初中数学《勾股定理》教案教学设计
初中数学教学课例《勾股定理》教学设计及总结反思

理的探索和验证过程,努力做到由传统的数学课堂向实
验课堂转变.
活动 1 欣赏图片了解历史
活动 2 探索勾股定理
活动 3 证明勾股定理
活动 4 小结、布置作业
通过对赵爽弦图的了解,激发起学生对勾股定理的
探索兴趣. 教学过程
观察、分析方格图,得出直角三角形的性质——勾
股定理,发展学生分析问题的能力.
通过剪拼赵爽弦图证明勾股定理,体会数形结合思
想,激发探索精神.
回顾、反思、交流.布置课后作业,巩固、发展提
高.
根据教材的特点,本节课从知识与方法、能力与素
质的层面确定了相应的教学目标.把学生的探索和验证
活动放在首位,一方面要求学生在老师的引导下自主探 课例研究综
索,合作交流,另一方面要求学生对探究过程中用到的 述
数学思想方法有一定的领悟和认识,达到培养能力的目
初中数学教学课例《勾股定理》教学设计及总结反思
学科
初中数学
教学课例名
《勾股定理》
称
在勾股定理探索过程中,发展合情理能力,体现数
形结合思想。
教材分析
重点 探索和证明勾股定理
难点
用拼图方法证明勾股定理
了解勾股定理的文化背景,体验勾股定理的探索过 教学目标
程。
1.通过拼图活动,体验数学思维的严谨性,发展形
学生学习能 象思维。
力分析
2.探究活动中,学会与人合作并能与他探索式教学法,采用教师引导启发。学生
独立思考,自主探究,讨论交流合作的方式,为学生提
教学策略选 供探索,思考,观察的时间和空间。
择与设计
整课以问题情景----分析探究----得出猜想----
实践验证----总结升华为主线,使学生亲身体验勾股定
初中数学八年级上册苏科版3.1勾股定理教学设计

(二)过程与方法
1.通过引导学生观察、思考、探究,培养他们发现问题、分析问题和解决问题的能力。
2.通过小组合作、讨论交流,培养学生团队协作能力和表达能力。
3.运用数形结合的方法,将勾股定理与图形结合,培养学生直观想象和空间思维能力。
4.培养学生尊重事实、追求真理的科学精神,使他们形成正确的价值观。
在教学过程中,教师要注重启发式教学,引导学生积极参与,充分调动他们的主观能动性。通过讲解、举例、练习等多种形式,使学生掌握勾股定理的知识与技能,提高他们的过程与方法能力,同时关注情感态度与价值观的培养,使学生在轻松愉快的氛围中学习数学,提高综合素质。
二、学情分析
八年级学生在学习勾股定理之前,已经掌握了直角三角形的定义及其性质,具备了一定的几何图形认知和空间思维能力。此外,他们在前期的数学学习中,积累了较多的代数运算经验,具备了一定的逻辑推理和问题解决能力。但考虑到勾股定理涉及几何与代数的综合运用,学生在理解与应用方面可能存在以下问题:
1.对勾股定理的理解不够深入,难以将其与实际图形结合起来进行推理。
4.反思总结:要求学生撰写学习反思,总结自己在学习勾股定理过程中的收获和不足,以及解决问题的策略和心得体会。
-引导学生从知识掌握、解题技巧、团队合作等方面进行反思,形成书面的学习报告。
-鼓励学生提出对课堂教学的建议,以促进教学相长,提高教学质量。
5.作业评价:在下次课堂上,安排时间让学生展示自己的作业成果,通过师生互评、生生互评等方式,对作业进行评价和反馈。
7.课后作业:
-设计具有挑战性的作业,鼓励学生自主探索,巩固所学知识。
-布置开放性问题,引导学生运用勾股定理解决实际问题,培养学生的创新意识和实践能力。
人教版数学八年级下册17.1《勾股定理》(第1课时)教学设计

人教版数学八年级下册17.1《勾股定理》(第1课时)教学设计一. 教材分析《勾股定理》是初中数学八年级下册第17.1节的内容,它是数学史上重要的定理之一。
本节内容通过引入直角三角形三边的关系,引导学生探究并证明勾股定理,进而运用该定理解决实际问题。
教材内容安排合理,由浅入深,既注重理论证明,又强调实际应用,有利于培养学生的探究能力和实践能力。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本知识,直角三角形的相关概念,以及一些基本的证明方法。
但勾股定理的证明较为复杂,需要学生具有较强的逻辑思维能力和空间想象力。
同时,学生需要通过实例感受勾股定理在实际生活中的应用,提高学习兴趣和积极性。
三. 教学目标1.理解勾股定理的定义和意义,掌握勾股定理的表达式。
2.学会运用勾股定理解决直角三角形相关问题。
3.了解勾股定理在实际生活中的应用,提高学习的实践能力。
4.培养学生的逻辑思维能力,提高学生解决问题的能力。
四. 教学重难点1.重难点:勾股定理的证明和应用。
2.证明过程中涉及到的逻辑推理和空间想象力。
3.将勾股定理应用于解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生探究勾股定理。
2.运用多媒体辅助教学,展示勾股定理的证明过程。
3.采用案例教学法,让学生感受勾股定理在实际生活中的应用。
4.小组讨论,培养学生的团队合作能力。
六. 教学准备1.多媒体教学设备。
2.勾股定理相关教案、PPT、学习资料。
3.直角三角形模型或图片。
4.练习题及答案。
七. 教学过程1.导入(5分钟)通过展示直角三角形模型或图片,引导学生回顾直角三角形的相关知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍勾股定理的定义和表达式,让学生初步了解勾股定理。
3.操练(15分钟)分组讨论,让学生尝试证明勾股定理。
在讨论过程中,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对学生证明过程中的共性问题,进行讲解和总结,让学生掌握勾股定理的证明方法。
人教版初中数学八年级下册《勾股定理》教案

人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。
本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。
但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。
三. 教学目标1.了解勾股定理的定义和证明过程。
2.能够运用勾股定理解决直角三角形的相关问题。
3.培养学生的逻辑思维能力和空间想象能力。
4.激发学生对数学的兴趣,培养合作探究的精神。
四. 教学重难点1.教学重点:勾股定理的定义和证明过程。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。
六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。
2.学具:学生用书、练习册、文具。
七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。
教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。
”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。
学生独立思考,教师选取部分学生进行讲解。
5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。
勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
初中数学勾股定理教案 初中数学勾股定理教案优秀3篇

初中数学勾股定理教案初中数学勾股定理教案优秀3篇初中数学勾股定理教案优秀3篇由作者为您收集整理,希望可以在初中数学勾股定理教案方面对您有所帮助。
初中数学勾股定理教案篇一一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的形的特点,转化为三边之间的数的关系,它是数形结合的榜样。
它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。
本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。
三、教学流程:(一)引入同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。
勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
初中数学《勾股定理》整章教案共6个

三、例题讲解例1:如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?学生理解勾股定理的逆定理应用四、巩固新知师巡视学生做练习后评讲1、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。
2、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
完成练习,指名回答板书五、归纳小结教师强调,今天,我们共同探究了利用勾股定理的逆定理来求角度、求边长以及生活中的实际问题,课下要反复思索理解。
学生梳理并理解勾股定理的逆定理解决实际问题六、布置作业课本P34第4、5题板书设计17.2 勾股定理的逆定理(二)1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题教学反思工作单位姓名课题第十九章《勾股定理》小结复习课时第15课时教学目标1.复习勾股定理和勾股定理的逆定理2.能进行相应的计算,并能在实际问题中应用3.灵活应用勾股定理及逆定理解决实际问题重点难点重点:能熟练运用勾股定理进行计算和证明。
难点:灵活应用勾股定理及逆定理解决实际问题。
教法学法归纳法教学准备多媒体课件教学步骤教师活动学生活动二次备课一、导入新课问题 1 如图,这是矗立在萨摩斯岛上的雕像,这个雕像给你怎样的数学联想?学生回答问题,叙述勾股定理及其逆定理二、巩固旧知一、理清脉络、构建框架知识1:已知两边求第三边知识2:利用方程求线段长知识3:判断一个三角形是否是直角三角形学生按知识点回顾知识,点名回答问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学《勾股定理》教案教学设计
初中数学《勾股定理》教案教学设计
一、教学目标
【知识与技能】
了解勾股定理的不同证明方法,理解勾股定理内容并能够应用公式解决实际问题。
【过程与方法】
通过小组合作学习探究数学定理的证明过程,在过程中了解数学中的数形结合思想。
【情感态度与价值观】
提高数学素养能力,并在学习中感受数学的乐趣和魅力。
二、教学重难点
【重点】
勾股定理的内容及应用。
【难点】
勾股定理的证明。
三、教学过程
(一)导入新课
1.在一般三角形当中,三条边存在什么样的关系呢?
学生自由回答,两边之和大于第三边,两边之差小于第三边。
2.那么在特殊的三角形即直角三角形当中三边还会存在什么特殊的数量关系呢(
板书一个直角三角形,两直角边分别为a、b,斜边为c。
)
引入课题,勾股定理。
(二)提出原理
(1)大屏幕展示毕达哥拉斯发现勾股定理时的地砖图案,给出不同的类型,请学生观察,小组合作(采用拼补或者数方格的方式)填写如下表格:
(2)大胆猜想
根据表格数据结果小组内交流探究,大胆猜想在直角三角形当中三边存在什么样的数量关系?
引导回答,在直角三角形中,两直角边的平方和等于斜边的平方。
(3)严谨证明
大屏幕出示“赵爽弦图”,简单讲解,早在我国汉代就有人证明了这一猜想,及这就是今天所要学习的勾股定理。
同学观察,互动方式说出图形的特点,有四个全等的直角三角形及一个正方形,请学生随意裁出四个全等的直角三角形,按照课本图例拼成一个大正方形,计算此正方形的面积,并尝试进行证明勾股定理。
(设置巡视即教师指导环节) 请学生代表上台板演计算过程:大正方形面积=
师生共同总结:对任意一个直角三角形都有两直角边的平方和等于斜边的平方。
(三)讲解原理
按照板书上的直角三角形,指出直角边和斜边,向学生讲解核心内容:
1.强调a,b,c的含义
2.勾股定理的应用前提——在直角三角形中
3.其他应用,在直角三角形中指导任意两边即可求出余下一边的长度。
(可以进行简单提问,引出核心内容,加强学生地理解和记忆)
(四)应用原理
1.基础练习
在直角三角形ABC中,角C为90°,AC=6,AB=10,求出BC的大小。
2.综合练习
在直角三角形ABC中,角C为90°,BC=3,AB=5,求三角形ABC的周长及面积。
(五)小结作业
教师引导学生回顾本节课所学的主要内容,通过相互交流分享观点:
1.什么是勾股定理?
2.勾股定理的应用前提以及公式
3.能够解决哪类的实际问题?
作业:课后作业题,找一找有哪些勾股数,下节课分享。
四、板书设计。