勾股定理教案课程
(精品教案)沪科版《勾股定理》讲课稿(精选6篇)

(精品教案)沪科版《勾股定理》讲课稿(精选6篇)帮大伙儿整理的沪科版《勾股定理》讲课稿(精选6篇),欢迎大伙儿借鉴与参考,希翼对大伙儿有所帮助。
勾股定理是学生在差不多掌握了直角三角形的有关性质的基础上举行学习的,它是直角三角形的一条很重要的性质,是几何中最重要的定理之一,它揭示了一具三角形三条边之间的数量关系,它能够解决直角三角形中的计算咨询题,是解直角三角形的要紧依照之一,在实际日子中用途非常大。
教材在编写时注意培养学生的动手操作能力和分析咨询题的能力,经过实际分析、拼图等活动,使学生获得较为直观的印象;经过联系和比较,明白勾股定理,以利于正确的举行运用。
据此,制定教学目标如下:1、明白并掌握勾股定理及其证明。
2、可以灵便地运用勾股定理及其计算。
3、培养学生观看、比较、分析、推理的能力。
4、经过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:勾股定理的证明和应用。
教学难点:勾股定理的证明。
教法和学法是体如今整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学日子动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生经过观看、分析、讨论、操作、归纳,明白定理,提高学生动手操作能力,以及分析咨询题和解决咨询题的能力。
3、经过演示实物,引导学生观看、操作、分析、证明,使学生得到获得新知的成功感觉,从而激发学生钻研新知的欲望。
本节内容的教学要紧体如今学生动手、动脑方面,依照学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公讲,把一根直尺折成直角,两端连接得到一具直角三角形。
假如勾是3,股是4,这么弦等于5。
如此引起学生学习兴趣,激发学生求知欲。
2、是别是所有的直角三角形都有那个性质呢?教师要善于激疑,使学生进入乐学状态。
勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
勾股定理教案第一课时

勾股定理教案第一课时
一、教学目标
1. 理解勾股定理的基本概念,知道勾股定理的定义。
2. 能够熟练地运用勾股定理解决实际问题。
3. 通过实例分析,提高学生的数学思维能力。
二、教学重点与难点
1. 教学重点:勾股定理的定义与运用。
2. 教学难点:勾股定理的运用与解释。
三、教学过程
1. 导入新课:通过提问的方式,引导学生思考勾股定理的实际应用,激发学生的学习兴趣。
2. 新课讲授:
a. 讲解勾股定理的定义,让学生理解什么是勾股定理。
b. 通过实例分析,让学生掌握勾股定理的运用方法。
c. 通过实际问题解决,让学生熟练掌握勾股定理的运用。
3. 课堂练习:通过课堂练习,让学生巩固勾股定理的运用方法。
4. 课堂总结:总结本节课的主要内容,强调勾股定理的重要性和运用方法。
四、教学评价
通过课堂表现、课堂练习等方式,对学生的学习情况进行评价。
五、教学反思
通过本节课的教学,学生是否能够理解勾股定理的定义,是否能够熟练运用勾股定理解决实际问题,是否有足够的课堂参与度等,都是需要进行教学反思的内容。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
初中数学《勾股定理》整章教案共6个

三、例题讲解例1:如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?学生理解勾股定理的逆定理应用四、巩固新知师巡视学生做练习后评讲1、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。
2、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
完成练习,指名回答板书五、归纳小结教师强调,今天,我们共同探究了利用勾股定理的逆定理来求角度、求边长以及生活中的实际问题,课下要反复思索理解。
学生梳理并理解勾股定理的逆定理解决实际问题六、布置作业课本P34第4、5题板书设计17.2 勾股定理的逆定理(二)1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题教学反思工作单位姓名课题第十九章《勾股定理》小结复习课时第15课时教学目标1.复习勾股定理和勾股定理的逆定理2.能进行相应的计算,并能在实际问题中应用3.灵活应用勾股定理及逆定理解决实际问题重点难点重点:能熟练运用勾股定理进行计算和证明。
难点:灵活应用勾股定理及逆定理解决实际问题。
教法学法归纳法教学准备多媒体课件教学步骤教师活动学生活动二次备课一、导入新课问题 1 如图,这是矗立在萨摩斯岛上的雕像,这个雕像给你怎样的数学联想?学生回答问题,叙述勾股定理及其逆定理二、巩固旧知一、理清脉络、构建框架知识1:已知两边求第三边知识2:利用方程求线段长知识3:判断一个三角形是否是直角三角形学生按知识点回顾知识,点名回答问题。
新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
勾股定理全章教案

17.1勾股定理(1)一、教学目标:1.体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题。
2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。
3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。
二、教学重点、难点:重点:探索和验证勾股定理过程; 难点:通过面积计算探索勾股定理。
三、教学方法及教学手段:采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。
四、教学过程:1.创设情境,导入课题多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。
2.自主探索,合作交流 活动一:动脑想一想小明用一边长为cm 1的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。
②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为cm 1),你能知道斜边的长吗?③观察图形,并填空:⑴正方形P 的面积为2cm , 正方形Q 的面积为2cm , 正方形R 的面积为2cm 。
⑵你能发现图中正方形P 、Q 、R 的面积之间有什么关系?从中你发现了什么?活动二:动手做一做其它一般的直角三角形,是否也有类似的性质呢?(你打算用什么方法来研究?共同讨论方法后再确立研究方向) (图中每一小方格表示21cm )⑴正方形P 的面积为2cm ,正方形Q 的面积为2cm , 正方形R 的面积为2cm 。
⑵正方形P 、Q 、R 的面积之间的关系 是什么?⑶你会用直角三角形的边长表示正方形P 、Q 、R 的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。
数学勾股定理教案优秀7篇

数学勾股定理教案优秀7篇篇一:《勾股定理》优秀教案篇一一、学生学问状况分析本节将利用勾股定理及其逆定理解决一些详细的实际问题,其中须要学生了解空间图形、对一些空间图形进行绽开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了肯定的相识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的学问基础和活动阅历基础。
二、教学任务分析本节是义务教化课程标准北师大版试验教科书八年级(上)第一章《勾股定理》第3节。
详细内容是运用勾股定理及其逆定理解决简洁的实际问题。
当然,在这些详细问题的解决过程中,须要经验几何图形的抽象过程,须要借助视察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题实力和应用意识;一些探究活动详细肯定的难度,须要学生相互间的合作沟通,有助于发展学生合作沟通的实力。
三、本节课的教学目标是:1、通过视察图形,探究图形间的关系,发展学生的空间观念。
2、在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的实力及渗透数学建模的思想。
3、在利用勾股定理解决实际问题的过程中,体验数学学习的好用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点。
四、教法学法1、教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参加意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过学问再现,孕育教学过程;(2)从学生活动动身,顺势教学过程;(3)利用探究探讨手段,通过思维深化,领悟教学过程。
2、课前打算教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具。
五、教学过程分析本节课设计了七个环节、第一环节:情境引入;其次环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:沟通小结;第七环节:布置作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理
教学目标
1、了解勾股定理的推理过程,掌握勾股定理的内容,会用面积法证明勾股定理;
2、从实际问题中抽象出数学模型,利用勾股定理解决,渗透建模思想和数形结合思想;
3、通过研究一系列富有探究性的问题,培养在实际生活中发现问题总结规律的意识和能力.知识梳理
1.勾股定理
(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于_____的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
(2)勾股定理应用的前提条件是在___三角形中.
(3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2及c2=a2+b2.
(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.
2. 直角三角形的性质
(1)有一个角为90°的三角形,叫做直角三角形.
(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).
性质2:在直角三角形中,两个锐角___.
性质3:在直角三角形中,斜边上的___等于斜边的一半.(即直角三角形的外心位于斜边的中点)
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.
性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的___;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直
角边所对的锐角等于___.
3.勾股定理的应用
(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.
(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:
①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.
②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为
边长的多边形的面积等于以直角边为边长的多边形的面积和.
③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.
④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整
数的直角三角形的斜边.
4.平面展开-最短路径问题
(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,_________.在平面图形上构造直角三角形解决问题.
(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.
典型例题
1.勾股定理.
【例1】(2014•临沂蒙阴中学期末)已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()
A.21 B.15 C.6 D.以上答案都不对.
练1.(2014秋•绥化六中质检)在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()
A.84 B.24 C.24或84 D.42或84
练2.(2014春•江西赣州中学期末)如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()
A.1 B. C. D.2
2. 等腰直角三角形.
【例2】(2014•鹰潭中学校级模拟)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰
Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()
A.2n﹣2 B.2n﹣1 C.2n D.2n+1
练3.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()
A. B. C. D.
3.等边三角形的性质;勾股定理.
【例3】(2014•福建泉州中学一模)以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是()
A.2×()10厘米 B.2×()9厘米 C.2×()10厘米 D.2×()9厘米
练4.等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为.
4.勾股定理的应用.
【例4】(2014•福建晋江中学月考)工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为
()
A.80cm B. C.80cm或 D.60cm
练5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()
A.米 B.米 C.米或米 D.米5.平面展开-最短路径问题.
【例5】(2014•贵阳八中期中)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()
A.6cm B.12cm C.13cm D.16cm
练6.(2014春•普宁市校级期中)如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()m.
A.4.8 B. C.5 D.
随堂检测
1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()A.不能确定 B. C.17 D.17或
2.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c =()
A.1::2 B.:1:2 C.1:1:2 D.1:2:3
3.直角三角形的两边长分别为3厘米,4厘米,则这个直角三角形的周长为()A.12厘米 B.15厘米 C.12或15厘米 D.12或(7+)厘米4.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.
5.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.
6.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)
课堂小结
_________________________________________________________________________________
_________________________________________________________________________________
课后作业
1.若一个直角三角形的三边长分别为3,4,x,则满足此三角形的x值为()A.5 B. C.5或 D.没有
2.已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A.5cm B.cm C.5cm或cm D.cm
3.已知Rt△ABC中的三边长为a、b、c,若a=8,b=15,那么c2等于()A.161 B.289 C.225 D.161或289
4.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.18
5.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.
6.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.
7.如图,一个长方体盒子,一只蚂蚁由A出发,在盒子的表面上爬到点C1,已知AB=5cm,BC=3cm,CC1=4cm,则这只蚂蚁爬行的最短路程是cm.
8.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.
9.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.
(精确到个位,参考数据:≈1.4,≈1.7,≈2.2).
10.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.。