数学高三文数3月模拟考试试卷
2025届浙江绍兴市高三3月份模拟考试数学试题含解析

2025届浙江绍兴市高三3月份模拟考试数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设22(1)1z i i=+++(i 是虚数单位),则||z =( )AB .1C .2D2.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( ) A .2B .3C .-2D .-33.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( )A B .2C .52D .544.已知双曲线22214x y b -=(0b >0y ±=,则b =( )A .BCD .5.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( ) A .4πB .38π C .2π D .58π 6.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( ) A .48B .60C .72D .1207.函数3222x xx y -=+在[]6,6-的图像大致为A .B .C .D .8.要得到函数()sin(3)3f x x π=+的导函数()f x '的图像,只需将()f x 的图像( )A .向右平移3π个单位长度,再把各点的纵坐标伸长到原来的3倍 B .向右平移6π个单位长度,再把各点的纵坐标缩短到原来的13倍 C .向左平移3π个单位长度,再把各点的纵坐标缩短到原来的13倍 D .向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍 9.已知集合{}2|2150A x x x =-->,{}|07B x x =<<,则()R A B 等于( )A .[)5,7-B .[)3,7-C .()3,7-D .()5,7-10.过抛物线22x py =(0p >)的焦点且倾斜角为α的直线交抛物线于两点A B ,.2AF BF =,且A 在第一象限,则cos2α=( ) A 5 B .35C .79D 2311.复数()(1)2z i i =++的共轭复数为( ) A .33i -B .33i +C .13i +D .13i -12.将一块边长为cm a 的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为3722cm ,则a 的值为( )A .6B .8C .10D .12二、填空题:本题共4小题,每小题5分,共20分。
2025届湖南省高三3月份模拟考试数学试题含解析

2025届湖南省高三3月份模拟考试数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知正四面体A BCD -外接球的体积为86π,则这个四面体的表面积为( ) A .183 B .163 C .143 D .1232.已知双曲线2222:1(0)x y M b a a b-=>>的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,则双曲线M 的离心率的取值范围是( )A .(1,2]B .(2,3]C .(2,5]D .(3,5] 3.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3B .2C .32D .1 4.已知1sin 243απ⎛⎫+=⎪⎝⎭,则sin α的值等于( ) A .79- B .29- C .29 D .795.函数3222x x x y -=+在[]6,6-的图像大致为 A . B . C .D .6.设1,0(){2,0x x x f x x -≥=<,则((2))f f -=( ) A .1- B .14 C .12 D .327.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A .2116B .32C .2516D .3 8.设全集U =R ,集合{}2A x x =<,{}230B x x x =-<,则()U A B =( ) A .()0,3B .[)2,3C .()0,2D .()0,∞+ 9.5()(2)x y x y +-的展开式中33x y 的系数为( )A .-30B .-40C .40D .5010.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( )A .48B .60C .72D .12011.设a ,b ,c 分别是ABC ∆中A ∠,B ,C ∠所对边的边长,则直线sin 0A x ay c ⋅--=与sin sin 0bx B y C +⋅+=的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直12.已知集合M ={y |y =,x >0},N ={x |y =lg (2x -)},则M∩N 为( )A .(1,+∞)B .(1,2)C .[2,+∞)D .[1,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2025届浙江省温州市高三3月份第一次模拟考试数学试卷含解析

2025届浙江省温州市高三3月份第一次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,矩形ABCD 中,1AB =,2BC =,E 是AD 的中点,将ABE △沿BE 折起至A BE ',记二面角A BE D '--的平面角为α,直线A E '与平面BCDE 所成的角为β,A E '与BC 所成的角为γ,有如下两个命题:①对满足题意的任意的A '的位置,αβπ+≤;②对满足题意的任意的A '的位置,αγπ+≤,则( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立2.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(),0F c ,若F 到直线20bx ay -=的2,则E 的离心率为( ) A .32 B .12 C .22 D .233.四人并排坐在连号的四个座位上,其中A 与B 不相邻的所有不同的坐法种数是( )A .12B .16C .20D .84.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,过2F 的直线交椭圆于,P Q 两点.若2211||,||,||,||QF PF PF QF 依次构成等差数列,且1||PQ PF =,则椭圆C 的离心率为A .23B .34C .155D 105 5.已知等差数列{}n a 的前n 项和为n S ,且2550S =,则1115a a +=( )A .4B .8C .16D .26.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .7.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( ) A .12m > B .12m ≥ C .1m D .m 1≥8.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( )A .12种B .24种C .36种D .72种 9.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( ) A .B .2C .3D .6 10.函数()2f x ax =-与()x g x e =的图象上存在关于直线y x =对称的点,则a 的取值范围是( )A .,4e ⎛⎤-∞ ⎥⎝⎦B .,2e ⎛⎤-∞ ⎥⎝⎦C .(],e -∞D .(2,e ⎤-∞⎦ 11.ABC ∆中,25BC =D 为BC 的中点,4BAD π∠=,1AD =,则AC =( ) A .5B .22C .65D .212.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π 二、填空题:本题共4小题,每小题5分,共20分。
2021年高三3月模拟考试 数学文 含答案

2021年高三3月模拟考试 数学文 含答案刘 斌 龚小铭一、选择题:本大题共10小题,每小题5分,共50分1、已知是纯虚数,对应的点在实轴上,那么等于( D ) A B . C . D .2、设,,则的值为( D )A. B. C. D. 3、平面向量与的夹角为,,则= ( C ) A. 7 B. C. D. 34、已知实数,若执行如下左图所示的程序框图,则输出的不小于 47的概率为( A )A. B. C. D. 5、已知,实数a 、b 、c 满足<0,且0<a <b <c ,若实数是函数的一个零点,那么下列不等式中,不可能...成立的是 ( D ) A .<a B .>b C .<c D .>c6、已知偶函数在R 上的任一取值都有导数,且则曲线在处的切线的斜率为 ( D ) A.2 B.-2 C.1 D.-17、某几何体的三视图如图所示,当取最大值时,这个几何体的体积为( D )A. B. C. D.8、定义:关于的不等式的解集叫的邻域.已知的邻域为区间,其中分别为椭圆的长半轴和短半轴.若此椭圆的一焦点与抛物线的焦点重合,则椭圆的方程为( B . ) A . B . C . D .9、已知函数()234201312342013x x x x f x x =+-+-++设,且函数F(x)的零点均在区间内,圆的面积的最小值是 ( A )A. B. C. D.10、点P 的底边长为,高为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则取值范围是 (C ) A .[0,2] B .[0,3] C .[0,4] D .[—2,2] 二、填空题:本大题共5小题,每小题5分,共25分. 11、若直线与直线互相垂直,则实数的值为 112、已知等差数列的公差和首项都不等于0,且成等比数列,则 313、已知点P 的坐标,过点P 的直线l 与圆相交于A 、B 两点,则的最小值为 4 14、对于定义域和值域均为的函数,定义,,…,,n =1,2,3,….满足的点称为f 的阶周期点.(1)设则f 的阶周期点的个数是______2_____; (2)设则f 的阶周期点的个数是___4_______ . 15、给出以下五个命题: ①点的一个对称中心②设回时直线方程为,当变量x 增加一个单位时,y 大约减少2.5个单位 ③命题“在△ABC 中,若,则△ABC 为等腰三角形”的逆否命题为真命题否是n ≤3n =n +1x =2x +1n =1输出x输入x 结束开始第4题图④对于命题p:“”则“”⑤设,,则“”是“” 成立的充分不必要条件.不正确的是④⑤三、解答题(本大题共计6小题,满分75分,解答应写出文字说明,证明过程或演算步骤.)16、(本小题满分12分)我校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.(1)求全班人数及分数在[80,90)之间的频数;(2)估计该班的平均分数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.解:(1)由茎叶图知,分数在[50,60)之间的频数为2,频率为0.008×10=0.08全班人数=25所以分数在[80,90)之间的频数为25-2-7-10-2=4…………3分(2)分数在[50,60)之间的总分数为56+58=114分数在[60,70)之间的总分数为60×7+2+3+3+5+6+8+9=456分数在[70,80)之间的总分数为70×10+1+2+2+3+4+5+6+7+8+9=747分数在[80,90)之间的总分数为85×4=340分数在[90,100]之间的总分数为95+98=193所以,该班的平均分数为……………5分估计平均分数时,以下解法也给分:分数在[50,60)之间的频率为=0.08分数在[60,70)之间的频率为=0.28分数在[70,80)之间的频率为=0.40分数在[80,90)之间的频率为=0.16分数在[90,100]之间的频率为=0.08所以该班的平均分数约为55×0.08+65×0.28+75×0.40+85×0.16+95×0.08 =73.8所以频率分布直方图中[80,90)间的矩形的高为÷10=0.016………………8分(3)将[80,90)之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为(1,2),(1,3),(1,4),(1,5)(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有一份在[90,100]之间的基本事件有9个,故至少有一份分数在[90,100]之间的概率是=0.6…17、(本小题满分12分)已知ABCD是矩形,AD=2AB,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.(Ⅰ)求证:DF⊥平面PAF;(Ⅱ)在棱PA上找一点G,使EG∥平面PFD,当PA=AB=4时,求四面体E-GFD的体积.(Ⅰ)证明:在矩形ABCD中,因为AD=2AB,点F是BC的中点,所以平面 …………6分再过作交于,所以平面,且………10分 所以平面平面,所以平面,点即为所求. 因为,则,AG=1………………12分18、(本小题满分12分)已知向量(3sin 2,cos 2),(cos 2,cos 2)m x x n x x ==-. (1)若,求;(2)设的三边满足,且边所对应的角的大小为,若关于的方程有且仅有一个实数根,求的值. 【解】(1)……………4分 由条件有,故……………6分 (2)由余弦定理有,又,从而 ……………8分由此可得,结合图象可得或.……………12分 19、(本小题满分12分)设正项数列都是等差数列,且公差相等,(1)求的通项公式;(2)若的前三项,记数列数列的前n 项和为 解:设的公差为,则,即, 由是等差数列得到: (或=……2分,)则且,所以,……4分, 所以:……5分,……6分(2)由,得到:等比数列的公比, 所以:, ……8分 所以1331111log 3log 3(1)1n n n c n n n n +===-⋅++……10分1111111122311n T n n n =-+-++-=-++…… ……12分 20.(本小题满分13分)已知函数.(1)若曲线在点处的切线与直线垂直,求实数的值. (2)若,求的最小值; (3)在(Ⅱ)上求证:. 解:(Ⅰ)的定义域为,,根据题意有, 所以解得或. ………………………………4分(Ⅱ))0(,)2)((212)(222222>+-=-+=+-='x x a x a x x a ax x x a x a x f当时,因为,由得,解得, 由得,解得,所以函数在上单调递减,在上单调递增; …………………8分(Ⅲ)由(2)知,当a>0, 的最小值为()()ln 3,()ln 4g a f a a a a g a a '==+=+ 令当44,(),()a e g a a e g a --><单调递增,当单调递减 。
肇庆市高中毕业班2025届高三第三次模拟考试数学试卷含解析

肇庆市高中毕业班2025届高三第三次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数()()222cos 137f x x x m x m m =+-+++-有且仅有一个零点,则实数m 的值为( )A .3372-- B .3372-+ C .4- D .22.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( )A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b ab aa ab b >>>D .1log log a bb a a b a b >>>3.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2或233B .2或3C .3或62D .233或624.双曲线的离心率为,则其渐近线方程为 A .B .C .D .5.已知()5x a +展开式的二项式系数和与展开式中常数项相等,则2x 项系数为( ) A .10 B .32 C .40 D .806.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)7.函数2|sin |2()61x x f x x=-+的图象大致为( )A .B .C .D .8.在复平面内,复数21(1)ii +-对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知复数(2)1ai iz i+=-是纯虚数,其中a 是实数,则z 等于( )A .2iB .2i -C .iD .i -10.一个几何体的三视图如图所示,则该几何体的体积为( )A .103B .3C .83D .7311.已知集合A {x x 0}︱=>,2B {x x x b 0}=-+=︱,若{3}A B ⋂=,则b =( ) A .6-B .6C .5D .5-12.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A .{}1,3-B .{}1,0-C .{}0,3D .{}1,0,3-二、填空题:本题共4小题,每小题5分,共20分。
2023年3月济南市高三模拟考试数学试题参考答案

绝密★启用并使用完毕前2023年3月济南市高三模拟考试数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
题号12345678答案DACDCBCB二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分。
题号9101112答案ADBC ABDACD三、填空题:本题共4小题,每小题5分,共20分。
13.160;14.2450x y -+=;15.510[33,;16.2.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
17.(10分)【解析】(1)因为22()cos sin cos f x x x x x=+-2cos 2x x=-π2sin(2)6x =-,所以ππ3π2π22π262k x k +-+ ,解得π5πππ36k x k ++ ,所以()f x 的单调递减区间为π5ππ,π36k k ⎡⎤++⎢⎥⎣⎦()k ∈Z .(2)因为π()2sin(2)26f A A =-=,所以sin(2)16A π-=.因为(0π)A ∈,,所以ππ11π2()666A -∈-,,所以ππ262A -=,所以π3A =.由题意知,ABD ACD ABC S S S +=△△△,所以BAC AC AB CAD AC AD BAD AD AB ∠⋅⋅=∠⋅+∠⋅sin 21sin 21sin 21,所以AD =18.(12分)【解析】(1)如图,连接AC ,交BD 于点O ,连接PO ,由AD AB =,CD BC =,AC AC =,可得ABC ACD △△≌,所以BAC DAC ∠=∠,又AO AO =,所以AOB AOD △△≌,所以BO OD =,即O 为BD 中点,在等腰PBD △中,可得BD OP ⊥,在等腰BCD △中,BD OC ⊥,又OP OC O = ,所以BD ⊥平面POC ,又PC ⊂平面POC ,所以BD PC ⊥.(2)由(1)可得,AC BD ⊥,又CD =12OD BD ==所以2CO ==,3AO ==,由于P ABD -为正三棱锥,点P 在底面ABD 的垂足一定在AO 上,设垂足为M ,根据正三棱锥的性质可得223AM AO ==,PM ==,如图,以OA ,OB 所在直线为x 轴,y 轴建立空间直角坐标系.可得(3,0,0)A ,(2,0,0)C -,(0,D,P,(3,0,PC =-,(DC =-又(5,0,0)AC =-,(或(3,AD =-,(AP =-)设平面PCD 的法向量(,,)x y z =n,可得030002020PC x z DC x x ⎧⎧=--=+=⎪⎪⇒⇒⎨⎨=-+=-=⎪⎪⎪⎩⎩⎩n n ,不妨令x =,可得3)=-n ,所以||||AC d =n n ,故所以点A 到平面PCD的距离为19.(12分)【解析】(1)因为+1+111+1n nn n a a b b n n++-=-()()()()+11+11=+1n n n a n a n n +-+()()()+1+1+1+1n n n na n n a n n +--=()()1+1+1n n n n+-=0=,所以+1n n b b =,所以{}n b 是常数数列.(2)因为11a =,所以11121n a b b +===,所以12na n+=,所以21n a n =-.因为()2121sin 212sin π222n n n c n n --ππ⎡⎤⎛⎫=-+=-+ ⎪⎢⎥⎣⎦⎝⎭,所以()135412π3π5ππsin sin sin sin 2π22222222n n S n -⎡⎤⎛⎫=++++-+++++ ⎪⎢⎥⎝⎭⎣⎦ ()()22141111114n -=-+-+-+- 41223n +-=,所以412223n nS +-=.20.(12分)【解析】(1)1(38414451545658647480)5610x =⨯+++++++++=.(2)因为体质测试不合格的学生有3名,所以X 的可能取值为0,1,2,3.因为373107(0)24C P X C ===,217331021(1)40C C P X C ===,12733107(2)40C C P X C ===,333101(3)120C P X C ===.所以X 的分布列为(3)因为56x =,222222222221(181512520281824)16910s =⨯+++++++++=,所以56μ=,13σ=.因为(3082)(22)0.9545P X P μσξμσ=≈-+ ,所以学生的体质测试成绩恰好落在区间[3082],得概率约为0.9545,因为100名学生的体质测试成绩恰好落在区间[3082],的人数为(1000.9545)Y B ,,所以1000.954595.45E Y =⨯=().X 0123P7242140740112021.(12分)【解析】(1)将p pk kx y 22+-=代入py x 22=,化简得0)1(4222=-++k p pkx x .(*)方程(*)的判别式0)44(442222=--=∆p k p k p 化简得0442=+-k k ,即.2=k (2)设),(A A y x A ,),(B B y x B ,),(C C y x C ,),(D D y x D ,),(E E y x E ,),(F F y x F ,抛物线py x 22=上过点C B A ,,的切线方程分别为,,,222222222C C B B A A x x x py x x x py x x x py -=-=-=两两联立,可以求得交点F E D ,,的横坐标分别为,,,222CBF CA E BA D x x x x x x x x x +=+=+=注意到结论中线段长度的比例可以转化为点的横坐标的比例,得BC AB x x x x BFDB FCEF DEAD --===,命题得证.22.(12分)【解析】(1)2()e 2xx f x =-,1(1)e 2f =-,'()e x f x x =-,'(1)e 1f =-,所以曲线()y f x =在点(1(1))f ,处的切线方程1(e (e 1)(1)2y x --=--,即2(e 1)210x y --+=.(2)因为2'()e 20x f x ax x a =---≥在区间[0,)+∞上恒成立,所以min 2e ()2x xa x -+ ,令2e ()2x xg x x -=+,则222(e 1)(2)(e )2'()(2)x x x x x g x x -+--⋅=+,令2()(e 1)(2)(e )2x x h x x x x =-+--⋅,则2'()e 2x h x x x =+,当0x ≥时,'()0h x ≥,()h x 单调递增,()(0)0h x h =≥,所以'()0g x ≥,所以()g x 单调递增,min 1()(0)2g x g ==,所以12a ≤.(3)23()e 232xa x f x x ax =---,(0)1f =,2'()e 2x f x ax x a =---,'(0)12f a =-,''()e 21x f x ax =--,'''()e 2x f x a =-,当12a =时,231()e 62x x f x x x =---,2'()e 12xx f x x =---,令2()e 12xx g x x =---,则'()e 1x g x x =--,''()e 1x g x =-,当0x <时,''()0g x <,'()g x 在(,0)-∞上单调递减,当0x ≥时,''()0g x ≥,'()g x 在[0,)+∞上单调递增,'()'(0)0g x g =≥,()g x 在(,)-∞+∞上单调递增,且(0)0g =,所以,当0x <时,()0g x <,'()0f x <,()f x 在(,0)-∞上单调递减,当0x >时,()0g x >,'()0f x >,()f x 在(0,)+∞上单调递增,所以min ()(0)1f x f ==.所以12a =适合,当12a >时,当0ln 2x a <<时,'''()0f x <,''()f x 在(0,ln 2)a 上单调递减,''()''(0)0f x f <=,'()f x 在(0,ln 2)a 上单调递减,'()'(0)120f x f a <=-<,()f x 在(0,ln 2)a 上单调递减,此时,()(0)1f x f <=,舍去.当0a ≤时,当0x <时,''()e 210x f x ax =--<,'()f x 在(,0)-∞上单调递减,'()'(0)120f x f a >=->,()f x 在(,0)-∞上单调递增,()(0)1f x f <=,舍去;当102a <<时,当ln 20a x <<时,'''()0f x >,''()f x 在(ln 2,0)a 上单调递增,''()''(0)0f x f <=,'()f x 在(ln 2,0)a 上单调递减,'()'(0)120f x f a >=->,()f x 在(ln 2,0)a 上单调递增,此时,()(0)1f x f <=,舍去.综上,12a =.。
山东省济南市2024届高三下学期3月模拟考试数学试题

故选:B.
8.A
【分析】
因为
ln
x
£
a x
+b
£
ex
,所以
x ln
x
£
bx
+
a
£
xe x
,即求直线
y
=
bx
+
a
的纵截距
a
的最小值,
设
f
(x)
=
xe x
,利用导数证明
f
(x)
在
xÎ
éêë1,
3ù 2 úû
的图象上凹,所以直线与
f
(x)
相切,切点横坐
标越大,纵截距越小,据此即可求解.
【详解】因为
ln
x
£
(3)设 G 为直线 A1M 与直线 A2 N 的交点, VGMN ,△GA1A2 的面积分别为 S1 , S2 ,求
S1 的最小值. S2 19 . 在 空 间 直 角 坐 标 系 O- xyz 中 , 任 何 一 个 平 面 的 方 程 都 能 表 示 成
Ax
+
By
+
Cz
+
D
=
0,其中
A, B,C,
a
(1)求在
X
>
0
的条件下,
X
=
b a
的概率;
(2)求 X 的分布列及其数学期望.
18.已知双曲线
C:
x2 4
-
y2
= 1 的左右顶点分别为
A1 ,
A2
,过点
P (4, 0)
的直线 l
与双曲
线 C 的右支交于 M,N 两点.
海南省海口市名校2025届高三第三次模拟考试数学试卷含解析(1)

海南省海口市名校2025届高三第三次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知直线x y t +=与圆()2222x y t t t R +=-∈有公共点,则()4t t -的最大值为( )A .4B .289C .329D .3272.函数cos ()cos x xf x x x+=-在[2,2]ππ-的图象大致为A .B .C .D .3.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年D .早于公元前6000年4.设等差数列{}n a 的前n 项和为n S ,若495,81a S ==,则10a =( ) A .23B .25C .28D .295.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ). A .12B .5C .52D .56.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺 7.将函数()sin(2)3f x x π=-()x R ∈的图象分别向右平移3π个单位长度与向左平移n (n >0)个单位长度,若所得到的两个图象重合,则n 的最小值为( )A .3π B .23π C .2π D .π8.如图,2AB =是圆O 的一条直径,,C D 为半圆弧的两个三等分点,则()AB AC AD ⋅+=( )A .52B .4C .2D .13+9.执行如图的程序框图,若输出的结果2y =,则输入的x 值为( )A .3B .2-C .3或3-D .3或2-10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对11.已知函数()ln ln(3)f x x x =+-,则( )A .函数()f x 在()0,3上单调递增B .函数()f x 在()0,3上单调递减C .函数()f x 图像关于32x =对称 D .函数()f x 图像关于3,02⎛⎫⎪⎝⎭对称 12.如图,在中,点M 是边的中点,将沿着AM 翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的( )A .重心B .垂心C .内心D .外心二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学高三文数3月模拟考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共11题;共22分)
1. (2分) (2019高一上·蕉岭月考) 设全集,则
=()
A .
B .
C .
D .
2. (2分)(2019·新疆模拟) 设复数:(是虚数单位),的共轭复数为,则()
A .
B .
C .
D .
3. (2分) (2019高二上·水富期中) 若命题,,则命题为()
A . ,
B . ,
C . ,
D . ,
4. (2分) (2019高一下·菏泽月考) 的值是()
A .
B .
C .
D .
5. (2分)(2020·达县模拟) 已知直线,,,平面,,下列结论中正确的是
A . 若,,,,则
B . 若,,则
C . 若,,则
D . 若,,则
6. (2分)下列叙述中正确的是()
A . 从频率分布表可以看出样本数据对于平均数的波动大小
B . 频数是指落在各个小组内的数据
C . 每小组的频数与样本容量之比是这个小组的频率
D . 组数是样本平均数除以组距
7. (2分)若两个球的表面积之比为1:4,则这两个球的体积之比为()
A . 1:2
B . 1:4
C . 1:8
D . 1:16
8. (2分) (2017高二上·大连期末) 已知焦点在y轴上的双曲线C的中心是原点O,离心率等于,以双曲线C的一个焦点为圆心,2为半径的圆与双曲线C的渐近线相切,则双曲线C的方程为()
A .
B .
C .
D .
9. (2分)(2018·临川模拟) 已知,,点满足,则的最大值为()
A . -5
B . -1
C . 0
D . 1
10. (2分) (2016高一上·南充期中) 已知 a> b,则下列不等式成立的是()
A . ln(a﹣b)>0
B .
C . 3a﹣b<1
D . loga2<logb2
11. (2分) (2017高三下·深圳模拟) 直线是圆的一条对称轴,过点作斜率为1的直线,则直线被圆所截得的弦长为()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
12. (1分) (2018高三上·太原期末) 若函数满足、,都有,且
,,则 ________.
13. (1分) (2017高三上·甘肃开学考) 观察下列等式:12=1,12﹣22=﹣3,12﹣22+32=6,12﹣22+32﹣42=﹣10,…由以上等式推测到一个一般的结论:对于n∈N* , 12﹣22+32﹣42+…+(﹣1)n+1n2=________.
14. (1分)在长方体ABCD﹣A1B1C1D1中,M、N分别是棱BB1、B1C1的中点,若∠CMN=90°,则异面直线AD1与DM所成的角为________ .
15. (1分) (2017高二上·定州期末) 设抛物线(t为参数,p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C( p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3 ,则p的值为________.
三、解答题 (共7题;共70分)
16. (10分)(2018·泉州模拟) 等差数列的前项和为,已知 .
(1)求的通项公式;
(2)求数列的前项和.
17. (10分) (2017高二下·南昌期末) 如图,在底面是菱形的四棱锥P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,点E在PD上,且PE:ED=2:1.
(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
18. (10分) (2019高二上·上海期中) 已知平面上的线段及点,任取上一点,线段长度的最小值称为点到线段的距离,记作 .
(1)求点到线段的距离;
(2)求点到线段的距离;
(3)设是长为的线段,求点的集合所表示的图形的面积为多少?
(4)设是长为的线段,求点的集合所表示的图形的面积为多少?
(5)求到两条线段、距离相等的点的集合,并在直角坐标系中作出相应的轨迹.其中,,,,, .
(6)求到两条线段、距离相等的点的集合,并在直角坐标系中作出相应的轨迹.其中,,,,, .
19. (10分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的关系如图二的抛物线段表示.(1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的
单位:元/102㎏,时间单位:天)
20. (10分) (2016高三上·洛宁期中) 函数f(x)=x•ex .
(1)求f(x)的极值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.
21. (10分) (2017高三上·安庆期末) 在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(Ⅰ)若A,B为曲线C1 , C2的公共点,求直线AB的斜率;
(Ⅱ)若A,B分别为曲线C1 , C2上的动点,当|AB|取最大值时,求△AOB的面积.
22. (10分) (2019高三上·葫芦岛月考) 已知集合, .
(1)当时,求;
(2)若,求的取值范围.
参考答案一、单选题 (共11题;共22分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、答案:略
7-1、答案:略
8-1、答案:略
9-1、答案:略
10-1、答案:略
11-1、答案:略
二、填空题 (共4题;共4分)
12-1、答案:略
13-1、答案:略
14-1、
15-1、
三、解答题 (共7题;共70分)
16-1、答案:略
16-2、答案:略
17-1、
18-1、答案:略
18-2、
18-3、答案:略
18-4、
18-5、答案:略
18-6、
19-1、
20-1、答案:略20-2、答案:略
21-1、
22-1、答案:略22-2、答案:略。