双曲线的y 趋于无穷。
当y趋于正无穷时,双曲线的x趋于无穷;当y趋于负无穷时,双曲线的x趋于无穷。
5. 双曲线的离心率e的物理意义:离心率e表示焦距和直距的比值,即e=c/a。
其中,c 为焦点之间的距离,a为双曲线在x轴上的焦点坐标。
6. 双曲线的离心率与点到焦点的距离的关系:双曲线上任意一点P到两个焦点F1和F2的距离之差等于一个常数2a。
即|PF1 - PF2| = 2a。
三、双曲函数1. 双曲正弦函数:sinh x = (e^x - e^(-x))/2,定义域为x∈R,值域为y>0。
2. 双曲余弦函数:cosh x = (e^x + e^(-x))/2,定义域为x∈R,值域为y≥1。
3. 双曲正切函数:tanh x = sinh x / cosh x = (e^x - e^(-x))/(e^x + e^(-x)),定义域为x∈R,值域为y∈(-1, 1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 2.3 双曲线双曲线标准方程(焦点在x轴))0,0(12222>>=-babyax标准方程(焦点在y轴))0,0(12222>>=-babxay定义第一定义:平面内与两个定点1F,2F的距离的差的绝对值是常数(小于12F F)的点的轨迹叫双曲线。
这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。
{}aMFMFM221=-()212FFa<第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e,当1e>时,动点的轨迹是双曲线。
定点F叫做双曲线的焦点,定直线叫做双曲线的准线,常数e(1e>)叫做双曲线的离心率。
范围x a≥,y R∈y a≥,x R∈对称轴x轴,y轴;实轴长为2a,虚轴长为2b对称中心原点(0,0)OxyP1F2FxyPxyP1F2FxyxyP1F2FxyxyP1F2FxyP焦点坐标1(,0)F c-2(,0)F c1(0,)F c-2(0,)F c焦点在实轴上,22c a b=+;焦距:122F F c=顶点坐标(a-,0) (a,0) (0, a-,) (0,a)离心率eace(=>1)准线方程cax2±=cay2±=准线垂直于实轴且在两顶点的内侧;两准线间的距离:ca22顶点到准线的距离顶点1A(2A)到准线1l(2l)的距离为caa2-顶点1A(2A)到准线2l(1l)的距离为aca+2焦点到准线的距离焦点1F(2F)到准线1l(2l)的距离为cac2-焦点1F(2F)到准线2l(1l)的距离为cca+2渐近线方程xaby±=xbay±=共渐近线的双曲线系方程kbyax=-2222(0k≠)kbxay=-2222(0k≠)①当|MF1|-|MF2|=2a时,则表示点M在双曲线右支上;当aMFMF212=-时,则表示点M在双曲线左支上;②注意定义中的“(小于12F F)”这一限制条件,其根据是“三角形两边之和之差小于第三边”。
若2a=2c时,即2121FFMFMF=-,当2121FFMFMF=-,动点轨迹是以2F为端点向右延伸的一条射线;当2112FFMFMF=-时,动点轨迹是以1F为端点向左延伸的一条射线;若2a>2c时,动点轨迹不存在.2.双曲线的标准方程判别方法是:如果2x项的系数是正数,则焦点在x轴上;如果2y项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.3.双曲线的内外部(1)点00(,)P x y在双曲线22221(0,0)x ya ba b-=>>的内部2200221x ya b⇔->.(2)点00(,)P x y在双曲线22221(0,0)x ya ba b-=>>的外部2200221x ya b⇔-<.4. 形如)0(122πABByAx=+的方程可化为11122=+ByAx当01,01φπBA,双曲线的焦点在y轴上;当01,01πφBA,双曲线的焦点在x轴上;5.求双曲线的标准方程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.6. 离心率与渐近线之间的关系222222221ababaace+=+==1)21⎪⎭⎫⎝⎛+=abe 2)12-=eab7. 双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-byax⇒渐近线方程:2222x ya b-=⇔xaby±=.(2)若渐近线方程为xaby±=⇔0=±byax⇒双曲线可设为λ=-2222byax.(3)若双曲线与12222=-byax有公共渐近线,可设为λ=-2222byax(0>λ,焦点在xA2F24轴上,0<λ,焦点在y轴上).(4)与双曲线12222=-byax共渐近线的双曲线系方程是λ=-2222byax)0(≠λ(5)与双曲线12222=-byax共焦点的双曲线系方程是12222=--+kbykax(6)当⇔=时ba离心率2=e⇔两渐近线互相垂直,分别为y=x±,此时双曲线为等轴双曲线,可设为λ=-22yx;8. 双曲线的切线方程(1)双曲线22221(0,0)x ya ba b-=>>上一点00(,)P x y处的切线方程是00221x x y ya b-=. (2)过双曲线22221(0,0)x ya ba b-=>>外一点00(,)P x y所引两条切线的切点弦方程是00221x x y ya b-=.(3)双曲线22221(0,0)x ya ba b-=>>与直线Ax By C++=相切的条件是22222A aB b c-=.9. 直线与双曲线的位置关系直线l:)0(≠+=mmkxy双曲线C:12222=-byax(a>0,b>0)⎪⎩⎪⎨⎧=-+=12222byaxmkxy⇒02)(222222222=----bamamkxaxkab1) 当0222=-kab,即abk±=时,直线l与双曲线的渐进线_平行_,直线与双曲线C相交于一点;2) 当b2-a2k2≠0,即abk±≠时,△=(-2a2mk)2-4(b2-a2k2)(-a2k2)(-a2m2-a2b2) ①0φ∆时,直线l与双曲线相交,有两个公共点②0=∆时,直线l与双曲线相切,有且仅有一个公共点③0π∆时,直线l与双曲线相离,无公共点3) 直线与双曲线只有一个公共点,则直线与双曲线必相切吗?为什么?(不一定)10. 关于直线与双曲线的位置关系问题常用处理方法直线l:)0(≠+=mmkxy双曲线C:12222=-byax(a>0,b>0)①联立方程法:⎪⎩⎪⎨⎧=-+=12222byaxmkxy⇒02)(222222222=----bamamkxaxkab设交点坐标为),(11yxA,),(22yxB,则有0φ∆,以及2121,xxxx+,还可进一步求出mxxkmkxmkxyy2)(212121++=+++=+,2212122121)())((mxxkmxxkmkxmkxyy+++=++=在涉及弦长,中点,对称,面积等问题时,常用此法,比如a.相交弦AB的弦长2122122124)(11xxxxkxxkAB-++=-+=ak∆+=21或2122122124)(1111yyyykyykAB-++=-+=ak∆+=21b. 中点),(yxM,221xxx+=,221yyy+=②点差法:设交点坐标为),(11yxA,),(22yxB,代入双曲线方程,得1221221=-byax1222222=-byax将两式相减,可得2212122121))(())((b y y y y a x x x x -+=-+ )()(2122122121y y a x x b x x y y ++=-- a. 在涉及斜率问题时,)()(212212y y a x x b k AB++= b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M ,2020202212122y a x b y a x b x x y y =••=--, 即0202y a x b k AB=, 11. 焦点三角形面积公式:)(,2tan21221PF F b S PF F ∠==∆θθ。