利用定积分求曲线围成的面积,DOC
定积分求面积

计算由曲线 y 2 = 2 x 和直线 y = x − 4 所围
成的图形的面积. 成的图形的面积
解 两曲线的交点
y = x−4
y2 = 2x y = x−4
⇒ ( 2,−2), (8,4).
y2 = 2 x
选 y 为积分变量
y ∈ [−2, 4] −
A = ∫ dA = 18.
−2 4
y2 dA = y + 4 − dy 2
0 x
x
x
两边同时对 x 求导
3 f ( x ) = 2 y + 2 xy ′ ⇒ 2 x y ′ = y
积分得 y = cx ,
2
9 因为曲线 y = f ( x ) 过点 ( 2 , 3 ) ⇒ c = 2
9 ∴ y = x, 2
2
因为 f ( x ) 为单调函数
3 所以所求曲线为 y = 2x. 2
a
b
例:曲线 y = x ( x − 1)( 2 − x )与 x轴所围图形的面积可表 为: A) − ∫ x ( x − 1)( 2 − x )dx ;
0 2
B ) ∫ x ( x − 1)( 2 − x )dx − ∫ x ( x − 1)( 2 − x )dx ;
0 1
1
2
C ) − ∫ x ( x − 1)( 2 − x )dx + ∫ x ( x − 1)( 2 − x )dx ;
6 曲线 y = x 2 与它两条相互垂直的切线所围成平面图 形的面积 S ,其中一条切线与曲线相切于点 A( a , a 2 ) , a > 0 ,则当 a = __时,面积 S 最小 . __时
二、求由下列各曲线所围成的图形的面积: 求由下列各曲线所围成的图形的面积: 1 1、 y = 与直线 y = x 及 x = 2 ; x 2、 y = x 2 与直线 y = x 及 y = 2 x ; 3、 r = 2a ( 2 + cosθ ) ; 4 、 摆线 x = a( t − sin t ) , y = a (1 − cos t ) (0 ≤ t ≤ 2π ) 及 x 轴; 的公共部分; 5、 r = 3 cosθ 及 r = 1 + cosθ 的公共部分; 6、笛卡尔叶形线 x 3 + y 3 + 3axy .
利用定积分求曲线围成的面积

12.9 利用定积分求曲线围成的面积武汉外国语学校汪家硕一.复习回顾:当f(x )0时,由y = f ( x) 、x = a、x = b与x轴所围成的曲边梯形位于x轴的下方。
2.牛顿—莱布尼茨公式定理(微积分基本定理)如果f (x)是区间[a,b]上的连续函数,并且F'(x) = f (x),则.曲线围成的面积1.设f和g是区间[a,b]上的连续函数且对任意的x[a,b]有f(x )g(x),则直线x=a和直线x=b以及曲线间围成的面积可以表示为:b b bf (x)dx -g(x)dx =f (x)-g(x)dx a a a例1.求抛物线y=x2和直线y=2x所围成的区域面积。
解:先求出P点坐标。
y= x2x = 0解方程组y = x x=0y= 2x x = 2P点的坐标是(2,4) 。
2所求的面积= 2x - x2dx = x20=4-8=4b1.定积分的几何意义:当f(x )0时,积分f(x)dx在几何上表示由y= f(x)、x=a、a3 33例3 例2.计算曲线y = x 2 +1和y = 4 - x 2 ,以及直线x =1和x = -1所围成的区域面积。
f (x )-g (x )dx + g (x )- f (x )dx + f (x )-g (x )dx + g (x )-f (x )dx ac1 c2 c 3例3:求 f (x )= x 3和g (x )= x 所围成的封闭区域面积。
解:当 f (x )= g (x )时图像的交点,即 x 3 = x x 3 - x = 0 x ( x 2 -1) = 0x = 0或 1解:所求面积=-11 (x2 +1)dx = 3-2x 2dx =-1 3x -2x 3 3-1 14 32.前面的例题都是一个曲线总在另外一个曲线的上方,如果它们交叉会是什么结考虑区间[a ,c 1],[c 1,c 2],[c 2,c 3],[c 3,b ],阴影部分面积可以表示为:例 4 :求阴影部分的面积。
高数二 6.2定积分的几何应用

2
3 2
2 sin
1 s、旋转体的体积
旋转体就是由一个平面图形饶这平面内 一条直线旋转一周而成的立体.这直线叫做 旋转轴.
圆柱
圆锥
圆台
一般地,如果旋转体是由连续曲线 y f ( x) 、
直线x a 、x b 及x 轴所围成的曲边梯形绕
x 轴旋转一周而成的立体,体积为多少?
可看作平面图OABC 与OBC
x x1( y) o
A
2a x
分别绕y 轴旋转构成旋转体的体积之差.
Vy
2a
x
2
2
(
y
)dt
0
2a
x
2
1
(
y
)dt
0
a2 (t sin t)2 a sin tdt 2 a2 (t sin t)2 a sin tdt 0
a3 2 (t sin t)2 sin tdt 63a3 . 0
取积分变量为x ,
y
y f (x)
x [a,b]
在[a,b]上任取小区 o
x x dx
x
间[ x, x dx],
取以dx 为底的窄边梯形绕x 轴旋转而成的薄
片的体积为体积元素, dV [ f ( x)]2 dx
旋转体的体积为 V b [ f ( x)]2 dx a
例 1 连接坐标原点O 及点P(h, r)的直线、直线
V
aa
a
2 3
2
x3
3
dx
32 105
a3 .
类似地,如果旋转体是由连续曲线
x ( y)、直线 y c 、 y d 及y 轴所围
成的曲边梯形绕y 轴旋转一周而成的立体,
体积为
定积分求曲线所围面积

定积分求曲线所围面积
求曲线所围面积是一类常见的高数问题,主要分为定积分法和曲线积分法。
定积分法:
定积分法是一种基于定积分的方法,即把目标曲线与X轴或Y轴之间的闭合图形拆分
成N片矩形,利用定积分累加各片形积,从而计算出闭合图形的总面积。
定积分法求解曲
线面积的具体步骤如下:
(1)设置确定积分区间,把目标曲线与X轴或Y轴之间的闭合图形分割成N片矩形。
(2)求每片矩形的面积,可以根据不同的曲线而采用不同的方法,例如把抛物线的
面积拆分为两个三角形的总面积,把正弦曲线的面积拆分为两个一半三角形的总面积。
(3)叠加所有矩形的面积,计算出曲线所围的面积。
曲线积分法:
曲线积分法也称为极限法,是一种以曲线的方程式为基础的方法,是用来计算曲线在
某个区间内的积分值。
此方法可以用来精确计算曲线围成的面积。
曲线积分法求解曲线面
积的具体步骤如下:
(1)根据曲线的方程式,把曲线切割成N片矩形,利用定积分计算出每片矩形的积
分值。
(2)叠加所有矩形的积分值,计算出曲线所围的面积。
(3)除此之外,还可以根据曲线的特殊形状,将曲线分割成若干个更小的形状,再
用曲线积分法计算每块小形状的积分值,最后叠加所有积分值求得曲线所围的面积。
以上便是定积分法与曲线积分法求曲线所围面积的基本流程,不过具体的数学推导过
程还需要考虑曲线的函数形式以及积分的具体应用,此外,还可以采用数值积分的方法来
解决这一问题。
通过以上两种方法,可以较为精准的求出曲线所围的面积。
定积分的几何应用(面积和弧长)

弧线段部分
直线段部分
以 x 为积分变量 , 则要分
两段积分,
故以 y 为积分变量.
解:
2. 求曲线
所围图形的面积.
显然
面积为
同理其他.
又
故在区域
利用元素法解决:
定积分在几何上的应用
定积分在物理上的应用
定积分的应用
定积分的元素法
一、什么问题可以用定积分解决 ?
二 、如何应用定积分解决问题 ?
表示为
一、什么问题可以用定积分解决 ?
1) 所求量 U 是与区间[a , b]上的某分布 f (x) 有关的
2) U 对区间 [a , b] 具有可加性 ,
解: 由
得交点
所围图形
为简便计算, 选取 y 作积分变量,
则有
O
例3. 求椭圆
解: 利用对称性 ,
所围图形的面积 .
有
利用椭圆的参数方程
应用定积分换元法得
当 a = b 时得圆面积公式
一般地 , 当曲边梯形的曲边由参数方程
给出时,
按顺时针方向规定起点和终点的参数值
则曲边梯形面积
O
例4. 求由摆线
的一拱与 x 轴所围平面图形的面积 .
解:
O
2. 极坐标情形
求由曲线
及
围成的曲边扇形的面积 .
在区间
上任取小区间
则对应该小区间上曲边扇形面积的近似值为
所求曲边扇形的面积为
O
对应 从 0 变
例5. 计算阿基米德螺线
解:
到 2 所围图形面积 .
O
例6. 计算心形线
所围图形的
面积 .
利用定积分求曲线围成的面积

利用定积分求曲线围成的面积
定积分是数学中一种重要的积分计算方法,用于求解两变量t和y之间函数关系的积分。
它是一种对曲线积分测量技术,通常用于求曲线所围成的面积。
下面介绍定积分求曲
线围成的面积的原理,以及如何运用定积分求解。
首先,求曲线所围成的面积,要求先将曲线分解为多个小矩形,这就是定积分技术的
基础。
定积分技术可以用原函数曲线在一个区间内离散对应的多个矩形累加得到该区间内
的整个积分值,其具体流程如下:
1. 首先确定积分区间,确定积分上下限,通常记做a和b;
2. 确定在积分区间中拆分的点数,也就是将积分区间拆分成多少子区间,其记号为n;
3. 经过上面的步骤后,就可以确定出定积分的“积分步长”h=(b-a)/ n;
4. 接下来根据所给函数,计算一下积分步长h对应的函数值,我们将这个值记为Fi,i为1,2,...,n,F1为a点处的函数值,F2为a+h点处的函数值,以此类推,Fn为b点处的函数值;
5. 通过上面计算出所有矩形的面积,把它们累加起来,就可以得到整个曲线所围成
的面积;
6. 如果矩形面积很小,也就是说n足够大,则积分值基本已经接近其实际值;
7. 再把整个曲线所围成的面积减去各个子矩形与曲线实际接触处的总面积,也就是
被曲线分割的矩形的形面积,就可以得到最终的积分结果了。
上面叙述的是定积分求曲线围成的面积的原理,要实际操作运用定积分求解,还需要
根据实际情况进行处理。
在实际应用中,需要特别注意函数在曲线上断点处不可能出现悬
挂断层,以及曲线上拐点处的积分计算。
只有在这些要点上仔细处理,定积分求曲线围成
的面积才可行。
利用定积分求曲线围成的面积资料

利用定积分求曲线围成的面积12.9 利用定积分求曲线围成的面积武汉外国语学校 汪家硕一.复习回顾:1.定积分的几何意义:当()0f x ≥时,积分()ba f x dx ⎰在几何上表示由()y f x =、x a =、xb =与x 轴所围成的曲边梯形的面积。
当()0f x ≤时,由()y f x =、x a =、x b =与x 轴所围成的曲边梯形位于x 轴的下方。
2.牛顿—莱布尼茨公式定理(微积分基本定理)如果()f x 是区间[,]a b 上的连续函数,并且'()()F x f x =,则()()()ba f x dx Fb F a =-⎰二.曲线围成的面积1.设f 和g 是区间[,]a b 上的连续函数且对任意的[,]x a b ∈有()()f x g x ≥,则直线x a =和直线x b =以及曲线间围成的面积可以表示为:()()()()b b ba a a f x dx g x dx f x g x dx -=-⎰⎰⎰例1.求抛物线2y x =和直线2y x =所围成的区域面积。
⎰b a f (x )dx =⎰c a f (x )dx +⎰b c f (x )dx 。
解:先求出P 点坐标。
解方程组22y x y x⎧=⎨=⎩ ⇒ 02x x =⎧⎨=⎩ ∴ P 点的坐标是(2,4)。
所求的面积= 22322008424333x x x dx x ⎡⎤-=-=-=⎢⎥⎣⎦⎰ 例1例2.计算曲线21y x =+和24y x =-,以及直线1x =和1x =-所围成的区域面积。
解:所求面积=11132221112144(1)32333x x x dx x dx x ---⎡⎤--+=-=-=⎢⎥⎣⎦⎰⎰例22.前面的例题都是一个曲线总在另外一个曲线的上方,如果它们交叉会是什么结果?考虑区间112233[,],[,],[,],[,]a c c c c c c b ,阴影部分面积可以表示为:123123()()()()()()()()c c c ba c c c f x g x dx g x f x dx f x g x dx g x f x dx -+-+-+-⎰⎰⎰⎰例3:求3()f x x =和()g x x =所围成的封闭区域面积。
高等数学- 定积分的应用

x
0 L(x)dx c0
L(x) x2 L(x)dx x1
例1 设固定成本为50万元,R(Q) 100 - 2Q, C(Q) 14Q 20,试确定厂商的最大利润
四、小结
求在直角坐标系下、参数方程形式 下、极坐标系下平面图形的面积.
(注意恰当的选择积分变量有助于简化 积分运算)
绕 x轴旋转一周
Vx
b (f 2 (x) g2 (x))dx
a
(3) x (y),y c,y d围成图形绕 y轴旋转而成的体积为
Vy
d 2 (y)dy
c
y
d
x ( y) c
o
x
例1 求 x2 y 2 1 (1)绕x轴,(2)绕y轴旋转产 a2 b2
生的旋转体体积
解 : (1)绕x轴
y b a2 x2 a
Vx
a y 2dx
a
2
a b2 0 a2
(a2
x2 )dx
2b 2 a2
(a2x
1 3
x
3
)
|a0
4 ab2 3
(2)绕y轴
Vy
2 2
a x | f (x) | dx
0
4
a b2 0 a2
x
a2 x2dx 4 a2b 3
例2 求y x2 ,x y2围成平面图形绕x轴旋转
而成的旋转体体积.
练习题答案
一、1、1;
2、32 ; 3
4、 y ;
5、e 1 2 ; e
二、1、3 ln 2; 2
2、7 ; 6
4、3a2 ;
5、5 ; 4
三、9 . 4
四、e . 2
3、2;
6、1 . 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欢迎阅读
欢迎阅读
12.9 利用定积分求曲线围成的面积
武汉外国语学校 汪家硕
一.复习回顾:
1.定积分的几何意义:当()0f x ≥时,积分()b
a f x dx ⎰在几何上表示由()y f x =、x a =、x
b =与x 轴所围成的曲边梯形的面积。
当()0f x ≤时,由()y f x =、x a =、x b =与x 轴所围成的曲边梯形位于x 轴的下方。
2. 1.设f 和x b =()b a f x dx ⎰例1. ∴ P 例1 例21-所围成的区域面积。
2.前面的例题都是一个曲线总在另外一个曲线的上方,如果
它们交叉会是什么结果?
考虑区间112233[,],[,],[,],[,]a c c c c c c b ,阴影部分面积可以表示
为: 例3:求3()f x x =和()g x x =所围成的封闭区域面积。
解:当()()f x g x =时图像的交点,
即 3320(1)0
x x x x x x =⇒-=⇒-=
欢迎阅读
欢迎阅读
例3
例4:求阴影部分的面积。
例4 练习:
1.求阴影部分面积
2.。