勾股定理全章教案 人教版(优秀教案)
人教版初中数学八年级下册《勾股定理》教案

人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。
本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。
但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。
三. 教学目标1.了解勾股定理的定义和证明过程。
2.能够运用勾股定理解决直角三角形的相关问题。
3.培养学生的逻辑思维能力和空间想象能力。
4.激发学生对数学的兴趣,培养合作探究的精神。
四. 教学重难点1.教学重点:勾股定理的定义和证明过程。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。
六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。
2.学具:学生用书、练习册、文具。
七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。
教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。
”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。
学生独立思考,教师选取部分学生进行讲解。
5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。
人教版八年级下册17.1.2勾股定理优秀教学案例

(三)情感态度与价值观
1.激发学生对数学学科的兴趣,树立学生自信心,培养积极的学习情感。
2.感受数学与生活的紧密联系,提高学生对数学知识的应用意识。
3.培养学生尊重事实、严谨治学的科学态度,弘扬我国古代数学家的伟大成就。
4.注重培养学生的人际关系和团队协作精神,使学生在合作交流中共同成长。
(三)学生小组讨论
1.组织学生分组讨论,鼓励学生发表自己的观点和想法。
2.引导学生相互倾听、尊重他人的意见,培养团队合作精神。
3.设计合作活动,如共同探究、解决问题,提高学生的协作能力。
4.关注小组内的每个成员,关注学生的个体发展,使学生在合作中成长。的学习内容,明确勾股定理的定义、表达式和证明方法。
3.设计具有思考性的练习题,让学生在解决问题中加深对勾股定理的理解。
4.鼓励学生反思自己的学习过程,总结勾股定理的证明方法和应用技巧。
(三)小组合作
1.组织学生分组讨论,鼓励学生发表自己的观点和想法。
2.引导学生相互倾听、尊重他人的意见,培养团队合作精神。
3.设计合作活动,如共同探究、解决问题,提高学生的协作能力。
二、教学目标
(一)知识与技能
1.理解勾股定理的内容,掌握勾股定理的表达式及其应用。
2.了解勾股定理的发现和证明过程,了解我国古代对勾股定理的研究成果。
3.学会运用勾股定理解决实际问题,提高问题解决能力。
(二)过程与方法
1.通过观察、猜想、证明等环节,培养学生主动探究、积极思考的科学精神。
2.运用合作交流、讨论分享等学习方式,提高学生的团队协作能力和沟通能力。
5.培养学生具有良好的心理素质和抗压能力,面对挑战,敢于尝试,勇于创新。
人教版八年级数学下册17.1勾股定理优秀教学案例

2.自主探究:让学生通过观察、实验、推理等方法,发现并证明勾股定理。
3.合作交流:组织学生进行小组讨论,分享学习心得,培养合作精神。
4.巩固练习:设计有针对性的练习题,让学生在实践中掌握勾股定理。
5.课堂讨论:组织学生分享自己的解题心得,丰富数学思维。
3.引导学生认识数学在生活中的应用,提高他们运用数学解决实际问题的能力。
4.培养学生团队协作、沟通交流的能力,增强他们的社会责任感。
三、教学重点与难点
1.教学重点:勾股定理的定义及其证明方法,勾股定理在实际问题中的应用。
2.教学难点:勾股定理的推导过程,运用勾股定理解决复杂直角三角形问题。
四、教学过程
2.生活实例:展示一些生活中常见的直角三角形现象,如建筑物、家具等,让学生感受数学与生活的紧密联系,提高他们运用数学解决实际问题的意识。
3.提问引导:教师提问:“你们知道什么是勾股定理吗?”“勾股定理在我国古代是如何被发现的?”引发学生的思考和讨论。
(二)讲授新知
1.勾股定理的定义:引导学生通过观察、实验、推理等方法,发现并证明勾股定理。例如,可以让学生分组讨论,每组设计一个实验来验证勾股定理。
2.自主探究,培养能力:在讲授新知环节,我引导学生通过观察、实验、推理等方法,自主发现并证明勾股定理。这种自主探究的学习方式,培养了学生的数学思维能力,提高了他们的问题解决能力。
3.小组合作,增强合作精神:在学生小组讨论环节,我将学生分成若干小组,让他们选择一个证明方法进行讨论。这种小组合作的方式,既能够提高学生的团队合作能力,又能够促进学生之间的沟通交流。
1.激发学生兴趣:通过故事、图片等素材,引发学生对勾股定理的好奇心,激发他们学习数学的兴趣。
第十七章勾股定理(教案)-2024学年人教版八年级数学下册

3.勾股数及其性质
a.勾股数的定义
b.勾股数的特点
c.勾股数的应用
4.勾股定理在生活中的应用实例
a.建筑领域
b.艺术设计
c.自然科学等其他领域的应用
5.练习与拓展
a.勾股定理相关练习题
b.拓展勾股定理的相关知识,如勾股数在其他数学领域的应用等
c.创设实际情境,让学生运用勾股定理解决实际问题,提高学生的实际操作能力。
2.教学难点
a.勾股定理的数学证明:对于八年级学生来说,理解并掌握勾股定理的数学证明是难点。教师需要运用直观、生动的教学方法,如动画演示、实际操作等,帮助学生理解证明过程。
b.勾股定理在实际问题中的应用:学生在运用勾股定理解决实际问题时,往往会遇到难以确定直角三角形的情况,需要教师引导学生学会识别直角三角形,并正确应用勾股定理。
1.教学重点示例:
在讲解勾股定理的概念及其证明时,教师可以通过动画演示、实际操作等方式,引导学生观察直角三角形的特性,得出勾股定理的表述。并通过数学证明,让学生理解勾股定理的严谨性。
2.教学难点示例:
在解决实际问题中,教师可以给出以下例子:一根旗杆斜靠在墙上,旗杆与地面的夹角为30°,旗杆与墙面的距离为3米,求旗杆的长度。学生需要识别出这是一个直角三角形问题,并运用勾股定理求解。在这个过程中,教师需要引导学生正确识别直角三角形,并给出具体的解题步骤。
4.培养学生的数学建模素养,通过勾股定理在生活中的应用实例,引导学生发现生活中的数学规律,学会构建简单的数学模型。
5.培养学生的数学抽象与数学关联素养,使学生能够从具体问题中抽象出勾股定理的数学本质,理解数学知识之间的内在联系,提高数学知识的系统性和综合性。
三、教学难点与重点
人教版数学八年级下册17.1勾股定理优秀教学案例

2.教师巡回指导,对学生在探究过程中遇到的问题给予及时帮助和解答。
3.组织小组成果展示,让学生分享自己的学习心得和证明方法,互相学习和借鉴。
(四)总结归纳
1.教师引导学生总结勾股定理的证明方法,并运用该定理解决实际问题。
2.总结本节课的学习重点和难点,强调勾股定理在数学史上的重要地位和现实生活中的应用。
二、教学目标
(一)知识与技能
1.让学生掌握勾股定理的定义和证明方法,能够熟练运用勾股定理解决实际问题。
2.培养学生运用几何图形和逻辑推理来分析问题、解决问题的能力。
3.引导学生了解勾股定理在数学史上的重要地位,以及它在现实生活中的应用。
(二)过程与方法
1.通过小组合作、讨论交流的形式,引导学生主动探究勾股定理的证明过程,提升学生的动手实践和思维创新能力。
在现实生活中,勾股定理也有着广泛的应用。例如,在建筑、工程、艺术等领域,勾股定理都发挥着重要作用。因此,本节课的学习不仅有助于提高学生的数学素养,还能激发学生学习数学的兴趣,培养其运用数学知识解决实际问题的能力。
为了更好地进行教学,我将以生动的故事、丰富的实例和实际应用为载体,引导学生探究勾股定理的证明过程,让学生在理解的基础上掌握这一重要定理。同时,我将注重培养学生的合作交流能力,通过小组讨论、探究活动等形式,提高学生的动手实践和思维创新能力。
三、教学策略
(一)情景创设
1.利用多媒体课件展示古代建筑中的勾股定理应用实例,如中国的赵州桥、埃及的金字塔等,让学生直观地感受到勾股定理在现实生活中的重要作用。
2.通过设置有趣的故事情境,如古代数学家毕达哥拉斯发现勾股定理的过程,激发学生的好奇心和求知欲。
第一课时勾股定理优秀教学案例

1.布置巩固性作业:让学生运用勾股定理解决实际问题,如计算房屋建筑中的长度、设计直角三角形图案等。检查学生对勾股定理的理解和应用能力。
2.布置拓展性作业:让学生探索其他数学定理或公式,如平方根、立方根等。培养学生的探索精神和创新能力。
3.鼓励学生进行自我评价,反思自己在学习过程中的优点和不足。指导学生制定改进措施,提高学习效果。
此外,我还注重课堂评价的多元化,充分关注学生的个体差异,给予他们积极的评价和鼓励,使他们在课堂上充满自信,更好地投入到学习过程中。整个教学过程既注重知识的传授,又重视学生的全面发展,体现了新课程改革的理念和要求。
二、教学目标
(一)知识与技能
1.让学生掌握勾股定理的内容,理解直角三角形三边之间的关系,能够运用勾股定理解决实际问题。
(一)导入新课
1.故事导入:讲述毕达哥拉斯如何通过观察木匠修鞋匠的鞋子长度比例,发现了勾股定理。引导学生关注古代数学家的伟大发现,激发学生学习兴趣。
2.实物模型导入:展示古代的勾股定理证明雕塑,让学生直观地感受数学与艺术的完美结合。引发学生对勾股定理的好奇心,激发他们的探究欲望。
3.现实生活实例导入:分析房屋建筑、自行车轮胎等实例,让学生感受到勾股定理在实际应用中的重要性,引发学生思考。
2.鼓励学生提出问题,培养他们的问题意识和批判性思维。例如,在教学过程中,让学生大胆质疑,挑战古代数学家的证明方法。
3.创设循序渐进的问题序列,引导学生逐步深入探究勾股定理。例如,从简单的情形开始,让学生观察、实验、猜测,逐步引导学生得出勾股定理的结论。
(三)小组合作
1.组织学生进行小组讨论,培养他们的团队协作能力和沟通能力。例如,在探究勾股定理的过程中,让学生分组讨论,相互启发,共同解决问题。
人教版八年级数学下17.1勾股定理(3)优秀教学案例

(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力。
2.培养学生的自信心和自主学习能力,让学生体验到成功的喜悦。
3.通过解决实际问题,培养学生的应用意识,让学生认识到数学与生活的紧密联系。
4.培养学生严谨治学的态度,养成积极主动、认真负责的学习习惯。
人教版八年级数学下17.数学下册第17.1节勾股定理(3),学生在学习了勾股定理的基础上,进一步探究勾股定理的应用。通过前面的学习,学生已经掌握了勾股定理的表述和证明,但对勾股定理的理解还停留在表面,对勾股定理在实际问题中的应用还不够熟练。因此,本节课的教学目标是让学生深入理解勾股定理,并能运用勾股定理解决实际问题。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示房屋装修、篮球架安装等实际生活中的例子,让学生感受到数学与生活的紧密联系。
2.提出问题:“在这些实际问题中,我们如何运用数学知识来解决呢?”引导学生思考,为新课的引入做好铺垫。
3.教师总结:通过实际例子,我们可以发现一个规律——直角三角形两条直角边的平方和等于斜边的平方,这就是我们今天要学习的勾股定理。
(二)问题导向
1.自主探究:引导学生通过自主学习,发现问题、解决问题,培养学生的自主学习能力。
2.合作交流:组织学生进行小组讨论,分享彼此的想法和成果,促进学生之间的思维碰撞。
3.教师引导:在学生探究过程中,教师要善于引导学生,给予必要的提示和帮助,引导学生正确思考。
(三)小组合作
1.小组讨论:让学生在小组内进行讨论交流,共同解决问题,培养学生的团队合作意识。
3.教师评价:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,给予鼓励和指导。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、课堂练习
.填空题
⑴在△,∠°,,,则。
⑵在△,∠°,,,则。
⑶在△,∠°,,::,则,。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为。
⑸已知直角三角形的两边长分别为和,,则第三边长为。
⑹已知等边三角形的边长为2cm,则它的高为,面积为。
五、例习题分析
例(补充)在△,∠°
⑴已知,求。
⑵已知,求。
⑶已知,求。
⑷已知::,求。
⑸已知,∠°,求,。
分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。⑴已知两直角边,求斜边直接用勾股定理。⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。⑷⑸已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。
三、例题的意图分析
例(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。
例使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。
× +(-),化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷勾股定理的证明方法,达余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。
例已知:在△中,∠°,∠、∠、∠的对边为、、。
求证:+。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边× +
第十八章勾股定理
.勾股定理(一)
一、教学目标
.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
.培养在实际生活中发现问题总结规律的意识和能力。
.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、重点、难点
.重点:勾股定理的内容及证明。
.难点:勾股定理的证明。
你是否发现与的关系,和的关系,即,,那么就有勾股弦。
对于任意的直角三角形也有这个性质吗?
五、例习题分析
例(补充)已知:在△中,∠°,∠、∠、∠的对边为、、。
求证:+。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:△小正大正
.已知:如图,在△中,,在的延长线上。
求证:⑴-·
⑵若在上,结论如何,试证明你的结论。
.勾股定理(二)
一、教学目标
.会用勾股定理进行简单的计算。
.树立数形结合的思想、分类讨论思想。
二、重点、难点
.重点:勾股定理的简单计算。
.难点:勾股定理的灵活运用。
三、例题的意图分析
例(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。
右边()
左边和右边面积相等,即
× +()
化简可证。
六、课堂练习
.勾股定理的具体内容是:。
.如图,直角△的主要性质是:∠°,(用几何语言表示)
⑴两锐角之间的关系:;
⑵若为斜边中点,则斜边中线;
⑶若∠°,则∠的对边和斜边:;
⑷三边之间的关系:。
.△的三边、、,若满足+,则°;若满足>+,则∠是角;若满足<+,则∠是角。
.已知:如图,在△中,∠°, ,,是边上的高,求的长。
.已知等腰三角形腰长是,底边长是,求这个等腰三角形的面积。
七、课后练习
.填空题
在△,∠°,
⑴如果,,则。
⑵如果∠°,,则。
⑶如果∠°,,则。
⑷如果,,则。
⑸如果、、是连续整数,则。
⑹如果,::,则。
.已知:如图,四边形中,∥,⊥,
⊥,∠°,1cm,求的长。
八、参考答案
课堂练习
.; ;,;,,;或 ; , ;
.;.。
课后练习
.; ; ;;;;.
课后反思:
.勾股定理(三)
一、教学目标
.会用勾股定理解决简单的实际问题。
.树立数形结合的思想。
例(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。
例(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。
四、课堂引入
复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。
例(补充)已知直角三角形的两边长分别为和,求第三边。
分析:已知两边中较大边可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。
例(补充)已知:如图,等边△的边长是。
⑴求等边△的高。
⑵求△。
分析:勾股定理的使用范围是在直角三角形中,因此注意要
创造直角三角形,作高是常用的创造直角三角形的辅助线做
.根据如图所示,利用面积法证明勾股定理。
七、课后练习
.已知在△中,∠°,、、是△的三边,则
⑴。(已知、,求)
⑵。(已知、,求)
⑶。(已知、,求)
.如下表,表中所给的每行的三个数、、,有<<,试根据表中已有数的规律,写出当时,,的值,并把、用含的代数式表示出来。
、、
、、
、、
、、
……
……
,、
.在△中,∠°, ,一动点从向以每秒2cm的速度移动,问当点移动多少秒时,与腰垂直。
让学生画一个直角边为和的直角△,用刻度尺量出的长。
以上这个事实是我国古代多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是,长的直角边(股)的长是,那么斜边(弦)的长是。
再画一个两直角边为和的直角△,用刻度尺量的长。
四、课堂引入
目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。