汉天下电子推出4G PhaseⅡ射频前端解决方案

合集下载

全球15家射频器件供应商盘点(附国内上市公司名单)

全球15家射频器件供应商盘点(附国内上市公司名单)

全球15家射频器件供应商盘点(附国内上市公司名单)如今,手机中射频(RF)器件的成本越来越高。

一个4G全网通手机,前端RF套片的成本已达到8-10美元,含有10颗以上射频芯片,包括2-3颗PA、2-4颗开关、6-10颗滤波器。

未来随着5G的到来,RF套片的成本很可能会超过手机主芯片。

再加上物联网的爆发,势必会将射频器件的需求推向高潮。

成本昂贵,95%的市场被欧美厂商把持通常情况下,一部手机主板使用的射频芯片占整个线路面板的30%-40%。

据悉,一部iPhone 7仅射频芯片的成本就高达24美元,有消息称苹果今年每部手机在射频芯片上的投入将历史性地超过30美元。

随着智能手机迭代加快,射频芯片也将迎来一波高峰。

目前,手机中的核心器件大多已实现了国产化,唯独射频器件仍在艰难前行。

据悉,全球约95%的市场被控制在欧美厂商手中,甚至没有一家亚洲厂商进入顶尖行列。

射频器件细分领域目前,手机中的射频器件主要包括功率放大器(PA)、双工器、射频开关、滤波器(包括SAW与BAW两种)、低噪放大器(LNA)等等。

归结起来,射频器件主要三大细分领域为射频滤波器、射频开关、PA芯片(功率放大器芯片)。

滤波器:对于中国公司来说,滤波器是最难跨过的一道门槛,因为面临着专利和工艺两大难题,所以目前几乎没有能够量产的国产Saw滤波器。

由于芯片太厚,都没法做进集成模块,只能做外挂。

总体而言,国内的滤波器目前还处在中低端。

SOI射频开关:国内做SOI射频开关的公司已有20-30家,价格战已开始进入白热化。

其中,中国电科55所研制生产的GaAs及SOI 移动终端射频开关产品在华为、中兴等知名国产品牌移动终端产品中得到广泛应用,实现年出货量2亿只。

特别是SOI移动终端射频开关产品,采用了GPIO和MIPI控制模式,具有高效率、低损耗、高隔离的技术优势,同时做到了尺寸更小、成本更低、集成度更高。

PA(功率放大器):手机中除主芯片外最重要的外围元件之一,影响着手机的信号强度、通信质量以及基站效率。

TriQuint凭世界级RF解决方案实现移动互联需求

TriQuint凭世界级RF解决方案实现移动互联需求

“ 动 设 备 部 ” 此 外 , r un 移 。 T i it还 强 Q
化 了 网 络 业 务 , 推 出 T io eT 产 r wr P M
不 仅 成 为 射 频 前 端 产 品 和 晶 圆 代 工
服 务 的 领 先 厂 商 , 同 时 也 是 全 球 主 要 国 防 、 航 天 设 备 的 砷 化 镓 ( a s GA )
动 了 业 务 的 发 展 , 并 利 用 扩 展 产 品 保 留 了现 有 客 户 。
中 国 的 市 场 环 境 非 常 有 利 于 Ti un r it的 业 务 快 速 增 长 。据 统 计 , Q 在 中 国 , 我 们 的 年 增 长 率 超 过
4 0% , 全 球 发 展 最 快 的 市 场 。 尤 是
品 。 样 化 客 户 群 、 新 的 技 术 产 品 多 创
信和移 动设备 。 谈 到 Ti un r it在 中 国 的 业 务 , Q
熊 挺 先 生 表 示 : 作 为 R 半 导 体 “ F 元 件 和 模 块 供 应 商 ,过 去 的 几 年 ,
以及 2 5年 来 的行 业 经 验 , T i un 为 r it Q
和 产 品 体 现 了 T i un r it公 司 2 Q 5年 来
不 断 前 行 ,利 用 创 新 的 高 性 能 射 频 ( F 系 列 解 决 方 案 为 用 户 提 供 创 新 R ) 支 持 所 取 得 的不 凡 成 就 。 Ti un r it为 移 动 设 备 制 造 商 和 宽 Q 带 连 接 提 供 了 创 新 的 点 对 点 通 信 解 决 方 案 ,在 方 案 中 包 括 了 满 足 3 / G 4 基 站 功 率 要 求 的 高 效 解 决 方 案 G

通信行业周报:射频前端独角兽加速上市,拥抱国产替代历史机遇

通信行业周报:射频前端独角兽加速上市,拥抱国产替代历史机遇

射频前端独角兽加速上市,拥抱国产替代历史机遇[Table_IndNameRptType]通信 行业研究/行业周报 行业评级:增持报告日期: 2021-07-05行业指数与沪深300走势比较[Table_Author] 分析师:张天 执业证书号:S0010520110002 邮箱:******************[Table_Report] 相关报告1.物联网连接数加速增长,验证AIoT 景气度 2021-06-272.800G 蓄势待发,光模块反弹行情值得期待 2021-06-213.四部委联合印发实施方案,能源领域5G 应用迎来催化剂 2021-06-14 主要观点: ⚫ 本周观点 1)射频前端千亿赛道,5G 、IoT 、国产替代共同驱动行业增长。

射频前端是无线电磁波收发的核心模块,5G 通信频段增加、工艺升级以及高集成度设计需求叠加国产替代驱动射频前端行业快速成长。

全球射频前端市场2023年将达到313亿美元,其中手机是主要市场,从芯片角度看滤波器市场规模最大,而模组角度看PA 模组市场最大。

2)好达电子、唯捷创芯申报科创板。

好达电子是专注于滤波器的IDM 企业,客户包括小米、OPPO 、华为、华勤、龙旗等知名手机和ODM 厂商。

5G 手机多模多品,滤波器单机价值量上升明显,目前行业被美日巨头垄断,公司2020年市占率仅为1%,具有巨大替代空间。

唯捷创芯由天语手机董事长荣秀丽创立,目前已成为国内主流手机厂商主流4G PA 供应商。

公司近三年收入复合增速高达35%,未来有望随着高端新品的推出和规模效应的提升逐渐改善毛利率。

⚫ 行情回顾上周,通信(申万)指数下跌3.14%,跑输沪深300指数0.11pct ,在申万一级行业指数中表现排名第21。

板块行业指数来看,表现最好的是芯片,涨幅为0.68%,光模块和服务器表现最差,跌幅分别为 4.83%和4.54%;板块概念指数来看,表现最好的是工业互联网,涨幅为0.09%,表现最差的是卫星互联网,跌幅为4.25%。

手机射频前端演变

手机射频前端演变
Phase2方案的定义不仅仅考虑到了当前方案的统一,还考虑到了方案生态的可达成性、未来协议的 演进、4G三模/五模的共存等等。Phase2对于Phase1的改动主要如下
03 Phase2:顺应时代,成就经典
Phase2将Phase1的2G PA,与 ASM(Antenna Switch Module, 天线开关模组 )整合,形成 TxM(Transmitter Module,发 射模组);将4G频段的PA整合, 形成完整的4G MMMB PA(MultiMode, Multi Band Power Amplifier Module,MMMB PAM ,习惯简称为MMMB PA或者 MMMB)
演讲完毕 感谢聆听
3
03 Phase2:顺应时代, 成就经典
03 Phase2:顺应时代,成就经典
Phase2方案是MTK由2014年定义的第一代归一化4G射频前端方案,7年过去回头来看,Phase2方案的 定义依然经典。用现在时髦的一句话说:Phase2方案,YYDS(永远滴神)
如前文所述,在2G/3G时代,射频前端的方案并不统一,Skyworks、RFMD(现Qorvo)等公司时常会有 缺货发生。不少国内创业公司在2011年前后,依靠RF9810、Sky77590等芯片缺货挖掘到了第一桶金。 缺货对国内创业公司是机会,但对终端及平台厂商却是灾难:射频前端的缺货会影响到平台出货和 终端生产。于是,MTK在2012到2013年左右开始着手定义Phase2方案
02 Phase1:史前时代
荣耀6X射频前端方案框图(来源:Navian RF Devices / Modules For Cellular, 2016) 除了以上型号,在同一时期的Sky77621、Sky77753、 RF7378等,都属于"Phase1"时代的芯片方案。这些方案 主要由Skyworks、RFMD(现Qorvo)厂商定义开发

浅析4G智能时代的射频技术

浅析4G智能时代的射频技术

浅析4G智能时代的射频技术滤波器需求增长由于4G LTE的出现,使得频段越来越多,频段越多就会导致智能手机的设计复杂性越来越大;加上频谱资源是一个非常稀缺的资源,特别是在北美和欧洲地区,频谱非常拥挤,这样就一定会增加滤波器的复杂性。

TriQuint中国区移动产品销售总监江雄在9月份IIC 期间的一次主题演讲中表示,LTE的采用将会推动RF总体有效市场(TAM)大幅增长。

他指出,未来几年,高性能滤波器会以年均复合增长率40%~50%的速度增长(如图1所示)。

他强调,这里的高性能滤波器主要指体声波(BAW)和温度补偿声表面波(TC-SAW)这两种滤波器。

不同类型的手机中采用的滤波器类型和数量都是不一样的,比如在功能机时代,只需要普通的SAW滤波器就足够了;就算是3G手机时代,对BAW滤波器和TC-SAW滤波器的需求也不大。

但是到了4G时代,一款智能手机必须要对多个频段的2G、3G和4G无线接入方式的发送和接收路径进行滤波,同时还要对WiFi、蓝牙和GPS接收器等的接收路径进行滤波,而高端智能手机可能需要用到滤波器的地方会更多。

这些频带范围都不相同,又不能相互干扰,这必然需要更多的滤波器来对这些信号进行隔离。

而SAW滤波器由于本身的局限性,一般只适用于1.5GHz以下的应用。

另外它也易受温度变化的影响。

高于1.5GHz时,TC-SAW和BAW滤波器则更具性能优势。

BAW滤波器的尺寸还随频率升高而缩小,这使得它非常适合要求非常苛刻的3G和4G应用。

还有就是即便在高宽带设计中,BAW对温度变化也没有那么敏感,同时它还具有极低的插入损耗和非常陡峭的滤波器边缘。

BAW的集成化更高、性能更好、带宽的抑制能力更强,而且它为大于2GHz的LTE频带进行了优化。

江雄在演讲中提到。

智能手机中的高级滤波器需求会持续增加,从图2中我们可以看到移动设备中的RF器件发展主要有三个趋势:一是功率放大器市场是从持平到缓慢下降,江雄认为这主要是因为宽带放大器的应用造成的;二是CMOS开关和调谐元件会稳步增长,调谐元件目前很多手机没有,但以后的手机基本都会具备;三是滤波器的增长是非常迅速的。

nrf24L01中文资料

nrf24L01中文资料

单片2.4G 无线射频收发芯片nRF24L01===================================================特性● 真正的GFSK● 内置链路层● 增强型ShockBurst TM● 自动应答及自动重发功能 ● 地址及CRC 检验功能● 数据传输率1或2Mbps ● SPI 接口数据速率0~8Mbps ● 125个可选工作频道● 很短的频道切换时间可用于跳频 ● 与nRF 24XX 系列完全兼容 ● 可接受5V 电平的输入 ● 20脚QFN 44mm 封装 ● 极低的晶振要求60ppm ● 低成本电感和双面PCB 板 ● 工作电压 1.9~3.6V 应用● 无线鼠标键盘游戏机操纵杆 ● 无线门禁● 无线数据通讯 ● 安防系统 ● 遥控装置 ● 遥感勘测● 智能运动设备 ● 工业传感器 ● 玩具 概述:nRF24L01是一款工作在2.4~2.5GHz 世界通用ISM 频段的单片无线收发器芯片无线收发器包括:频率发生器增强型SchockBurst TM 模式控制器功率放大器晶体振荡器调制器解调器输出功率频道选择和协议的设置可以通过SPI 接口进行设置极低的电流消耗当工作在发射模式下发射功率为-6dBm 时电流消耗为9.0mA 接收模式时为12.3mA掉电模式和待机模式下电流消耗更低 快速参考数据参数 数值 单位最低供电电压 1.9 V最大发射功率 0 dBm最大数据传输率 2000 kbps发射模式下电流消耗0dBm 11.3 mA接收模式下电流消耗2000kbps 12.3 mA温度范围 -40~ +85数据传输率为1000kbps 下的灵敏度 -85 dBm掉电模式下电流消耗 900 nA 表1 nRF24L01快速参考数据很短的时间???hehe,,有想法,,,是Mbps,,,,要利用好,,,这是在此功耗下,,,大的功耗消耗更大丠丠dBm=10*lg(P/1mW)为0.9uA 1mW W分类信息型号描述版本nRF24L01 IC 裸片 DnRF24L01 20脚QFN 4*4mm,RoHS&SS-00259compliant DnRF24L01-EVKIT 评估套件 1.0表2nRF24L01 分类信息结构方框图:图1 nRF24L01 及外部接口引脚及其功能引脚名称引脚功能描述1 CE 数字输入 RX或TX模式选择2 CSN 数字输入 SPI片选信号3 SCK 数字输入 SPI时钟4 MOSI 数字输入从SPI数据输入脚5 MISO 数字输出从SPI数据输出脚6 IRQ 数字输出可屏蔽中断脚7 VDD 电源电源+3V8 VSS 电源接地0V9 XC2 模拟输出晶体震荡器2脚10 XC1 模拟输入晶体震荡器1脚/外部时钟输入脚11 VDD_PA 电源输出给RF的功率放大器提供的+1.8V电源12 ANT1 天线天线接口113 ANT2 天线天线接口214 VSS 电源接地0V15 VDD 电源电源+3V16 IREF 模拟输入参考电流17 VSS 电源接地0V18 VDD 电源电源+3V19 DVDD 电源输出去耦电路电源正极端20 VSS 电源接地0V表3nRF24L01引脚功能图2 引脚封装电气特性参数+27 +85 高电平输出电压=-0.5mA 高电平输出电压=0.5mA 160 320R GFSK >0 1800 2000 单通道工作电流单通道工作电流0.1%BRE(@2000kbps)图3nRF24L01外形封装尺寸极限范围供电电压VDD…………………………….-0.3V~+3.6VVSS (0V)输入电压V I………………………………-0.3V~5.25V输出电压V O……………………………. VSS~VDD总功耗=85……………………… 60mWPD T温度工作温度……………………-40~+85存储器温度…………………-40~+125注意:若超出上述极限值可能对元器件有损害静电敏感元件术语表术语描述ACK 确认信号应答信号ART 自动重发CE 芯片使能CLK 时钟信号CRC 循环冗余校验CSN 片选非ESB 增强型ShockBrust TMGFSK 高斯键控频移IRQ 中断请求ISM 工业科学医学LNA 低噪声放大LSB 最低有效位LSByte 最低有效字节Mbps 兆位/秒MCU 微控制器MISO 主机输入从机输出MOSI 主机输出从机输入MSB 最高有效位MSByte 最高有效字节PCB 印刷电路板PER 数据包误码率PID 数据包识别位PLD 载波PRX 接收源PTX 发射源PWR_DWN 掉电PWR_UP 上电RX 接收RX_DR 接收数据准备就绪SPI 串行可编程接口TX 发送TX_DS 已发送数据表5术语表功能描述工作模式nRF24L01可以设置为以下几种主要的模式模式PWR_UP PRIM_RX CE FIFO寄存器状态-接收模式 1 1 1数据在TX FIFO寄存器中发送模式 1 0 1发送模式 1 0 10 停留在发送模式直至数据发送完TX FIFO为空待机模式II 1 0 1待机模式I 1 - 0无数据传输-掉电模式0 - -表6 nRF24L01主要工作模式关于nRF24L01 I/O脚更详细的描述请参见下面的表7nRF24L01在不同模式下的引脚功能引脚名称 方向 发送模式接收模式 待机模式 掉电模式CE 输入 高电平>10us 高电平低电平-CSN 输入 SPI 片选使能低电平使能SCK 输入 SPI 时钟 MOSI输入 SPI 串行输入 MISO 三态输出 SPI 串行输出 IRQ输出 中断低电平使能表7nRF24L01引脚功能待机模式待机模式I在保证快速启动的同时减少系统平均消耗电流在待机模式I 下晶振正常工作在待机模式II 下部分时钟缓冲器处在工作模式当发送端TX FIFO 寄存器为空并且CE 为高电平时进入待机模式II 在待机模式期间寄存器配置字内容保持不变掉电模式在掉电模式下,nRF24L01各功能关闭保持电流消耗最小进入掉电模式后nRF24L01停止工作但寄存器内容保持不变启动时间见表格13掉电模式由寄存器中PWR_UP 位来控制数据包处理方式nRF24L01有如下几种数据包处理方式ShockBurst TM 与nRF2401nRF24E1nRF2402nRF24E2数据传输率为1Mbps 时相同 增强型ShockBurst TM 模式ShockBurst TM 模式ShockBurst 模式下nRF24L01可以与成本较低的低速MCU 相连高速信号处理是由芯片内部的射频协议处理的nRF24L01提供SPI 接口数据率取决于单片机本身接口速度ShockBurst 模式通过允许与单片机低速通信而无线部分高速通信减小了通信的平均消耗电流在ShockBurst TM 接收模式下当接收到有效的地址和数据时IRQ 通知MCU 随后MCU 可将接收到的数据从RX FIFO 寄存器中读出 在ShockBurst TM发送模式下nRF24L01自动生成前导码及CRC 校验参见表格12数据发送完毕后IRQ 通知MCU 减少了MCU 的查询时间也就意味着减少了MCU 的工作量同时减少了软件的开发时间nRF24L01内部有三个不同的RX FIFO 寄存器6个通道共享此寄存器和三个不同的TX FIFO 寄存器在掉电模式下待机模式下和数据传输的过程中MCU 可以随时访问FIFO 寄存器这就允许SPI 接口可以以低速进行数据传送并且可以应用于MCU 硬件上没有SPI 接口的情况下增强型的ShockBurst TM 模式增强型ShockBurst TM 模式可以使得双向链接协议执行起来更为容易有效典型的双向链接为发送方要求终端设备在接收到数据后有应答信号以便于发送方检测有无数据丢失一旦数据丢失则通过重新发送功能将丢失的数据恢复增强型的ShockBurst TM 模式可以同时控制应答及重发功能而无需增加MCU 工作量确实,,由硬件完成,,减小了量,,,图4 nRF24L01在星形网络中的结构图nRF24L01在接收模式下可以接收6路不同通道的数据见图4每一个数据通道使用不同的地址但是共用相同的频道也就是说6个不同的nRF24L01设置为发送模式后可以与同一个设置为接收模式的nRF24L01进行通讯而设置为接收模式的nRF24L01可以对这6个发射端进行识别数据通道0是唯一的一个可以配置为40位自身地址的数据通道1~5数据通道都为8位自身地址和32位公用地址所有的数据通道都可以设置为增强型ShockBurst 模式nRF24L01在确认收到数据后记录地址并以此地址为目标地址发送应答信号在发送端数据通道0被用做接收应答信号因此数据通道0的接收地址要与发送端地址相等以确保接收到正确的应答信号见图5 选择地址举例图5应答地址确定举例nRF24L01配置为增强型的ShockBurst TM发送模式下时只要MCU 有数据要发送nRF24L01就会启动ShockBurst TM 模式来发送数据在发送完数据后nRF24L01转到接收模式并等待终端的应答信号如果没有收到应答信号nRF24L01将重发相同的数据包直到收到应答信号或重发次数超过SETUP_RETR_ARC 寄存器中设置的值为止如果重发次数超过了设定值则产生MAX_RT 中断只要收到确认信号nRF24L01就认为最后一包数据已经发送成功接收方已经收到数据把TX FIFO 中的数据清除掉并产生TX_DS 中断IRQ 引脚置高在发射器中,,通道0要接收应答回来的信号,,所以应该与发送通道地址,,,相同,,在增强型ShockBurst模式下nRF24L01有如下的特征当工作在应答模式时快速的空中传输及启动时间极大的降低了电流消耗低成本nRF24L01集成了所有高速链路层操作比如重发丢失数据包和产生应答信号无需单片机硬件上一定有SPI口与其相连SPI 接口可以利用单片机通用I/O口进行模拟 由于空中传输时间很短极大的降低了无线传输中的碰撞现象由于链路层完全集成在芯片上非常便于软硬件的开发增强型ShockBurstTM发送模式1配置寄存器位PRIM_RX为低2当MCU有数据要发送时接收节点地址TX_ADDR和有效数据(TX_PLD)通过SPI接口写入nRF24L01发送数据的长度以字节计数从MCU写入TX FIFO当CSN为低时数据被不断的写入发送端发送完数据后将通道0设置为接收模式来接收应答信号其接收地址(RX_ADDR_P0)与接收端地址(TX_ADDR)相同例在图5中数据通道5的发送端(TX5)及接收端(RX)地址设置如下TX5TX_ADDR=0xB3B4B5B605TX5RX_ADDR_P0=0xB3B4B5B605RX RX_ADDR_P5=0xB3B4B5B6053设置CE为高启动发射CE高电平持续时间最小为10 us4nRF24L01 ShockBurst TM模式无线系统上电启动内部16MHz时钟无线发送数据打包见数据包描述高速发送数据由MCU设定为1Mbps或2Mbps5如果启动了自动应答模式自动重发计数器不等于0ENAA_P0=1无线芯片立即进入接收模式如果在有效应答时间范围内收到应答信号则认为数据成功发送到了接收端此时状态寄存器的TX_DS位置高并把数据从TX FIFO中清除掉如果在设定时间范围内没有接收到应答信号则重新发送数据如果自动重发计数器ARC_CNT溢出超过了编程设定的值则状态寄存器的MAX_RT位置高不清除TX FIFO中的数据当MAX_RT或TX_DS为高电平时IRQ引脚产生中断IRQ中断通过写状态寄存器来复位见中断章节如果重发次数在达到设定的最大重发次数时还没有收到应答信号的话在MAX_RX中断清除之前不会重发数据包数据包丢失计数器(PLOS_CNT)在每次产生MAX_RT中断后加一也就是说重发计数器ARC_CNT计算重发数据包次数PLOS_CNT计算在达到最大允许重发次数时仍没有发送成功的数据包个数6如果CE置低则系统进入待机模式I如果不设置CE为低则系统会发送TX FIFO寄存器中下一包数据如果TX FIFO寄存器为空并且CE为高则系统进入待机模式II.7如果系统在待机模式II当CE置低后系统立即进入待机模式I.增强型ShockBurst TM接收模式1 ShockBurst TM接收模式是通过设置寄存器中PRIM_RX位为高来选择的准备接收数据的通道必须被使能EN_RXADDR寄存器所有工作在增强型ShockBurst TM模式下的数据通道的自动应答功能是由(EN_AA寄存器)来使能的有效数据宽度是由RX_PW_Px寄存器来设置的地址的建立过程见增强型ShockBurst TM发送章节23 130us后4接收到有效的数据包后地址匹配CRC检验正确数据存储在RX_FIFO中同时RX_DR位置高并产生中断状态寄存器中RX_P_NO位显示数据是由哪个通道接收到的5如果使能自动确认信号则发送确认信号6 MCU设置CE脚为低进入待机模式I低功耗模式7 MCU将数据以合适的速率通过SPI口将数据读出8芯片准备好进入发送模式接收模式或掉电模式两种数据双方向的通讯方式如果想要数据在双方向上通讯寄存器必须紧随芯片工作模式的变化而变化处理器必须保证PTX和PRX端的同步性在RX_FIFO和TX_FIFO寄存器中可能同时存有数据CE=1是开始启动的标志,,,这个以前没有注意,,,!!!要接收几点的地址,,,看看要求,,,我的天那,,,认真看吧,,自动应答时,,接收方和发送方的EN_AA都要打开,,,接收方也要设置有效位,,跟发送的应该一致,,,自动应答RX自动应答功能减少了外部MCU 的工作量并且在鼠标/键盘等应用中也可以不要求硬件一定有SPI 接口因此降低成本减少电流消耗自动重应答功能可以通过SPI 口对不同的数据通道分别进行配置在自动应答模式使能的情况下收到有效的数据包后系统将进入发送模式并发送确认信号发送完确认信号后系统进入正常工作模式工作模式由PRIM_RX 位和CE 引脚决定自动重发功能ART (TX)自动重发功能是针对自动应答系统的发送方启动重发数据的时间长度在每次发送结束后系统都会进入接收模式并在设定的时间范围内等待应答信号接收到应答信号后系统转入正常发送模式如果TX FIFO 中没有待发送的数据且CE 脚电平为低则系统将进入待机模式I 如果没有收到确认信号则系统返回到发送模式并重发数据直到收到确认信号或重发次数超过设定值达到最大的重发次数有新的数据发送或PRIM_RX 寄存器配置改变时丢包计数器复位 数据包识别和CRC 校验应用于增强型ShockBurst TM模式下每一包数据都包括两位的PID 数据包识别来识别接收的数据是新数据包还是重发的数据包PID 识别可以防止接收端同一数据包多次送入MCU 在发送方每从MCU 取得一包新数据后PID 值加一PID 和CRC 校验应用在接收方识别接收的数据是重发的数据包还是新数据包如果在链接中有一些数据丢失了则PID 值与上一包数据的PID 值相同如果一包数据拥有与上一包数据相同的PID 值nRF24L01将对两包数据的CRC 值进行比较如果CRC 值也相同的话就认为后面一包是前一包的重发数据包而被舍弃1接收方接收方对新接收数据包的PID 值与上一包进行比较如果PID 值不同则认为接收的数据包是新数据包如果PID 值与上一包相同则新接收的数据包有可能与前一包相同接收方必须确认CRC 值是否相等如果CRC 值与前一包数据的CRC 值相等则认为是同一包数据并将其舍弃 2发送方每发送一包新的数据则发送方的PID 值加一图6PID 值生成和检测CRC 校验的长度是通过SPI 接口进行配置的一定要注意CRC 计算范围包括整个数据包地址PID确实,,减小了编程量,,,额,,,高四位设置,,额,,,两个CNT 就复位了,,,和有效数据等若CRC 校验错误则不会接收数据包这一点是接收数据包的附加要求在上图没有说明载波检测CD当接收端检测到射频范围内的信号时将CD 置高否则CD 为低内部的CD 信号在写入寄存器之前是经过滤波的内部CD 高电平状态至少保持128us 以上在增强型ShockBurst TM 模式中只有当发送模块没有成功发送数据时推荐使用CD 检测功能如果发送端PLOS_CNT 显示数据包丢失率太高时可将其设置位接收模式检测CD 值如果CD 为高说明通道出现了拥挤现象需要更改通信频道如果CD 为低电平状态距离超出通信范围可保持原有通信频道但需作其它调整数据通道nRF24L01配置为接收模式时可以接收6路不同地址相同频率的数据每个数据通道拥有自己的地址并且可以通过寄存器来进行分别配置数据通道是通过寄存器EN_RXADDR 来设置的默认状态下只有数据通道0和数据通道1是开启状态的 每一个数据通道的地址是通过寄存器RX_ADDR_Px 来配置的通常情况下不允许不同的数据通道设置完全相同的地址数据通道0有40位可配置地址数据通道1~5的地址为32位共用地址+各自的地址最低字节图7所示的是数据通道1~5的地址设置方法举例所有数据通道可以设置为多达40位但是1~5数据通道的最低位必须不同图7 通道0~5的地址设置当从一个数据通道中接收到数据并且此数据通道设置为应答方式的话则nRF24L01在收到数据后产生应答信号此应答信号的目标地址为接收通道地址 寄存器配置有些是针对所有数据通道的有些则是针对个别的如下设置举例是针对所有数据通道的 CRC 使能/禁止 CRC 计算 接收地址宽度 频道设置无线数据通信速率 LNA 增益 射频输出功率寄存器配置,,,注意了丗不同地址丆相同频率,,,不允许配置相同的地址的,,,额,,,这的目标地址为其接受到的地址,,,这么多是相同的,,,nRF24L01所有配置都在配置寄存器中所有寄存器都是通过SPI 口进行配置的 SPI 接口SPI 接口是标准的SPI 接口其最大的数据传输率为10Mbps 大多数寄存器是可读的 SPI 指令设置SPI 接口可能用到的指令在下面有所说明CSN 为低后SPI 接口等待执行指令每一条指令的执行都必须通过一次CSN 由高到低的变化 SPI 指令格式<命令字由高位到低位每字节>AAAAA AAAAA 1-32读操作全部从字节当读有效数据完成后寄存器中有效数据被清除应用于接收模式下1-32开始应用于发射模式下应用于发射模式下寄存器应用于接收模式下在传输应答信号过程中不应执行此指令信号过程中执行此指令的话将使得应答信号不能被完整的传输重新使用上一包有效数据当数据包被不断的重新发射空操作寄存器可能操作单字节或多字节寄存器当访问多字节寄存器时首先要读/写的是最低字节的高位在所有多字节寄存器被写完之前可以结束写SPI 操作在这种情况下没有写完的高字节保持原有内容不变例如RX_ADDR_P0寄存器的最低字节可以通过写一个字节给寄存器RX_ADDR_P0来改变在CSN 状态由高变低后可以通过MISO 来读取状态寄存器的内容 中断nRF24L01的中断引脚IRQ 为低电平触发当状态寄存器中TX_DS RX_DR 或MAX_RT 为高时触发中断当MCU 给中断源写1时中断引脚被禁止可屏蔽中断可以被IRQ 中断屏蔽通过设置可屏蔽中断位为高则中断响应被禁止默认状态下所有的中断源是被禁止的SPI 时序图8910和表910给出了SPI 操作及时序在写寄存器之前一定要进入待机模式或掉电模式在图8至图10中用到了下面的符号Cn-SPI 指令位 Sn-状态寄存器位Dn-数据位备注由低字节到高字节每个字节中高位在前图8SPI 读操作不会出现无线命令的配置,,,即:设置MASK 为高,,所以说写之前要把CSN 拉低,,,,图9SPI写操作图10SPI NOP 操作时序图表9SPI参考时间C load=5pF表10SPI参考时间C load=10pF寄存器地址所有未定义位可以被读出其值为0’地址 参数 位 复位值类型 描述 00 寄存器配置寄存器 reserved 7 0 R/W 默认为0 MASK_RX_DR 6R/W 可屏蔽中断RX_RD1IRQ 引脚不显示RX_RD 中断0RX_RD 中断产生时IRQ 引脚电平为低MASK_TX_DS 5 0 R/W 可屏蔽中断TX_DS1IRQ 引脚不显示TX_DS 中断0TX_DS 中断产生时IRQ 引脚电平为低MASK_MAX_RT 4 0 R/W 可屏蔽中断MAX_RT1IRQ 引脚不显示TX_DS 中断0MAX_RT 中断产生时IRQ 引脚电平为低EN_CRC 3 1 R/W CRC 使能如果EN_AA 中任意一位为高则EN_CRC 强迫为高CRCO 2 0 R/W CRC 模式‘0’-8位CRC 校验 ‘1’-16位CRC 校验PWR_UP 1 0 R/W 1:上电 0:掉电 PRIM_RX 0 0 R/W 1:接收模式 0:发射模式01 EN_AA Enhanced ShockBurst TM 使能自动应答功能此功能禁止后可与nRF2401通讯 Reserved 7:6 00 R/W 默认为0 ENAA_P5 5 1 R/W 数据通道5自动应答允许 ENAA_P4 4 1 R/W 数据通道4自动应答允许 ENAA_P3 3 1 R/W 数据通道3自动应答允许 ENAA_P2 2 1 R/W 数据通道2自动应答允许 ENAA_P1 1 1 R/W 数据通道1自动应答允许 ENAA_P0 0 1 R/W 数据通道0自动应答允许 02 EN_RXADDR 接收地址允许 Reserved 7:6 00 R/W 默认为00 ERX_P5 5 0 R/W 接收数据通道5允许 ERX_P4 4 0 R/W 接收数据通道4允许 ERX_P3 3 0 R/W 接收数据通道3允许 ERX_P2 2 0 R/W 接收数据通道2允许 ERX_P1 1 1 R/W 接收数据通道1允许 ERX_P0 0 1 R/W 接收数据通道0允许 03 SETUP_AW 设置地址宽度所有数据通道 Reserved 7:2 00000 R/W 默认为00000 AW 1:0 11 R/W 接收/发射地址宽度‘00’-无效‘01’-3字节宽度 ‘10’-4字节宽度 ‘11’-5字节宽度04 SETUP_RETR 建立自动重发允许–1Mbps ‘1’-18dBm当接收到有效数据后置一接收数据通道号数据通道号寄存器满标志寄存器满当写存器复位当丢失15个数据包后此寄存器重启 ARC_CNT 3:0 0 R 重发计数器发送新数据包时此寄存器复位09 CDReserved 7:1 000000 RCD 0 0 R 载波检测0A RX_ADDR_P0 39:0 0xE7E7E7E7E7 R/W 数据通道0接收地址最大长度:5个字节先写低字节所写字节数量由SETUP_AW设定0B RX_ADDR_P1 39:0 0xC2C2C2C2C2 R/W 数据通道1接收地址最大长度:5个字节先写低字节所写字节数量由SETUP_AW设定0C RX_ADDR_P2 7:0 0xC3 R/W数据通道2接收地址最低字节可设置高字节部分必须与RX_ADDR_P1[39:8]相等0D RX_ADDR_P3 7:0 0xC4 R/W数据通道3接收地址最低字节可设置高字节部分必须与RX_ADDR_P1[39:8]相等0E RX_ADDR_P4 7:0 0xC5 R/W数据通道4接收地址最低字节可设置高字节部分必须与RX_ADDR_P1[39:8]相等0F RX_ADDR_P5 7:0 0xC6 R/W数据通道5接收地址最低字节可设置高字节部分必须与RX_ADDR_P1[39:8]相等10 TX_ADDR 39:0 0xE7E7E7E7E7 R/W 发送地址先写低字节在增强型ShockBurst TM模式下RX_ADDR_P0与此地址相等11 RX_PW_P0Reserved 7:6 00 R/W 默认为00RX_PW_P0 5:0 0 R/W 接收数据通道0有效数据宽度(1到32字节)0: 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度12 RX_PW_P1Reserved 7:6 00 R/W 默认为00RX_PW_P1 5:0 0 R/W 接收数据通道1有效数据宽度(1到32字节)0: 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度13 RX_PW_P2Reserved 7:6 00 R/W 默认为00RX_PW_P2 5:0 0 R/W 接收数据通道2有效数据宽度(1到32字节)0: 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度14 RX_PW_P3Reserved 7:6 00 R/W 默认为00RX_PW_P3 5:0 0 R/W 接收数据通道3有效数据宽度(1到32字节)0 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度15 RX_PW_P4Reserved 7:6 00 R/W 默认为00RX_PW_P4 5:0 0 R/W 接收数据通道4有效数据宽度(1到32字节)0: 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度16 RX_PW_P5Reserved 7:6 00 R/W 默认为00RX_PW_P5 5:0 0 R/W 接收数据通道5有效数据宽度(1到32字节)0: 设置不合法1: 1字节有效数据宽度……32: 32字节有效数据宽度17 FIFO_STATUS FIFO 状态寄存器Reserved 7 0 R/W 默认为0TX_REUSE 6 0 R 若TX_REUSE=1则当CE位高电平状态时不断发送上一数据包TX_REUSE通过SPI 指令REUSE_TX_PL设置通过W_TX_PALOAD或FLUSH_TX复位TX_FULL 5 0 R TX FIFO寄存器满标志1:TX FIFO寄存器满0: TX FIFO寄存器未满有可用空间 TX_EMPTY 4 1 R TX FIFO寄存器空标志1:TX FIFO寄存器空0: TX FIFO寄存器非空 Reserved 3:2 00 R/W 墨认为00RX_FULL 1 0 R RX FIFO寄存器满标志1:RX FIFO寄存器满0: RX FIFO寄存器未满有可用空间 RX_EMPTY 0 1 R RX FIFO寄存器空标志1:RX FIFO寄存器空0: RX FIFO寄存器非空N/A TX_PLD 255:0 WN/A RX_PLD 255:0 R表11nRF24L01寄存器地址与nRF24XX兼容的寄存器配置如何建立nRF24L01从nRF2401/ nRF2402/ nRF24E1/ nRF24E2接收数据使用与nRF2401/ nRF2402/ nRF24E1/ nRF24E2相同的CRC配置设置PRIM_RX位为1相应通道禁止自动应答功能与发射模块使用相同的地址宽度与发射模块使用相同的频道在nRF24L01和nRF2401/ nRF2402/ nRF24E1/ nRF24E2两端都选择1Mbit/s的数据传输率设置正确的数据宽度设置PWR_UP和CE为高即频率相同,,,如何建立nRF24L01发射nRF2401/ nRF2402/ nRF24E1/ nRF24E2接收数据使用与nRF2401/ nRF2402/ nRF24E1/ nRF24E2相同的CRC 配置 设置PRIM_RX 位为0设置自动重发计数器为0禁止自动重发功能与nRF2401/ nRF2402/ nRF24E1/ nRF24E2使用相同的地址宽度 与nRF2401/ nRF2402/ nRF24E1/ nRF24E2使用相同的频道在nRF24L01和nRF2401/ nRF2402/ nRF24E1/ nRF24E2两端都选择1Mbit/s 的数据传输率 设置PWR_UP 为高发送与nRF2401/ nRF2402/ nRF24E1/ nRF24E2寄存器配置数据宽度相同的数据长度 设置CE 为高启动发射打包描述增强型ShockBurst TM 模式下的数据包形式前导码 地址35字节 9位标志位 数据132字节 CRC 校验 0/1/2字节ShockBurst TM 模式下与nRF2401/ nRF2402/ nRF24E1/ nRF24E2相兼容的数据包形式前导码 地址35字节 数据132字节 CRC 校验0/1/2字节1在发送模式下加入前导码从接收的数据包中自动去除地址PID 其中两位七位保留用作将来与其它产品相兼容nRF24L01 校验的多项式是校验的多项式是12重要的时序数据下面是nRF24L01部分工作时序数据nRF24L01时序信息nRF24L01时序最大值 最小值 参数名 掉电模式待机模式1.5ms T pd2stby 待机模式发送/接收模式 130usT stby2aCE 高电平保持时间10us Thce CSN 为低电平CE 上升沿的延迟时间4us T pece2csn表13nRF24L01工作时序nRF24L01在掉电模式下转入发射模式或接收模式前必须经过1.5ms 的待机模式注意当关掉电源VDD 后寄存器配置内容丢失模块上电后需重新进行配置最好禁止自动重发功能,,,增强型ShockBurst模式时序图11增强型ShockBurst TM模式发送一包数据时序2Mbps图11所示是发送一包数据并收到应答信号的示意图数据送入发送模块部分没有在图中显示接收模块转入接收模式CE=1发射模块配置为发射模式CE=1持续至少10us 130us 后启动发射再过37us 后发送一字节数据发送结束后发送模块自动转入接收模式等待应答信号发送模块在收到应答信号后产生中断通知MCU IRQ (TX_DS)=>TX-data sent(数据发送完)接收模块接收到数据包后产生中断通知MCU IRQ (RX_DR)=>RX-data ready(数据接收完毕)外围RF 信息 天线输出ANT1和ANT2输出脚给天线提供稳定的RF 输出这两个脚必须连接到VDD 的直流通路或者通过RF 扼流圈或者通过天线双极的中心点在输出功率最大时0dBm 推荐使用负载阻抗为15+j88通过简单的网络匹配可以获得较低的阻抗例如50Ω输出功率调节RF_PWR 输出功率 电流消耗11 0 dBm 11.3mA 10 -6 dBm 9.0 mA 01 -12 dBm 7.5 mA 00 -18 dBm 7.0 mA 工作条件VDD=3.0V ,VSS=0V ,T A =27,负载=15+j88表14nRF24L01输出功率设置接收完应答信号后才产生中断,,,。

江苏卓胜微电子股份有限公司射频芯片产品说明书

`基本数据(2018) 报告日股价(元) 67.64 12mth A 股价格区间(元) 0-67.64 总股本(亿股) 1 无限售A 股/总股本 25% 流通市值(亿元) 16.91 每股净资产(元) 6.34 PBR (X ) 10.67 主要股东(2018) 无锡汇智联合 13.17% IPV 8.51% 冯晨晖 8.10% 唐壮 7.89% 收入结构(2018) 射频开关 82.27% 射频低噪放 15.06% 最近6个月股票与沪深300比较报告编号:首次报告日期: 相关报告:分析师: 张涛 Tel : ************E-mail : ***************** SAC 证书编号:S0870510120023 研究助理: 袁威津 Tel : 021-******** E-mail : ******************* SAC 证书编号:S0870118010021 ⏹ 投资要点公司发展迅猛 跻身国内射频芯片第一阵列江苏卓胜微电子股份有限公司成立于2012年,于2019年6月18日在深圳证券交易所创业板上市,主营业务为射频开关、射频低噪声放大器等射频前端芯片产品。

公司是业界率先基于RF CMOS 工艺实现了射频低噪声放大器产品化的企业之一,并凭借拼版式集成射频开关提升产品供货效率。

目前公司已成为国内智能手机射频开关、射频低噪声放大器的领先品牌,相关产品应用于三星、小米、华为、vivo 、OPPO 、联想、魅族、TCL 等终端厂商。

射频器件市场迎5G 增量 自主可控强化国产替代预期射频前端主要指射频芯片与天线之间的通信元件的集合。

3GPP 定义的4G LTE 频段达到66个,我们预期5G 时代将新增50个频段,手机支持的频段数量提升将带动射频器件价值量的增加。

另外,5G 频段频率提升将带来射频器件性能升级,以滤波器为例, SAW 和BAW 分别适用于低高频的应用,BAW 产品价格高于低频应用产品SAW ,对应滤波器细分市场在5G 商用时代获得量价齐升的推动。

射频基本知识

射频基本知识目录1. 射频概述 (2)1.1 射频定义与特点 (3)1.2 射频应用领域 (4)1.3 射频技术发展历史 (5)2. 射频信号及其特性 (6)2.1 电磁波与射频波 (7)2.2 频率范围与波长 (8)2.3 电磁波的时域和频域特性 (9)2.4 功率测量与单位 (10)2.5 幅度调制与相位调制 (12)3. 射频电路 (13)3.1 阻抗与反射系数 (14)3.2 匹配电路 (15)3.3 功率放大器 (16)3.4 滤波器与调谐电路 (17)3.5 衰减器与分频器 (19)4. 射频设备与系统 (20)4.1 信号源与检测器 (22)4.2 无线传输系统 (23)4.3 通信系统 (24)4.4 雷达系统 (25)4.5 测试与测量设备 (26)5. 射频技术应用案例 (28)5.1 5G 通信技术 (29)5.2 物联网应用 (30)6. 射频技术未来发展趋势 (31)1. 射频概述射频(Radio Frequency,简称RF)通信技术是现代通信的重要组成部分,它涉及无线电波的传输。

射频技术是通过发射机和接收机之间的无线电波来传输信号的,这些信号用于各种通信应用,如无线广播、移动通信系统、卫星通信和无线网络等。

在射频领域中,电磁波被用来承载信息,从简单的调幅(AM)广播到复杂的数字广播以及移动电话网络的高速数据传输,射频技术无处不在。

射频信号的特征可以从它们的波长和频率来描述,通常情况下,射频波的波长介于几厘米到几米之间,对应的频率范围从大约30 kHz 到300 GHz。

这个宽度频段使得射频技术可以涵盖从低频的无线电广播到高频的微波和无线宽带通信等多个应用领域。

射频系统通常包括调制和解调两个关键步骤,调制是将低频基带信号转换成高频的射频信号,使得信号可以通过无线电波传播。

这个过程涉及将基带信号的特性(如幅度和频率)嵌入到一个更高的射频载波上。

解调则在接收端进行,是将射频信号转换回可识别的低频信号,以便于进一步处理。

汉天下HS6200 Datasheet


9 / 11
HS6200
Note: BSC is Basic Spacing between Centers, ref. JEDEC standard 95, page 4.17-11/A
Huntersun Confidential. No.1607. Horizon International Tower, No.6 Zhichun Road, Haidian, Beijing, P.R.China .
CDVDD
20
VSS
RF
天线端口 2
Power
地 (GND)
Power
电源 (+1.8V - +3.6V)
Analog Input
参考电压,接 100nF 电容到地.
Power
地 (GND)
Power
电源(+1.8V- +3.6V)
Power
电源输出.
Power
地 (GND)
表 2.1HS6200 引脚功能描述
射功率可以达到 4dBm,接收灵敏度在 ◆快速频道切换,可应用于跳频算法
1Mbps 速率下可以达到-88dBm。
◆支持 QFN20,SOP16/SSOP16 等封装
片内集成电压调节器,可确保高电
源抑制比(PSRR)和宽电源电压范围。 典型应用:
最低工作电压为 1.8V,最高工作电压
为 3.6V。
◆无线键鼠
HS6200
Huntersun Confidential. No.1607. Horizon International Tower, No.6 Zhichun Road, Haidian, Beijing, P.R.China .

国产存储迈出高端突破第一步浪潮推出4Gb光纤存储系统

国产存储迈出高端突破第一步浪潮推出4Gb光纤存储系统谢世诚
【期刊名称】《微型机与应用》
【年(卷),期】2006(25)7
【摘要】@@ 6月27日,主题为"厚积薄发、引爆高端"的浪潮存储4Gb光纤新品发布会在北京举行.在发布会上,浪潮推出了基于4Gb光纤技术的高端存储系统AS1000G2,由此迈出了国内存储厂商高端突破的第一步.业内人士认为,浪潮存储的此次发布,不仅首次推出了4Gb光纤产品,更重要的是高端存储系统的整体上市,标志着国内存储厂商在高端存储领域的突破中迈出了实质性的第一步,对于中国的存储产业发展有着重要的意义.
【总页数】1页(P93)
【作者】谢世诚
【作者单位】无
【正文语种】中文
【相关文献】
1.浪潮4Gbit/s光纤存储系统诞生,国产高端存储新突破 [J], 薇薇
2.浪潮高端存储AS1000G2:国产系统的新突破 [J], 唐文
3.迈入4Gb高效存储时代——浪潮存储展开五省市高端方案研讨会 [J], 陈爱仙
4.浪潮高端存储AS1000G2国产系统的新突破 [J], 唐文
5.浪潮存储:迈出国产存储高端第一步 [J], 王潇雨
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档