((完整版))双曲线知识点归纳总结例题分析,推荐文档

合集下载

双曲线性质总结及经典例题

双曲线性质总结及经典例题

双曲线性质总结及经典例题双曲线知识点总结1. 双曲线的第一定义:⑴①双曲线标准方程:.一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离). ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)例题分析定义类1,已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支12||||610PF PF -=< ,P 的轨迹是双曲线的右支.其方程为)0(116922>=-x y x2双曲线的渐近线为x y 23±=,则离心率为 点拨:当焦点在x 轴上时,23=a b ,213=e ;当焦点在y轴上时,23=b a ,313=e4 设P 为双曲线11222=-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( )A .36B .12C .312D .24 解析:2:3||:||,13,12,121====PF PF c b a 由 ①又,22||||21==-a PF PF ②由①、②解得.4||,6||21==PF PF,52||,52||||2212221==+F F PF PF为21F PF ∴直角三角形,.124621||||212121=⨯⨯=⋅=∴∆PF PF S F PF 故选B 。

1已知双曲线C 与双曲线162x -42y =1有公共焦点,且过点(32,2).求双曲线C 的方程.【解题思路】运用方程思想,列关于c b a ,,的方程组 [解析] 解法一:设双曲线方程为22a x -22b y =1.由题意易求c =25.又双曲线过点(32,2),∴22)23(a -24b =1.又∵a 2+b 2=(25)2,∴a 2=12,b 2=8.故所求双曲线的方程为122x-82y =1.解法二:设双曲线方程为kx -162-ky +42=1,将点(32,2)代入得k =4,所以双曲线方程为122x -82y =1.2.已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; [解析]设双曲线方程为λ=-224y x ,当0>λ时,化为1422=-λλy x ,2010452=∴=∴λλ, 当0<λ时,化为1422=---λλy y ,2010452-=∴=-∴λλ,综上,双曲线方程为221205x y -=或120522=-x y3.以抛物线x y 382=的焦点F 为右焦点,且两条渐近线是03=±y x 的双曲线方程为___________________.[解析] 抛物线x y 382=的焦点F 为)0,32(,设双曲线方程为λ=-223y x ,9)32(342=∴=∴λλ,双曲线方程为13922=-y x【例1】若椭圆()0122 n m ny m x =+与双曲线221x y a b-=)0( b a 有相同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是 ( )A. a m -B. ()a m -21 C. 22a m -D.am -()1221m PF PF m∴+=,()1222a PF PF a∴-=±,()()()2212121244PF PF m a PF PF m a-⋅=-⇒⋅=-:,故选A.【评注】严格区分椭圆与双曲线的第一定义,是破解本题的关键. 【例2】已知双曲线127922=-y x 与点M(5,3),F 为右焦点,若双曲线上有一点P ,使PMPF 21+最小,则P 点的坐标为XY O F(6,0)M(5,3)P N P ′N ′X=32【分析】待求式中的12是什么?是双曲线离心率的倒数.由此可知,解本题须用双曲线的第二定义.【解析】双曲线的右焦点F (6,0),离心率2e =, 右准线为32l x =:.作MN l ⊥于N ,交双曲线右支于P , 连FP ,则122PF e PN PN PN PF ==⇒=.此时 PM 1375225PF PM PN MN +=+==-=为最小. 在127922=-y x 中,令3y =,得2122 3.xx x =⇒=±∴0,取23x =所求P 点的坐标为23(,).【例3】过点(1,3)且渐近线为x y 21±=的双曲线方程是【解析】设所求双曲线为()2214x y k -=点(1,3)代入:135944k =-=-.代入(1): 22223541443535x y x y -=-⇒-=即为所求.【评注】在双曲线22221x y a b -=中,令222200x y x y a b a b-=⇒±=即为其渐近线.根据这一点,可以简洁地设待求双曲线为2222x y k a b-=,而无须考虑其实、虚轴的位置.【例7】直线l 过双曲线12222=-by a x 的右焦点,斜率k =2.若l 与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是 ( ) A .e >2 B.1<e <3 C.1<e <5 D.e >5【解析】如图设直线l 的倾斜角为α,双曲线渐近线m的倾斜角为β.显然。

双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析双曲线是解析几何中重要的曲线之一,它有着许多特殊的性质和应用。

本文将对双曲线的知识点进行归纳,并结合例题进行分析,帮助读者更好地理解和应用双曲线的相关概念。

一、基本概念双曲线是平面上满足特定几何性质的曲线,由平面上到两个给定的点的距离之差等于一个常数构成。

常见的双曲线方程有两种形式:椭圆型和双曲型。

椭圆型的方程形如:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$,而双曲型的方程形如:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$。

其中,a和b分别是椭圆的长轴和短轴的长度。

二、性质与特点1. 焦点和准线:双曲线的焦点是曲线上到两个定点的距离之和等于常数的点,而准线是指到两个定点的距离之差等于常数的直线。

在椭圆型的双曲线中,焦点和准线位于曲线的长轴上,而在双曲型双曲线中,焦点和准线位于曲线的短轴上。

2. 渐近线:双曲线的两条渐近线是曲线的一种特殊性质。

渐近线与曲线的距离趋于无穷远,但始终不与曲线相交。

在双曲型的双曲线中,渐近线的斜率等于正负短轴与长轴之比。

而在椭圆型的双曲线中,渐近线的斜率等于正负长轴与短轴之比。

3. 对称性:双曲线具有关于x轴、y轴和原点的对称性。

即在曲线上一点(x, y)处,如果(x, -y)也在曲线上,那么曲线关于x轴对称;如果(-x, y)也在曲线上,那么曲线关于y轴对称;如果(-x, -y)也在曲线上,那么曲线关于原点对称。

三、例题分析下面通过几个例题来加深对双曲线的理解:例题1:已知双曲线的焦点为(2, 0),离心率为2,求该双曲线的方程。

解析:根据离心率的定义可知,双曲线的离心率e满足$$e=\frac{\sqrt{a^2+b^2}}{a}$$,其中a和b分别为双曲线椭圆型方程中长轴和短轴的长度。

因此,代入题目中的离心率2,可以得到2=\frac{\sqrt{a^2+b^2}}{a}。

解方程可得a=\sqrt{5},再根据焦点所在的位置可知,椭圆型方程的焦点是位于横轴上的。

(完整版)双曲线标准方程及几何性质知识点及习题

(完整版)双曲线标准方程及几何性质知识点及习题

双曲线标准方程及几何性质知识点及习题1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。

这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。

2. 双曲线的第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。

定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。

当曲线上一点沿曲线无限远离原点时,如果到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。

无限接近,但不可以相交。

例1. 方程11122=-++ky k x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线的标准方程:(1)焦点在x 轴上的:x a y b a b 2222100-=>>(),(2)焦点在y 轴上的:y a x ba b 2222100-=>>(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。

注:c 2=a 2+b 2【例2】求虚轴长为12,离心率为54双曲线标准方程。

【例3】求焦距为26,且经过点M (0,12)双曲线标准方程。

练习。

焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x【例4】与双曲线221916x y -=有公共渐进线,且经过点(3,A -练习。

求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.解决双曲线的性质问题,关键是找好等量关系,特别是e 、a 、b 、c 四者的关系,构造出ce a=和222c a b =+的关系式。

双曲线的基本知识点总结

双曲线的基本知识点总结

双曲线的基本知识点总结双曲线基本知识点总结1. 定义双曲线是二次曲线的一种,它是由一个平面和一个双圆锥面相交,除去与锥面的两个交点(焦点)所得到的曲面。

在笛卡尔坐标系中,标准形式的双曲线方程为 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 或 \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \),其中 \( a \) 和 \( b \) 是实数,且 \( a > 0 \) 和 \( b > 0 \)。

2. 几何性质- 焦点:双曲线有两个焦点,位于主轴上,且距离为 \( 2c \),其中 \( c^2 = a^2 + b^2 \)。

- 实轴:通过双曲线中心的一条轴,且与双曲线的两个分支相切。

- 虚轴:垂直于实轴并通过双曲线中心的轴。

- 半焦距:焦点到双曲线中心的距离,等于 \( c \)。

- 半实轴:实轴的一半,长度为 \( a \)。

- 半虚轴:虚轴的一半,长度为 \( b \)。

- 渐近线:双曲线的两条直线,它们不与双曲线相交,但双曲线的分支趋近于这些线。

渐近线的方程为 \( y = \pm \frac{b}{a}x \)。

3. 标准方程- 横向双曲线:\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \),其中 \( a \) 和 \( b \) 是正实数,且 \( a^2 < b^2 \)。

- 纵向双曲线:\( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \),其中 \( a \) 和 \( b \) 是正实数,且 \( a^2 < b^2 \)。

4. 双曲线的类型- 右双曲线:中心在原点,实轴向右延伸。

- 左双曲线:实轴向左延伸。

- 上双曲线:实轴向上延伸。

- 下双曲线:实轴向下延伸。

5. 双曲线的性质- 双曲线的两个分支是对称的。

双曲线知识点与性质大全

双曲线知识点与性质大全

双曲线与方程【知识梳理】1、双曲线的定义(1)平面内,到两定点、的距离之差的绝对值等于定长的点的轨迹称为双曲线,其中两1F 2F ()1222,0a F F a a >>定点、称为双曲线的焦点,定长称为双曲线的实轴长,线段的长称为双曲线的焦距.此定义为双曲线1F 2F 2a 12F F 的第一定义.【注】,此时点轨迹为两条射线.12122PF PF a F F -==P (2)平面内,到定点的距离与到定直线的距离比为定值的点的轨迹称为双曲线,其中定点称为双曲线的()1e e >焦点,定直线称为双曲线的准线,定值称为双曲线的离心率.此定义为双曲线的第二定义.e 2、双曲线的简单性质标准方程()22221,0x y a b a b -=>()22221,0y x a b a b -=>顶点坐标(),0A a ±()0,B a ±焦点坐标左焦点,右焦点()1,0F c -()2,0F c 上焦点,下焦点()10,F c ()20,F c -虚轴与虚轴实轴长、虚轴长2a 2b实轴长、虚轴长2a 2b有界性x a≥,y a ≥对称性关于轴对称,关于轴对称,同时也关于原点对称.x y 3、渐近线双曲线的渐近线为,即,或.()22221,0x y a b a b -=>22220x y a b -=0x y a b ±=by x a=±【注】①与双曲线具有相同渐近线的双曲线方程可以设为;22221x y a b -=()22220x y a b λλ-=≠②渐近线为的双曲线方程可以设为;by x a=±()22220x y a b λλ-=≠③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线.4、焦半径双曲线上任意一点到双曲线焦点的距离称为焦半径.若为双曲线上的任意一点,P F 00(,)P x y ()22221,0x y a b a b -=>,为双曲线的左、右焦点,则,,其中.1(,0)F c -2(,0)F c 10||PF ex a =+20||PF ex a =-ce a=5、通径过双曲线焦点作垂直于虚轴的直线,交双曲线于、两点,称线段为双曲线的通径,()22221,0x y a b a b -=>F A B AB 且.22b AB a=6、焦点三角形为双曲线上的任意一点,,为双曲线的左右焦点,称为双曲线的焦P ()22221,0x y a b a b-=>1(,0)F c -2(,0)F c 12PF F ∆点三角形.若,则焦点三角形的面积为:.12F PF θ∠=122cot 2F PF S b θ∆=7、双曲线的焦点到渐近线的距离为(虚半轴长).b 8、双曲线的焦点三角形的内心的轨迹为()22221,0x y a b a b-=>()0x a y =±≠9、直线与双曲线的位置关系直线,双曲线:,则:0l Ax By C ++=Γ()22221,0x y a b a b-=>与相交;l Γ22222a A b B C ⇔->与相切;l Γ22222a A b B C ⇔-=与相离.l Γ22222a A b B C ⇔-<10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条.11、焦点三角形角平分线的性质点是双曲线上的动点,是双曲线的焦点,是的角平分线上一点,且(,)P x y ()22221,0x y a b a b-=>12,F F M 12F PF ∠,则,即动点的点的轨迹为.20F M MP ⋅=u u u u r u u u rOM a =M ()222x y a x a +=≠±12、双曲线上任意两点的坐标性质【推广2】设直线交双曲线于两点,交直线于点.若()110l y k x m m =+≠、()22221,0x y a b a b -=>C D 、22l y k x =、E 为的中点,则.E CD 2122b k k a=13、中点弦的斜率直线过与双曲线交于两点,且,则直线的斜率l ()()000,0M x y y ≠()22221,0x y a b a b-=>,A B AM BM =l .2020ABb x k a y =14、点是双曲线上的动点,过作实轴的平行线,交渐近线于两(,)(0,0)P x y x y >>()22221,0x y a b a b-=>P ,M N 点,则定值.PM PN =2a 15、点是双曲线上的动点,过作渐近线的平行线,交渐近线于(,)(0,0)P x y x y >>()22221,0x y a b a b-=>P 两点,则定值.,M N OMPN S =Y 2ab 【典型例题】例1、双曲线的渐近线方程为,焦距为,这双曲线的方程为_________.20x y ±=10【变式1】若曲线表示双曲线,则的取值范围是_________.22141x y k k+=+-k【变式2】双曲线的两条渐近线的夹角为_________.22148x y -=【变式3】已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程为_________.2222135x y m n +=2222123x y m n-=【变式4】若椭圆和双曲线有相同焦点、,为两曲线的一个交221(0)x y m n m n +=>>221(0,0)x y a b a b-=>>1F 2F P 点,则_________.12PF PF ⋅=【变式5】如果函数的图像与曲线恰好有两个不同的公共点,则实数的取值范围是2y x =-22:4C x y λ+=λ( )A .B .C .D . [1,1)-{}1,0-(,1][0,1)-∞-U [1,0](1,)-+∞U 【变式6】直线与双曲线的渐近线交于两点,设为双曲线上的任意一点,若2=x 14:22=-y x C B A ,P C (为坐标原点),则下列不等式恒成立的是( )b a +=O R b a ,,∈A .B . 222a b +≥2122≥+b a C . D .222a b +≤2212a b +≤【变式7】设连接双曲线与的四个顶点为四边形面积为,连接其四个焦点的四边形面积22221x y a b -=22221y x b a-=1S 为,则的最大值为_________.2S 12S S 例2、设分别是双曲线的左右焦点,若点在双曲线上,且,则12F F 、2219y x -=P 12=0PF PF u u u r u u u u r g =_________.12PF PF +u u u r u u u u r【变式1】过双曲线的左焦点的弦,则(为右焦点)的周长为_________.221109x y -=1F 6AB =2ABF ∆2F 【变式2】双曲线的左、右焦点、,是双曲线上的动点,且,则_________.2211620x y -=1F 2F P 19PF =2PF =例3、设是双曲线的两个焦点,点是双曲线的任意一点,且,求的面12F F 、2214x y -=P 123F PF π∠=12PF F ∆积.例4、已知直线与双曲线有两个不同的交点,如果以为直径的圆恰好过原点,1y kx =+2231x y -=A B 、AB O试求的值.k 例5、已知直线与双曲线相交于两点,那么是否存在实数使得两点关于直线1y kx =+2231x y -=A B 、k A B 、对称?若存在,求出的值;若不存在,说明理由.20x y -=k 例6、已知双曲线的右焦点为,若过点的直线与双曲线的右支有且只有一个交点,求此直线的斜221124x y -=F F 率的取值范围为_________.【变式1】已知曲线:;C 21(4)x y y x -=≤(1)画出曲线的图像;C (2)若直线:与曲线有两个公共点,求的取值范围;l 1y kx =-C k (3)若,为曲线上的点,求的最小值.()0P p 、()0p >Q C PQ 【变式2】直线:与曲线:.l 10ax y --=C 2221x y -=(1)若直线与曲线有且仅有一个交点,求实数的取值范围;l C a(2)若直线被曲线截得的弦长,求实数的取值范围;l C PQ =a(3)是否存在实数,使得以为直径的圆经过原点,若存在,求出的值;若不存在,请说明理由.a PQ a 例7、已知是双曲线的左焦点,,是双曲线右支上的动点,求的最小值.F 221412x y -=(14)A 、P PF PA +【变式】是双曲线的右支上一点,分别是圆和上的点,则P 221916x y -=,M N ()2254x y ++=()2251x y -+=的最大值等于_________.PM PN -例8、已知动圆与两个定圆和都外切,求动圆圆心的轨迹方程.P ()2251x y -+=()22549x y ++=P 【变式1】的顶点为,,的内切圆圆心在直线上,则顶点的轨迹方程是ABC ∆()50A -、()5,0B ABC ∆3x =C _________.【变式2】已知双曲线的中心在原点,且一个焦点为,直线与其相交于两点,线段)F1y x =-M N 、的中点的横坐标为,求此双曲线的方程.MN 23-例9、已知双曲线,若点为双曲线上任一点,则它到两渐近线距离的乘积为_________.221916x y -=M例10、焦点在轴上的双曲线的两条渐近线经过原点,且两条渐近线均与以点为圆心,以1为半径的x C P 圆相切,又知双曲线的一个焦点与关于直线对称C P y x =(1)求双曲线的方程;(2)设直线与双曲线的左支交于两点,另一直线经过点及的中点,求直线在1y mx =+C ,A B l (2,0)M -AB l 轴上的截距的取值范围.n【变式】设直线的方程为,等轴双曲线:右焦点为.l 1y kx =-C 222x y a -=)(1)求双曲线的方程;(2)设直线与双曲线的右支交于不同的两点,记中点为,求实数的取值范围,并用表示点l A B 、AB M k k 的坐标;M (3)设点,求直线在轴上的截距的取值范围.()1,0Q -QM y 例11、已知双曲线方程为:.C 2212y x -=(1)已知直线与双曲线交于不同的两点,且线段的中点在圆上,求的0x y m -+=C A B 、AB 225x y +=m 值;(2)设直线是圆:上动点()处的切线,与双曲线交于不同的两点l O 222x y +=00(,)P x y 000x y ≠l C,证明的大小为定值.A B 、AOB ∠例12、已知中心在原点,顶点在轴上,其渐近线方程是,双曲线过点.12A A 、x y x =()6,6P (1)求双曲线的方程;(2)动直线经过的重心,与双曲线交于不同的两点,问:是否存在直线,使平分线段l 12A PA ∆G M N 、l G ,证明你的结论.MN 例13、已知点、为双曲线:的左、右焦点,过作垂直于轴的直线,在轴上方交1F 2F C ()01222>=-b by x 2F x x 双曲线于点,且.圆的方程是.C M ︒=∠3021F MF O 222b y x =+(1)求双曲线的方程;C (2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为、,求的值;C P 1P 2P 21PP PP ⋅(3)过圆上任意一点作圆的切线交双曲线于、两点,中点为,求证:O ()00y ,x Q O l C A B AB M例14、已知双曲线:的一个焦点是,且.C ()222210,0x y a b a b-=>>()22,0F a b 3=(1)求双曲线的方程;C (2)设经过焦点的直线l 的一个法向量为,当直线与双曲线C 的右支相交于不同的两点时,求实2F )1,(m l B A ,数的取值范围;并证明中点在曲线上.m AB M 3)1(322=--y x(3)设(2)中直线与双曲线的右支相交于两点,问是否存在实数,使得为锐角?若存在,请l C B A ,m AOB 求出的范围;若不存在,请说明理由.m。

高中二年级数学双曲线知识点与经典例题分析

高中二年级数学双曲线知识点与经典例题分析

高二数学双曲线知识点及经典例题分析1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。

这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。

2. 双曲线的第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。

定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。

3. 双曲线的标准方程:(1)焦点在x 轴上的:x a y b a b 2222100-=>>(),(2)焦点在y 轴上的:y a x ba b 2222100-=>>(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。

注:c 2=a 2+b 2线段A 1A 2叫双曲线的实轴,且|A 1A 2|=2a ; 线段B 1B 2叫双曲线的虚轴,且|B 1B 2|=2b 。

<>=>41离心率:e ca e () e 越大,双曲线的开口就越开阔。

<>±5渐近线:y bax =<>=±62准线方程:x a c5.若双曲线的渐近线方程为:x ab y ±=则以这两条直线为公共渐近线的双曲线系方程可以写成: )0(2222≠=-λλby a x【典型例题】 例1. 选择题。

121122.若方程表示双曲线,则的取值范围是()x m y m m +-+=A mB m m ..-<<-<->-2121或C m mD m R ..≠-≠-∈21且2022.ab ax by c <+=时,方程表示双曲线的是()A. 必要但不充分条件B. 充分但不必要条件C. 充分必要条件D. 既不充分也不必要条件322.sin sin cos 设是第二象限角,方程表示的曲线是()ααααx y -=A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在y 轴上的双曲线D. 焦点在x 轴上的双曲线416913221212.双曲线上有一点,、是双曲线的焦点,且,x y P F F F PF -=∠=π 则△F 1PF 2的面积为( ) A B C D (963)3393例2. ()已知:双曲线经过两点,,,,求双曲线的标准方程P P 12342945-⎛⎝ ⎫⎭⎪例3. 已知B (-5,0),C (5,0)是△ABC 的两个顶点,且sin sin sin B C A -=35,求顶点A 的轨迹方程。

数学双曲线知识点 总结

数学双曲线知识点 总结

数学双曲线知识点总结一、双曲线的定义1. 定义:双曲线是平面上一个点到两个给定点的距离之差等于一个常数的动点轨迹。

这两个给定点称为焦点,常数称为离心率。

双曲线的离心率小于1。

双曲线有两个分支,每个分支有一组渐近线。

2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1。

其中,a和b分别为双曲线在x轴和y轴上的焦点坐标。

3. 参数方程:双曲线的参数方程为x = a·secθ, y = b·tanθ。

其中,a和b分别为双曲线在x 轴和y轴上的焦点坐标,θ为参数。

4. 极坐标方程:双曲线的极坐标方程为r^2 = a^2·sec^2θ - b^2·tan^2θ。

其中,a和b分别为双曲线在x轴和y轴上的焦点坐标,θ为参数。

二、双曲线的性质1. 对称性:双曲线关于x轴和y轴均对称。

2. 渐近线:双曲线有两条渐近线。

两条渐近线的夹角等于双曲线的离心率e的反正切值。

第一条渐近线的斜率为b/a,第二条渐近线的斜率为-b/a。

3. 凹凸性:双曲线的两个分支分别为凹曲和凸曲。

4. 渐进性质:当x趋于正无穷时,双曲线的y趋于无穷;当x趋于负无穷时,双曲线的y 趋于无穷。

当y趋于正无穷时,双曲线的x趋于无穷;当y趋于负无穷时,双曲线的x趋于无穷。

5. 双曲线的离心率e的物理意义:离心率e表示焦距和直距的比值,即e=c/a。

其中,c 为焦点之间的距离,a为双曲线在x轴上的焦点坐标。

6. 双曲线的离心率与点到焦点的距离的关系:双曲线上任意一点P到两个焦点F1和F2的距离之差等于一个常数2a。

即|PF1 - PF2| = 2a。

三、双曲函数1. 双曲正弦函数:sinh x = (e^x - e^(-x))/2,定义域为x∈R,值域为y>0。

2. 双曲余弦函数:cosh x = (e^x + e^(-x))/2,定义域为x∈R,值域为y≥1。

3. 双曲正切函数:tanh x = sinh x / cosh x = (e^x - e^(-x))/(e^x + e^(-x)),定义域为x∈R,值域为y∈(-1, 1)。

完整双曲线知识点总结及练习题推荐文档

完整双曲线知识点总结及练习题推荐文档

、双曲线的定义1、第一定义:到两个定点F i与F2的距离之差的绝对值等于定长(V|F I F2|)的点的轨迹(PFJ PF2|| 2a F1F2(a为常数))。

这两个定点叫双曲线的焦点。

要注意两点:(1)距离之差的绝对值。

(2)2a v|F i F2|。

当|MF i|—|MF2|=2a时,曲线仅表示焦点F2所对应的一支;当|MF i|—|MF2|=—2a时,曲线仅表示焦点F i所对应的一支;当2a=|F i F21时,轨迹是一直线上以F i、F2为端点向外的两条射线;用第二定义证明比较简单或两边之差小于第三边当2a > |F i F2|时,动点轨迹不存在。

a22、第二定义:动点到一定点F的距离与它到一条定直线I (准线)的距离之比是常数e(e>i)时,这个动c点的轨迹是双曲线。

这定点叫做双曲线的焦点,定直线I叫做双曲线的准线。

b。

判定焦点在哪条坐标轴上,不像椭圆似的比较X2、y2的分母的大小,而是X2、y2的系数的二、双曲线的标准方程b2c2 a2X焦点在x轴上:务a2 yb2(a> 0,2焦点在y轴上:%a(a> 0, b> 0)(i)如果x2项的系数是正数,则焦点在X轴上;如果y2项的系数是正数,则焦点在y轴上。

a不一定大于2 1共焦点的双曲线系方程是 二 -a 2 k2 2 (2)与双曲线冷爲 a b2b^k1(3 )双曲线方程也可设为:2仝 1(mn 0) nx a sec x a cos椭圆为y b tan y b sin[提醒]解决直线与椭圆的位置关系问题时常利用数形结合法、根与系数的关系、整体代入、设而不求的 思想方法。

3、特别地,焦点弦的弦长的计算是将焦点弦转化为两条焦半径之和后,利用第二定义求解 六、焦半径公式2 2双曲线 笃 每 1 (a >0, b >0)上有一动点 M (x 0, y 0)a b左焦半径:r= | ex+a | 右焦半径:r= | ex-a |当M (x o ,y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

顶点坐 ( a ,0) ( a ,0)
(0, a ,) (0, a )

离心率
e c (e 1) a
准线方
x a2 c
y a2 c

准线垂直于实轴且在两顶点的内侧;两准线间的距离: 2a2
c
顶点到 准线的 距离
顶点 A1 ( A2 )到准线 l1 ( l2 )的距离为 a a2
c
顶点 A1 ( A2 )到准线 l2 ( l1 )的距离为 a2 a
同步练习二:双曲线
x2 a2
y2 b2
1的两条渐近线互相垂直,则双曲线的离心率为 .

3、设 P
是双曲线
x2 a2
y2 9
1上一点,双曲线的一条渐近线方程为 3x
2y
0,
F1,
F2 分别是双
曲线的左、右焦点,若 PF1 3 ,则 PF2 的值为 .
同步练习三:若双曲线的两个焦点分别为 (0,,, 2) (0 2) ,且经过点 (2, 15) ,则双曲线的标准方程为
双曲线
x a
2 2
y2 b2
1与直线 y kx b 的位置关系:
直线和 双曲线 的位置
x2
利用
a
2
y2 b2
1转化为一元二次方程用判别式确定。
y kx b
二次方程二次项系数为零直线与渐近线平行。
相交弦 AB 的弦长 AB 1 k 2 (x1 x2 )2 4x1x2
通径: AB y2 y1
且 PF1 PF2 ,且 △PF1F2 的面积为 1,则双曲线的方程为( )
A. x2 y2 1
23
B. x2 y2 1
32
资料
C. x2 y2 1
4
D. x2 y2 1
4
例 5、与双曲线 x2 y 2 1 有共同的渐近线,且经过点 A (3,2 3} 的双曲线的一个焦点到一条 9 16
P
yy
P
x
F1
Fx 2
yy P F2
xx
P
F1
范围
x a,yR
y a,xR
对称轴 x 轴 , y 轴;实轴长为 2a ,虚轴长为 2b
资料
对称中 原点 O(0, 0)

焦点坐 F1(c, 0) F2 (c, 0)
F1(0, c) F2 (0, c)

焦点在实轴上, c a2 b2 ;焦距: F1F2 2c
渐近线的距离是( )
(A)8
(B)4
(C)2
(D)1
同步练习五:以 y 3x 为渐近线,一个焦点是 F(0,2)的双曲线方程为( )
例 6、下列方程中,以 x±2y=0 为渐近线的双曲线方程是
(A) x2 y2 1 16 4
x2 (B)
y2
1
4 16
(C) x2 y2 1 2
(D)x2 y2 1 2
c
焦点到 准线的 距离
焦点 F1 ( F2 )到准线 l1 ( l2 )的距离为 c a2
c
焦点 F1 ( F2 )到准线 l2 ( l1 )的距离为 a2 c
c
渐近线 方程
ybx a
xb y a
共渐近 线的双
x2 a2
y2 b2
k (k 0)
y2 a2
x2 b2
k(k
0)
曲线系
方程
资料
16 9
同步练习一:如果双曲线的渐近线方程为 y 3 x ,则离心率为( )
4
A. 5
3
B. 5
4
C. 5 或 5
34
D. 3
例 2、已知双曲线 x2 y2 1的离心率为 e 2 ,则 k 的范围为k 0
C. 5 k 0
D. 12 k 0
补充知识点:
等轴双曲线的主要性质有: (1)半实轴长=半虚轴长(一般而言是 a=b,但有些地区教材版本不同,不一定用的是 a,b 这 两个字母); (2)其标准方程为 x^2-y^2=C,其中 C≠0; (3)离心率 e=√2; (4)渐近线:两条渐近线 y=±x 互相垂直; (5)等轴双曲线上任意一点到中心的距离是它到两个焦点 的距离的比例中项; (6)等轴双曲线上任意一点 P 处的切线夹在两条渐近线之间的线段,必被 P 所平分; (7)等轴双曲线上任意一点处的切线与两条渐近线围成三角形的面积恒为常数 a^2; (8)等轴双曲线 x^2-y^2=C 绕其中心以逆时针方向旋转 45°后,可以得到 XY=a^2/2,其 中 C≠0。 所以反比例函数 y=k/x 的图像一定是等轴双曲线。
双曲线
基本知识点
双曲线
标准方程(焦点在 x 轴) x 2 y 2 1(a 0,b 0) a2 b2
标准方程(焦点在 y 轴) y 2 x 2 1(a 0,b 0) a2 b2
第一定义:平面内与两个定点 F1 , F2 的距离的差的绝对值是常数(小于 F1F2 )
的点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。
例题分析:
资料
例 1、动点 P 与点 F1(0,5) 与点 F2 (0, 5) 满足 PF1 PF2 6 ,则点 P 的轨迹方程为( )
A. x2 y2 1
9 16
C. x2 y2 1( y ≥ 3)
16 9
B. x2 y2 1
16 9
D. x2 y2 1( y ≤ 3)
同步练习六:双曲线 8kx2-ky2=8 的一个焦点是(0,3),那么 k 的值是
例 7、经过双曲线
的右焦点 F2 作倾斜角为 30°的弦 AB,
(1)求|AB|.
(2)F1 是双曲线的左焦点,求△F1AB 的周长.
同步练习七过点(0,3)的直线 l 与双曲线
高考真题分析
只有一个公共点,求直线 l 的方程。
M MF1 MF2 2a2a F1F2
P
yy
x
F1
Fx 2
yy F2
xx
P
F1
定义
第二定义:平面内与一个定点 F 和一条定直线 l 的距离的比是常数 e ,当 e 1 时,动点的轨迹是双曲线。定点 F 叫做双曲线的焦点,定直线叫做双曲 线的准线,常数 e ( e 1 )叫做双曲线的离心率。

例 4、下列各对曲线中,即有相同的离心率又有相同渐近线的是
(A) x 2 -y2=1 和 y 2 - x 2 =1 (B) x 2 -y2=1 和 y2- x 2 =1
3
93
3
3
(C)y2- x 2 =1 和 x2- y 2 =1
3
3
(D) x 2 -y2=1 和 x 2 - y 2 =1
3
93
同步练习四:已知双曲线的中心在原点,两个焦点 F1, F2 分别为 ( 5,0) 和 ( 5,0) ,点 P 在双曲线上
相关文档
最新文档