习题课教学大纲(微积分II)

合集下载

《微积分(下册)》教学大纲

《微积分(下册)》教学大纲

“微积分(下册)”课程教学大纲课程英文名称:Calculus课程编号:07001108 课程类型:公共基础课、必修课总学时:80 学分:5适用对象:理工科汉族本科一年级学生使用教材:《微积分》第二版下册,同济大学应用数学系编,高等教育出版社,2003年8月,普通高等教育“十五”国家级规划教材参考书:《高等数学》第五版下册,同济大学应用数学系编,高等教育出版社《高等数学释疑解难》,国家数学教学指导委员会,高等教育出版社一、课程性质、目的和任务微积分(高等数学)是大学理工科最重要的基础理论课之一,属于必修课程。

本课程注重使学生系统地获得微积分、级数及常微分方程的基础理论知识和常用的运算方法,培养学生具有比较熟练的分析问题和解决问题的能力,具有比较严密的逻辑推理能力。

本课程把为后继课建立必要的基础和发展运用数学知识直接处理实际问题的能力并列为课程的教学目标。

二、教学基本要求通过一学期的教学工作,使学生能掌握《微积分》(下册)的基本内容,学会向量代数与空间解析几何、多元函数微分学、多元函数积分学和无穷级数的基本知识,透彻地理解微积分中的基本概念、基本定理和运算方法,完成教材中三分之二以上的习题,能通过国家教育部教学指导委员会主持制定的高等数学试题库中一、二等级的考试(共分五个等级)。

三、教学内容及要求第五章向量代数与空间解析几何理解空间直角坐标系,掌握向量的几何表示和坐标表示。

熟练掌握向量的运算。

熟练掌握平面方程和直线方程。

理解曲面方程的概念。

掌握柱面、旋转面及标准型二次曲面的方程及其几何形状。

了解空间曲线的参数方程及一般方程。

要掌握空间曲线对坐标平面的投影柱面与投影曲线。

第六章多元函数的微分学理解多元函数的概念,了解二重极限和连续的概念及有界闭区域上连续函数的性质。

理解多元函数偏导数的概念,要熟练掌握偏导数的求法。

理解多元函数全微分的概念,了解其在近似计算中的应用。

要熟练掌握多元复合函数的求导法则,了解隐函数存在定理,并会求隐函数的导数。

《微积分(II)-1》教学大纲(2009年)

《微积分(II)-1》教学大纲(2009年)

《微积分(II)-1》教学大纲(2009年)课程号:201074030课程名称:微积分(II)-1开课学期:秋季总学时:61学时(其中理论课51学时,习题课10学时)学分:3学分先修课程:初等数学基本目的:介绍极限论和一元微积分学的基本知识,为非数学类各专业课程提供基本的数学工具,初步培养学生应用数学知识、解决实际问题的意识与能力第一章函数与极限一、基本内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,反函数、复合函数、初等函数,简单应用问题的函数关系的建立,数列极限与函数极限的定义及其性质,函数的左、右极限,无穷小与无穷大,无穷小的阶的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限,函数连续的概念,函数间断点的分类,初等函数的连续性,闭区间上连续函数的性质(有界性与最大值最小值定理、零点定理与介值定理).二、基本要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。

2.了解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及图形。

5.理解极限的概念,理解函数左、右极限的概念,以及函数极限存在与左、右极限之间的关系。

6.掌握极限的性质及运算法则。

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性与最大值最小值定理、零点定理与介值定理),并会应用这些性质。

三、建议课时安排(22学时)1.1 映射与函数(2学时)1.2 数列的极限(2学时)1.3 函数的极限(2.5学时)1.4 无穷小与无穷大(1学时)1.5 极限的运算法则(1.5学时)习题课(2学时)1.6 极限存在准则两个重要极限(2学时)1.7 无穷小的比较(1.5学时)1.8 连续性与间断点(2学时)1.9 连续函数的运算与初等函数的连续性(2学时)1.10 闭区间上连续函数的性质(1.5学时)习题课(2学时)第二章导数与微分一、基本内容导数和微分的概念,导数的几何意义和物理意义,平面曲线的切线与法线,函数的可导性与连续性之间的关系,基本初等函数的导数,导数和微分的四则运算,反函数、复合函数、隐函数及参数方程所确定的函数的微分法,高阶导数的概念,某些简单函数的n阶导数。

微积分教学大纲

微积分教学大纲

微积分教学大纲
I. 前置知识
1. 代数基础:变量、方程、不等式、函数、图像、复合函数、反函数、指数与对数、三角函数、向量
2. 几何基础:平面与空间直角坐标系、几何图形的性质、三角形、圆、直线、平面曲线
II. 导数与微分
1. 导数的概念及其意义:导数的定义、导数与函数的关系、导数的几何意义、导数的物理意义
2. 导数与微分的关系:微分的定义、微分与导数的关系、微分的应用
3. 导数的计算:基本导数公式、导数的四则运算、复合函数的求导、高阶导数、隐函数的导数、参数方程的导数、相关变化率问题
III. 积分与不定积分
1. 积分的概念及其意义:积分的定义、积分与函数的关系、积分的几何意义、积分的物理意义
2. 不定积分:不定积分的定义、基本初等函数的积分、换元法、分部积分法、有理函数的积分、三角函数的积分、反常积分的定义与应用
3. 定积分:定积分的定义、积分中值定理、牛顿-莱布尼茨公式、定积分的几何意义、定积分的物理应用、定积分的计算、变限积分、广义积分
IV. 微积分应用
1. 微积分在几何中的应用:一阶导数与函数性质、二阶导数与函数曲率、微积分中值定理的应用、微积分与极值问题、微积分与曲线绘制
2. 微积分在物理中的应用:速度、加速度与微积分、微积分与质量、微积分与重心
3. 微积分在工程与经济学中的应用:微积分在工程设计中的应用、微积分在经济学中的应用
V. 总结与拓展
1. 总结微积分的主要内容与应用
2. 谈论微积分的一些现代拓展领域,如微分方程、向量微积分、多元微积分等
3. 为学生提供拓展学习的资源和建议。

川大理工科数学I,II,III之微积分和线性代数教学大纲

川大理工科数学I,II,III之微积分和线性代数教学大纲

课程号:20113740课程名称:大学数学(I) 微积分开课学期:秋季春季(学年课)学分:秋季4 春季5先修课程:初等数学基本目的:介绍微积分的基本知识,为非数学类各专业后继课程提供基本的数学工具,初步培养学生应用数学知识分析、解决实际问题的意识与能力内容提要:一、函数与极限(约22学时)函数,函数与数列极限的定义与性质,无穷小与无穷大,无穷小比较,极限四则运算,极限存在准则与两个重要极限,函数的连续性与间断点,初等函数连续性,闭区间上连续函数性质。

二、一元函数微分学(约26学时)导数的定义与性质,基本求导方法与导数公式,微分,高阶导数,微分中值定理,泰勒公式,洛必达法则,导数的应用三、一元函数积分学(约30学时)不定积分与定积分的概念与性质,牛顿-莱布尼茨公式,换元积分法与分部积分法,定积分的应用与近似计算。

四、空间解析几何与矢量代数(约16学时)矢量及矢量的运算,坐标系及矢量的坐标,平面与直线,曲面与曲线,二次曲面的标准型五、多元函数微分学(约20学时)多元函数的概念,偏导数与全微分,复合函数,隐函数的微分法,微分法在几何上的应用,多元函数的极值,矢量分析六、重积分(约12学时)二重积分的概念与性质,二重积分的计算及应用,三重积分七、曲线积分和曲面积分(约14学时)第一、二型曲线积分,格林公式及曲线积分与路程径无关的条件,第一、二型曲面积分,高斯公式与散度,斯托克斯公式与旋度。

八、无穷级数(约17学时)常数项级数,幂级数,傳里叶级数九、广义积分与含参变量的积分(约3学时)广义积分,含参变量的积分十、常微分方程(约14学时)微分方程的基本概念,一阶微分方程的初等解法,可降阶的高阶微分方程,高阶线性方程教学方式:秋季每周授课5学时,共85学时左右;春季每周授课6学时,共102学时,其中每周习题课1学时教材与参考书:1)杨志和等,微积分(上、下册),高等教育出版社2)同济大学应用数学系,高等数学,高等教育出版社3)马知恩等,工科分析基础,高等教育出版社4)杨志和等,微积分学习指导,自编讲义(待出版)学生成绩评定方法:平时(作业、出勤率)10%,期中考试20%,期末考试70%课程名称:大学数学(II)微积分开课学期:秋季、春季(学年课)学分:每期各4 学分先修课程:初等数学基本目的:介绍微积分的基本知识,为非数学类各专业后继课程提供基本的数学工具,初步培养学生应用数学知识分析、解决实际问题的意识与能力内容提要:一、函数与极限(约16学时)函数,数列与函数的极限,无穷小与无穷大,极限运算法则,极限存在准则,函数的连续性与间断点,初等函数连续性,闭区间上连续函数性质。

经济数学微积分第二版教学大纲

经济数学微积分第二版教学大纲

经济数学微积分第二版教学大纲本教学大纲旨在为经济学、管理学、金融学等专业的本科生提供微积分基础课程的学习指导。

一、课程简介本课程为一学期课程,共计30周,每周3学时,共90学时。

主要内容为微积分的基本概念、极限、导数、微分、积分、微积分基本定理等。

二、课程目标本课程的目标是让学生掌握微积分的基本概念、方法和运用,培养学生的数学思维能力和创新能力,为其日后在经济学、管理学、金融学等相关领域中的研究和实践奠定坚实的数学基础。

三、课程内容1. 基本概念•函数的定义和性质•极限的概念和性质•连续性和间断点2. 导数和微分•导数的定义和性质•高阶导数和隐函数求导•微分的定义和性质•Taylor公式和极值3. 积分和微积分基本定理•积分的定义和性质•微积分基本定理和牛顿-莱布尼茨公式•不定积分和定积分的计算•曲线长度和曲率4. 应用•函数图形与相关概念•常微分方程与应用•统计学初步四、教学方法本课程采用讲授与实践相结合的教学方法。

讲授内容为基本概念、导数和微分、积分和微积分基本定理等理论知识,通过实例分析和计算演示,展示数学与经济学、管理学、金融学等领域的紧密联系。

同时,本课程还将提供在线教学平台,以便学生能够自主学习和交流教学内容,通过自主探索和实践,进一步巩固微积分基础。

五、学习方式本课程除了常规课堂外,还包括以下学习方式:•自学:尽可能在每次课程前先预习相关章节,可以更快掌握课程内容。

•讨论:鼓励学生在课堂外讨论微积分知识,作为自己以及同学之间互相学习的一个途径。

•作业:每周安排作业,旨在在巩固学习内容的同时能够提高学生对微积分的理解程度。

•实践:针对不同问题,设计不同的练习题目,以提高学生的实际运用能力。

六、考核方式本课程采用多元化考核方式,包括期中考试、期末考试、平时作业、课堂表现等,具体考核比例见下表:考核项目比例期中考试30%期末考试40%平时作业20%课堂表现10%七、参考书目•微积分(上下册),郭庆华,高等教育出版社•微积分原理,约翰·瑞格,高等教育出版社•微积分学(上下册),汤家凤,高等教育出版社八、备注以上内容仅供参考,教学实践中,将根据学生实际情况,灵活运用,以达到更好的教学效果。

微积分I-2 教学大纲、进度表(1415-2)

微积分I-2 教学大纲、进度表(1415-2)

厦门大学教学大纲微积分I-2 课程专业2014 年级用数学科学学院(2014 年 7 月 1 日填)厦门大学教学进度表(2014-2015学年第二学期) 课程名称微积分I-2 上课系、专业、年级20142014 年7月1 日4月18日(星期六)举行全校期中统考。

备注:期末统考在学校规定的时段内进行。

期末总评成绩由平时与期中,期末三部分构成,具体比例:平时(作业、考勤)15% ,期中35% ,期末考试50% 。

《第二学期》微积分I-2统一布置的作业(供参考)第八章习题8-1 2,3习题8-2 5;6;8,10,11,13,14,15习题8-3 1,2,3,4,7,10,11,12,13习题8-4 2,3,4,7,8习题8-5 1,4,5,6,7,8,9习题8-6 1,2,3,4,6,7,9习题8-7 1,2,3;4,5,6,7,8,10,11,12习题8-8 1(2)(3);2,3;第九章习题9-1 2,3,5,6,7习题9-2 1(2)(4)(6)(8)(10)(11);2;3;4,5,6习题9-3 1,2,3,4,7习题9-4 1,2,3,4,5,7,8习题9-5 1,2,3,4,5,7,8习题9-6 1,3,4,5,6,7习题9-7 1,2,3;4,5,6,7习题9-8 3,4,5,8,9第十章习题10-1 3,4,5,6,7习题10-2 1,2;3;4,5,7,11习题10-3 1,2,3,4,5,7,9习题10-4 1,2,4,5,6,7习题10-5 1,2,3,4,5,7,8,9,10,16第十一章习题11-1 2,3,4,5,6,7,8,11习题11-2 1,2;3;4,5,6,7,8,9,10习题11-3 1,2,3,4,5,6,7,8,9,11,13,14习题11-4 2,3,4,5,6,7,8习题11-5 3,4,5,6,7习题11-6 1,2,3,4,5,6,7,9习题11-7 1,2,3,4,5,6第十二章习题12-1 3,4,5,6,7,8习题12-2 1(1)(3)(5)(7),2(2)(4)(6)(8);3;5,6,7习题12-3 1,2,3,5,7习题12-4 1(1)(3)(5)(7)(9),2,4,6习题12-5 2,3,4,6习题12-5 4,5习题12-8 1,3,4,5,6,7 习题12-9 1,3,5。

微积分教学大纲

微积分教学大纲一、引言微积分作为高等数学的重要分支,是培养学生逻辑思维能力和解决实际问题能力的重要工具。

本教学大纲旨在明确微积分课程的教学目标、内容和评价方式,为教师和学生提供指导,以达到更好的教学效果。

二、教学目标本课程的主要教学目标如下:1. 理解微积分的基本概念和原理,包括极限、导数、不定积分和定积分等;2. 掌握微积分的计算方法和技巧,能够运用微积分解决实际问题;3. 培养学生的逻辑思维能力、抽象思维能力和问题解决能力;4. 培养学生的数学建模能力,能够将实际问题转化为数学模型并进行求解。

三、教学内容本课程的主要教学内容如下:1. 极限1.1 极限的概念1.2 极限的性质1.3 极限的计算方法2. 导数2.1 导数的概念2.2 导数的计算方法2.3 导数的应用3. 不定积分3.1 不定积分的概念3.2 基本不定积分的计算方法3.3 不定积分的应用4. 定积分4.1 定积分的概念4.2 定积分的计算方法4.3 定积分的应用5. 微积分的应用5.1 曲线的切线与法线5.2 速度和加速度5.3 积分学的应用5.4 微分方程四、教学方法本课程采用多种教学方法,包括课堂教学、实例演练、小组讨论和实践应用等。

1. 课堂教学:通过讲解和示范,引导学生理解微积分的基本概念和原理。

2. 实例演练:通过大量的实例练习,巩固学生对微积分的计算方法和技巧的掌握。

3. 小组讨论:组织学生进行小组讨论,促进学生思维交流和合作学习。

4. 实践应用:引导学生将微积分应用于实际问题的解决,培养其数学建模和问题解决能力。

五、教学评价本课程的评价方式包括平时表现评价和考试评价。

1. 平时表现评价:包括课堂参与、作业完成情况和小组讨论等,反映学生的学习态度和学习效果。

2. 考试评价:通过期中考试和期末考试,考察学生对微积分基本概念的理解和计算方法的掌握。

六、教学资源本课程需要准备的教学资源包括教材、课件、实例题和相关参考资料。

微积分-四川大学数学学院

习题课教学大纲(微积分II)(征求意见稿)课程名称:大学数学-微积分II英文名称:Calculus课程性质:必修课程代码:20113830(上册)20112530(下册)面向专业:大学数学II各专业习题课指导丛书名称:高等数学(第五版)出版单位:高等教育出版社出版日期:2002年7月主编:同济大学应用数学系习题课讲义名称:大学数学习题课系列教材--微积分编写单位:四川大学数学学院编写日期:2006年8月主编:四川大学数学学院高等数学教研室第一章函数与极限1.函数与极限2学时(1)基本内容函数的概念,函数的表示,函数的几种特性,复合函数,分段函数,极限的概念及性质,极限存在准则,重要极限,无穷小量与无穷大量,极限的计算,函数的连续与间断,闭区间上连续函数的性质。

(2)基本要求处理作业批改中发现的问题。

通过具体例子讲解极限的计算问题,连续性讨论问题,复合函数定义域及分段函数的复合问题。

第二章导数与微分2学时(1)基本内容:导数及高阶导数的定义;复合函数隐函数参数方程决定的函数和分段函数的求导;微分。

(2)基本要求:处理作业批改中发现的问题;举列说明复合函数隐函数参数方程决定的函数和分段函数的一阶二阶求导;会求微分。

第三章微分中值定理与导数的应用2学时1.中值定理及洛必达法则(1) 基本内容:中值定理的应用;洛必达法则求极限.(2)基本要求:处理作业批改中发现的问题;通过具体例子讲解中值定理的题型和解题步骤;求各种不定形的极限并注意化简和变形技巧.2.不等式的证明和函数曲线(1)基本内容:函数单调性凹凸性的判定;函数的最值;泰勒定理.(2)基本要求:处理作业批改中发现的问题;举例说明函数导数二阶导数曲线关系;举例讲解利用曲线特征证明函数不等式;举例说明函数最值的应用;泰勒中值定理的应用方法.第四章不定积分2学时一、基本内容:复习原函数和不定积分的概念,不定积分的基本性质及基本积分公式,总结换元积分法和分部积分法,有理函数、三角函数的有理式和简单无理函数的积分的计算方法。

《微积分(二)》教学大纲

(3)知道二阶线性齐次微分方程解的结构;
(4)知道二阶线性非齐次微分方程解的结构;
(5)能根据二阶线性常系数齐次微分方程的特征方程根的不同情况,熟练的写出
方程的通解;
(6)当二阶线性常系数非齐次微分方程右端函数
,根据?是否为特征方程根的根来确定方程
系数线性微分方程。
难点:二阶常系数非齐次线性方程特解求法。
§ 9.1 微分方程的基本概念
内容与要求:
(1)熟知微分方程、阶、解、通解、初始条件、特解的含义;
(2)清楚微分方程的解、通解、特解的异同。
§9.2 一阶微分方程
§7.4 偏导数
内容与要求:
(1)理解并掌握偏导数的定义;
(2)知道偏导数的几何意义;
(3)掌握偏导数的求法;
(4)知道高阶偏导数的含义,知道二阶混合偏导数相等的条件。
§7.5 全微分
内容与要求:
(1)正确理解二元函数全微分的定义。
(2)知道二元函数连续、偏导数存在、可微之间的关系;会求全微分。
§6.2 微积分基本定理
内容与要求:
(1)知道变上限函数
(2)熟知微积分基本定理,理解"区间I上的连续函数存在原函数";
(3)熟练掌握牛顿--莱布尼兹公式。
§6.3 定积分的换元积分法与分步积分法
Hale Waihona Puke 内容与要求: (1)掌握并正确使用换元积分法;
(2)牢记分步积分公式并会用分步积分公式计算定积分;
(3)会用拉格朗日乘数法解条件极值问题;
(4)会求多元函数最大值、最小值应用问题。
§ 7.8 二重积分
内容与要求:

《微积分Ⅱ》课程简介

《高等数学》,同济大学数学教研室,高等教育出版社,1999年7月;
《高等数学习题课28讲》,苏德矿、吴明华、卢兴江,浙江大学出版社2005年7月。
(七)多元函数的积分学(6)
1.(6)二重积分的概念及其几何意义与物理意义,二重积分的基本性质(包括积分中值定理),二重积分的计算法(在直角坐标、极坐标系下)。
三、教学方式:课堂教学与习题课教学
四、相关教学环节安排:
课堂教学配合多媒体教学,教师根据教学情况适当上习题课。
2.(5)曲面方程的概念,常用的球面、柱面、锥面及旋转面的方程。空间曲线的一般方程与参数方程,两曲面的交线在坐标平面上的投影的曲线方程。平面方程与直线方程的几种常用形式,有关平面与直线的一些基本问题(相交、夹角、距离、投影)。
3.(1)从方程研究曲面形状的平面截割法和曲面对称性的确定法,二次曲面的标准方程及其图形。
二、主要内容及学时分配:总学时数为40,一个短学期完成,学分为:2.0.
(四)无穷级数(续)(4)
1(4)周期函数与傅里叶(Fourier)级数,函数展开为傅里叶级数的充分条件--狄利克雷(Dirichlet)定理(不证)。在有限区间 与 上的傅里叶级数。[傅里叶级数的
(五)矢量代数与空间解析几何(11)
《高等数学习题课28讲》,苏德矿、吴明华、卢兴江,浙江大学出版社20180 微积分Ⅱ 2
Calculs Ⅱ 1.5-1
预修课程:微积分Ⅰ
面向对象:本科一年级,全校除数学专业、文科专业和艺术类专业外的其他专业本科生而开设的数学基础课
1.(5)空间直角坐标系,两点间的距离。矢量(向量)的概念及其几何表示。矢量的线性运算(矢量加法及数乘矢量),零矢量与单位矢量。矢量的代数表示(坐标式与分解式),用坐标式作线性运算及计算矢量的模与方向余弦。两矢量的数量积与矢量积(点乘与叉乘),矢量间的夹角公式,矢量的投影,矢量垂直与平行(共线)的条件。三矢量的混合积及其几何意义,三矢量共面的条件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题课教学大纲(微积分II)
(征求意见稿)
课程名称:大学数学-微积分II
英文名称:Calculus
课程性质:必修课程代码:20113830(上册)20112530(下册)面向专业:大学数学II各专业
习题课指导丛书名称:高等数学(第五版)
出版单位:高等教育出版社出版日期:2002年7月
主编:同济大学应用数学系
习题课讲义名称:大学数学习题课系列教材--微积分
编写单位:四川大学数学学院
编写日期:2006年8月主编:四川大学数学学院高等数学教研室
第一章函数与极限
1.函数与极限2学时
(1)基本内容
函数的概念,函数的表示,函数的几种特性,复合函数,分段函数,极限的概念及性质,极限存在准则,重要极限,无穷小量与无穷大量,极限的计算,函数的连续与间断,闭区间上连续函数的性质。

(2)基本要求
处理作业批改中发现的问题。

通过具体例子讲解极限的计算问题,连续性讨论问题,复合函数定义域及分段函数的复合问题。

第二章导数与微分2学时
(1)基本内容:导数及高阶导数的定义;复合函数隐函数参数方程决定的函数和分段函数的求导;微分。

(2)基本要求:处理作业批改中发现的问题;举列说明复合函数隐函数参数方程决定的函数和分段函数的一阶二阶求导;会求微分。

第三章微分中值定理与导数的应用2学时
1.中值定理及洛必达法则
(1) 基本内容:中值定理的应用;洛必达法则求极限.
(2)基本要求:处理作业批改中发现的问题;通过具体例子讲解中值定理的题型和解题步骤;求各种不定形的极限并注意化简和变形技巧.
2.不等式的证明和函数曲线
(1)基本内容:函数单调性凹凸性的判定;函数的最值;泰勒定理.
(2)基本要求:处理作业批改中发现的问题;举例说明函数导数二阶导数曲线关系;举例讲解利用曲线特征证明函数不等式;举例说明函数最值的应用;泰勒中值定理的应用方法.
第四章不定积分2学时
一、基本内容:复习原函数和不定积分的概念,不定积分的基本性质及基本积分公式,总结
换元积分法和分部积分法,有理函数、三角函数的有理式和简单无理函数的积分的计算方法。

二、基本要求:处理作业批改中发现的问题,举例说明原函数与不定积分之间的关系,
讲解,演练换元积分法与分部积分法,补充求有理函数、三角函数的有理式和简单无理函数的积分的例题讲解。

第五,六章定积分及应用
一、基本内容:定积分的概念和性质,积分上限函数及其导数,牛顿—莱布尼茨公式,定
积分的换元积分法和分部积分法。

无穷限广义积分和无界函数的广义积分,Γ函数,微元法的应用,能正确使用定积分表达和计算一些几何量与物理量(平面图的面积、平面曲线的弧长、旋转体的体积及侧面积,平行截面积已知的主体体积、变力作功、引力、压力)及函数的平均值。

二、基本要求
复习定积分的概念和定积分的基本性质,理解变上限函数并掌握其求导方法,举例说明掌握牛顿—莱布尼茨公式的应用,定积分的换元积分法与分部积分法,广义积分的概念和计算广义积分,了解Γ函数,举例说明利用定积分计算一些几何量与物理量(平面图的面积、平面曲线的弧长、旋转体的体积及侧面积,平行截面积已知的主体体积、变力作功、引力、压力)及函数的平均值。

通过课堂练习消化上述内容。

第八章多元函数微分法极其应用2学时
基本内容复习多元函数的概念,二元函数的极限与连续以及有界闭区域上连续函数的性质,偏导数和全微分的概念,全微分存在的必要条件和充分条件;方向导数和梯度的概念及计算方法,复合函数一阶、二阶偏导数的求法,计算隐函数的偏导数和全导数,曲线的切线和法平面及曲面的切平面和法线的概念及计算方法,多元函数极值和条件极值的概念,二元函数极值的充分条件,计算二元函数的无条件极值和条件极值地方法和简单函数的最大值和最小值的应用题解法。

基本要求
1、讲评本章批改作业中的典型问题
2、讲解多元函数的一、二阶偏导数与全微分的例题,重点举多元复合函数及隐函数求导例子,使学生能熟练掌握它们的计算方法。

本章的基本应用拉格朗日条件极值求最大值应用问题,方向导数与梯度。

3、讲解一些简单例子,使学生理解空间中曲线的切线和法平面方程及曲面的切平面和法线方程,讲评作业中多元函数极值、最值的问题。

第九章重积分2学时
第九章重积分2学时
(1)基本内容:二重积分的定义及性质,二重积分的计算—直角坐标与极坐标方法,二重积分的应用。

(2)基本要求:复习整章内容,处理各节作业批改中发现的问题,从习题教材中选择例题进行选讲,注意将计算重积分的技巧融入例题当中。

最后,可以选择一两道综合程度较高的习题留给学生选做。

第十二讲微分方程2学时
(1)基本内容常微分方程的阶、解、通解、特解等基本概念,线性微分方程解的性质与通解的结构,一阶(高阶)微分方程可积类型和二阶常系数线性齐次(非齐次)微分方程的解法,微分方程的简单应用。

(2)基本要求处理作业批改中发现的问题,复习本讲微分方程的基本概念、解的结构和例题,举例说明如何对实际问题分析等量关系并建立微分方程,举例讲解求微分方程的通解或特解的解题思路和技巧,特别是二阶常系数线性齐次(非齐次)微分方程的解法。

相关文档
最新文档