微分学基本定理及其应用
微分中值定理与导数的应用

微分中值定理与导数的应用引言微分中值定理是微积分中的重要定理之一,它为我们研究函数的性质和应用提供了有力的工具。
本教案将通过分析微分中值定理及其应用,探讨导数在实际问题中的应用,旨在帮助学生深入理解微分中值定理的原理和导数的实际应用,提高他们的问题解决能力和数学建模能力。
第一节:微分中值定理的基本原理及应用1.1 微分中值定理的定义微分中值定理是微积分中的重要定理,它是基于导数的连续性和介值定理而得出的。
微分中值定理包括拉格朗日中值定理、柯西中值定理和罗尔中值定理等。
这些定理揭示了函数在一定条件下的性质,为我们研究函数的变化提供了便利。
1.2 拉格朗日中值定理的应用拉格朗日中值定理是微分中值定理中最基本的一种形式,它表明在某个开区间上,函数的导数在这个区间内取某个特定的值。
这个定理在实际问题中有广泛的应用,比如在物理学中用于描述物体的速度、加速度等问题。
1.3 柯西中值定理的应用柯西中值定理是微分中值定理中的另一种形式,它是拉格朗日中值定理的推广。
柯西中值定理表明在两个不同的点上,函数的导数取相同的值。
这个定理在实际问题中也有很多应用,比如在经济学中用于描述市场供求关系等问题。
1.4 罗尔中值定理的应用罗尔中值定理是微分中值定理中的一种特殊情况,它表明在某个闭区间上,函数的导数在两个端点处取相同的值。
这个定理在实际问题中也有很多应用,比如在工程学中用于描述物体的位移、速度等问题。
第二节:导数的应用2.1 导数与函数的变化率导数是函数在某一点上的变化率,它可以帮助我们研究函数的趋势和性质。
通过导数的计算和分析,我们可以得到函数的最值、拐点、极值等重要信息,进而应用到实际问题中。
2.2 导数与曲线的切线与法线导数还可以帮助我们研究曲线的切线和法线。
通过计算函数在某一点的导数,我们可以确定曲线在该点的切线方程和法线方程,进而研究曲线的几何性质。
2.3 导数与函数的最值问题导数在函数的最值问题中有重要的应用。
微分中的中值定理及其应用

微分中的中值定理及其应用微分中的中值定理是微积分中的基本定理之一,它在数学和物理学中具有重要的应用。
本文将介绍微分中的中值定理及其应用,并展示其在实际问题中的解决方法。
一、中值定理的概念与原理中值定理是微分学中的重要理论,它涉及到函数在某个区间上的平均变化率与瞬时变化率之间的联系。
其中最常见的三种形式为:罗尔定理、拉格朗日中值定理和柯西中值定理。
1. 罗尔定理罗尔定理是中值定理的基础,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且满足f(a) = f(b),则在开区间(a, b)上至少存在一点c,使得f'(c) = 0。
罗尔定理可通过对函数在该区间的最大值和最小值进行讨论得出,它主要用于证明函数在某一区间上恒为常数的情况。
2. 拉格朗日中值定理拉格朗日中值定理是中值定理的一种推广,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。
拉格朗日中值定理的证明可以通过构造辅助函数g(x) = f(x) - [(f(b) - f(a))/(b - a)]x来完成,它可以将任意两点间的斜率与函数在某一点的导数联系起来。
3. 柯西中值定理柯西中值定理是拉格朗日中值定理的进一步推广,它的表述为:如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则至少存在一点c,使得[f(b) - f(a)]/g(b) - g(a) = f'(c)/g'(c)。
柯西中值定理可以用来研究函数间的关系,它提供了一种描述两个函数在某一区间上的变化率相等的条件。
二、中值定理的应用中值定理不仅仅是一种理论工具,还具有广泛的应用。
下面将介绍中值定理在实际问题中的应用案例。
1. 最速下降线问题最速下降线问题是求解两个给定点之间的最短路径问题。
微分中值定理及其应用

微分中值定理及其应用微分中值定理是微积分中的一个重要定理,也是微分学中的基本定理之一。
该定理通常用于研究函数在某一点的变化情况,可以推导出许多与函数极值、单调性、零点和曲率等相关的性质。
微分中值定理的数学表述如下:若函数f(x)在[a, b]区间内满足以下条件:1、f(x)在[a, b]区间内可导;2、f(a)和f(b)存在;则在[a, b]内必有一个点c满足:f'(c) = [f(b) - f(a)] / (b - a)其中,f'(c)表示在点c处的导数。
这个定理的意义可以用图示表示为以下:此外,微分中值定理也可以用于求函数的 Taylor 展开式和曲率等问题。
下面我们来看一些微分中值定理的应用实例。
例1:证明一次函数f(x) = kx + b的图像线性。
我们知道,要证明一条直线呈现线性图像,需要证明其斜率k是恒定不变的。
因此,我们可以利用微分中值定理进行证明。
由于f(x)是一个一次函数,因此它在[a, b]区间内可导。
我们设该区间的两个端点为a和b,于是由微分中值定理可知,在[a, b]区间内必有一个点c满足:f'(c) = [f(b) - f(a)] / (b - a)根据f(x) = kx + b的定义,我们可以计算出其导数:f'(x) = k因此,有:即k是[b, a]区间上两个点间f(x)的变化率的平均值。
也就是说,k是线性函数在任何两个点间斜率的平均值,从而证明了一次函数的图像呈现线性。
例2:证明一段周期函数的平均值等于零。
假设f(x)是一个具有周期T的函数,即f(x+T) = f(x),我们需要证明其平均值为0,即:(1/T) * ∫f(x)dx = 0 (其中,积分区间为一个周期)我们首先对函数进行平移(或反演)操作,得到:由于g(x)的平均值为0,那么根据微分中值定理,我们可以得到:∃c∈[x, x+T],使得g'(c) = g(x+T) - g(x) / T = 0即:由此可得:因此,f(x)的周期平均值为f(c),而由于函数具有周期性,因此f(c)等于函数的平均值,即证明了我们的论点。
常微分方程第三章基本定理

THANKS
感谢观看
线性化定理
总结词
线性化定理是将非线性常微分方程转化为线性常微分方程的方法,从而可以利用线性方程的解法来求解。
详细描述
线性化定理提供了一种将非线性常微分方程转化为线性常微分方程的方法。通过适当的变换,可以将非线性问题 转化为线性问题,从而可以利用线性方程的解法来求解。这个定理在解决复杂的非线性问题时非常有用,因为它 简化了问题的求解过程。
02
CATALOGUE
常微分方程的稳定性
稳定性定义
稳定性的定义
01
如果一个常微分方程的解在初始条件的小扰动下变化不大,那
么这个解就是稳定的。
稳定性的分类
02
根据稳定性的不同表现,可以分为渐近稳定、指数稳定、一致
稳定等。
稳定性判别方法
03
可以通过观察法、线性化法、比较法等方法来判断常微分方程
的解是否稳定。
龙格-库塔方法
总结词
龙格-库塔方法是常微分方程数值解法中一种更精确的 方法,它通过多步线性近似来逼近微分方程的解。
详细描述
龙格-库塔方法的基本思想是利用已知的初值和微分方 程,通过多步线性插值来逼近微分方程的解。具体来 说,龙格-库塔方法通过递推公式来计算微分方程的近 似解,公式如下:(y_{n+1} = y_n + h f(t_n, y_n) + frac{h^2}{2} f(t_{n-1}, y_{n-1}) - frac{h^2}{2} f(t_{n-2}, y_{n-2})) 其中 (h) 是步长,(t_n) 和 (y_n) 是已知的初值,(f) 是微分方程的右端函数。
存在唯一性定理表明,对于任意给定的初值问题,存在一个唯一的解,该解在某个区间内存在并连续 。这个定理是常微分方程理论的基础,为后续定理的证明提供了重要的依据。
微分中值定理与导数的应用总结

微分中值定理与导数的应用总结一、微分中值定理1.拉格朗日中值定理拉格朗日中值定理是微分中值定理的最基本形式,它表述为:如果函数f(x)在区间[a,b]上连续,在开区间(a,b)内可导,则在(a,b)内至少存在一个数c,使得f(b)-f(a)=f'(c)(b-a),其中c属于(a,b)。
拉格朗日中值定理的几何意义是:如果一条曲线在两个点a和b上的斜率相等,则在这两个点之间必然存在一点c,使得曲线在c点和a、b两点之间的切线斜率相等。
2.柯西中值定理柯西中值定理是微分中值定理的推广形式,它给出了两个函数的导数的关系。
设f(x)和g(x)在[a,b]上连续,在开区间(a,b)内可导且g'(x)≠0,则存在一个数c,使得[f(b)-f(a)]/[g(b)-g(a)]=[f'(c)]/[g'(c)]。
柯西中值定理的几何意义是:如果曲线f(x)和g(x)在两个点a和b上的切线斜率之比等于f'(c)和g'(c)的比,则在这两个点之间必然存在一点c,使得曲线f(x)和g(x)在c点的切线斜率之比等于f'(c)和g'(c)的比。
3.罗尔中值定理罗尔中值定理是微分中值定理的特殊形式,它给出了导数为零的充分条件。
设函数f(x)在[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一个数c,使得f'(c)=0。
罗尔中值定理的几何意义是:如果一条曲线在两个端点上的函数值相等,则在这两个端点之间必然存在一个点c,使得曲线在c点的切线斜率为零。
微分中值定理的应用非常广泛,例如在证明极限存在或连续性、研究函数增减性和函数极值、解方程和不等式等问题中都有重要的作用。
在实际生活中,微分中值定理可以应用于求解速度、加速度、距离等问题,帮助我们更好地理解和解决实际问题。
二、导数的应用导数作为微积分的重要概念,具有很多实际应用。
微分中值定理应用

微分中值定理应用微分中值定理是微积分中的一个基本定理,它描述了函数在某个区间内的平均变化率与某个点的斜率之间的关系。
这个定理在实际问题中具有重要的应用价值,可以帮助我们更好地理解函数在一段区间内的性质和变化规律。
本文将介绍微分中值定理的基本概念,并探讨其在实际问题中的应用。
微分中值定理简介微分中值定理是微积分中的基本定理之一,主要有拉格朗日中值定理和柯西中值定理两种形式。
拉格朗日中值定理是最基本的形式,它陈述了如果函数在一个闭区间内连续,在该区间内可导,则在开区间内一定存在某个点,该点的导数等于该区间内函数的平均变化率。
数学表达式如下:假设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么存在$\\xi\\in (a, b)$,使得:$$f'(\\xi) = \\frac{f(b) - f(a)}{b - a}$$柯西中值定理则是在特定情况下的推广形式,要求函数满足一定的条件。
这两种中值定理都提供了函数在某个区间内平均变化率与某个点的斜率之间的关系,为我们在实际问题中应用微分中值定理提供了理论基础。
微分中值定理在实际问题中的应用微分中值定理在实际问题中的应用非常广泛,从物理学到经济学,都可以看到它的身影。
下面我们将介绍微分中值定理在几个具体问题中的应用。
1. 物理学中的应用在物理学中,运动学是一个典型的应用领域。
通过微分中值定理可以推导出匀速直线运动中某个时刻的速度与平均速度之间的关系。
设$t\\in[0,T]$表示时间,v(t)表示物体在时刻t的速度。
根据微分中值定理,存在$t \\in (0, T)$,使得:$$v'(t) = \\frac{v(T) - v(0)}{T}$$这个公式告诉我们,在匀速直线运动中,某个时刻的速度等于整段时间内的平均速度,这个关系可以帮助我们更好地理解物体的运动规律。
2. 经济学中的应用在经济学中,利润和成本是一个重要的问题。
通过微分中值定理,我们可以导出某个时刻产量与平均产量之间的关系。
微分中值定理及其应用

微分中值定理及其应用一、本文概述《微分中值定理及其应用》是一篇深入探讨微分学中值定理及其在实际应用中的作用的学术性文章。
微分中值定理是数学分析领域中的一个核心概念,它建立了函数在特定区间内的变化与其导数之间的紧密联系。
本文旨在通过对微分中值定理的深入剖析,揭示其在理论研究和实际应用中的广泛价值。
文章首先介绍了微分中值定理的基本概念,包括罗尔定理、拉格朗日中值定理和柯西中值定理等。
这些定理不仅在数学分析中占有重要地位,而且在实际应用中发挥着重要作用。
接着,文章通过一系列实例展示了微分中值定理在几何、物理、工程等领域的应用,如曲线形状的判定、物体运动的分析、工程设计的优化等。
本文还关注微分中值定理在经济学、生物学等社会科学领域的应用。
通过引入这些领域的实际案例,文章进一步强调了微分中值定理在解决实际问题中的重要作用。
文章对微分中值定理的应用前景进行了展望,探讨了其在未来科学研究和技术发展中的潜在影响。
《微分中值定理及其应用》是一篇系统介绍微分中值定理及其在各个领域应用的综合性文章。
通过本文的阅读,读者可以全面了解微分中值定理的基本知识和应用技巧,为深入研究和实际应用打下坚实基础。
二、微分中值定理概述微分中值定理是微积分理论中的核心内容之一,它揭示了函数在某区间内与导数之间的紧密联系。
这些定理不仅为函数的研究提供了重要的工具,还在解决实际问题中发挥了重要作用。
微分中值定理主要包括罗尔定理、拉格朗日定理和柯西定理。
罗尔定理是微分中值定理的基础,它指出如果一个函数在某闭区间上连续,在开区间内可导,并且区间两端点的函数值相等,那么在这个开区间内至少存在一点,使得该点的导数值为零。
拉格朗日定理是罗尔定理的推广,它进一步指出,如果存在满足上述条件的点,那么该点的导数值等于函数在区间两端点值的差与区间长度的商。
柯西定理则是拉格朗日定理的推广,它涉及到两个函数在相同区间上的性质。
这些定理在实际应用中具有广泛的价值。
微分中值定理的证明以及应用

微分中值定理的证明以及应用1 微分中值定理的基本内容微分中值定理是反映导数值与函数值之间的联系的三个定理 ,它们分别是罗尔(R olle )中值定理 、拉格朗日(Lagrange )中值定理和柯西(Cauchy )中值定理 .具体内容如下 :1.1 罗尔中值定理[2]如果函数f 满足:(1)在闭区间[,]a b 上连续 ; (2)在开区间(,)a b 内可导 ;(3)在区间端点的函数值相等,即()f a f b ()=,那么在区间(,)a b 内至少有一点a b ξξ(<<),使函数()y f x =在该点的导数等于零,即'()0f ξ=. 1.2 拉格朗日中值定理[2]如果函数f 满足: (1)在闭区间[,]a b 上连续;(2)在开区间,a b ()内可导.那么,在,a b ()内至少有一点a b ξξ(<<),使等式()()()=f a f b f b aξ-'-成立.1.3 柯西中值定理[2]如果函数f 及g 满足: (1)在闭区间[,]a b 上都连续; (2)在开区间,a b ()内可导; (3)'()f x 和'()g x 不同时为零; (4)()()g a g b ≠则存在,a b ξ∈(),使得 ()()()()g ()()f f b f ag b g a ξξ'-='-2 三定理的证明2.1 罗尔中值定理的证明[2]根据条件在闭区间[,]a b 上连续和闭区间上连续函数的最大值和最小值定理,若函数()f x 在闭区间上连续,则函数()f x 在闭区间[,]a b 上能取到最小值m 和最大值M ,即在闭区间[,]a b 上存在两点1x 和2x ,使12(),()f x m f x M==且对任意[,x a b ∈],有()m f x M ≤≤.下面分两种情况讨论:①如果m M =,则()f x 在[,]a b 上是常数,所以对(,)x a b ∀∈,有()=0f x '.即,a b ()内任意一点都可以作为c ,使()=0f c '. ②如果m M <,由条件()=()f a f b ,()f x 在[,]a b 上两个端点a 与b 的函数值()f a 与()f b ,不可能同时一个取最大值一个取最小值,即在开区间,a b ()内必定至少存在一点c ,函数()f x 在点c 取最大值或最小值,所以()f x 在点c必取局部极值,由费尔马定理,有'()=0f c .2.2 拉格朗日中值定理的证明[2]作辅助函数()()()()f b f a F x fx a b x f a a--=-()-(-) 显然,()()(0)F a F b ==,且F 在[,]a b 满足罗尔定理的另两个条件.故存在,a b ξ∈(),使 ()()''()f b f a F f b aξξ--()=-=0移项即得()()'()=f b f a f b aξ--2.3 柯西中值定理的证明[2]作辅助函数()()()g()-g()()g(f b f a F x f x f a x a g b a --()=-()-())易见F 在[,]a b 上满足罗尔定理条件,故存在(,)a b ξ∈,使得()()''()g'()=0()g(f b f a F f g b a ξξξ--()=-)因为g'()0ξ≠(否则由上式'()f ξ也为零),所以把上式改写成()'()()()g ()()f f b f ag b g a ξξ-='-证毕3 三定理的几何解释和关系3.1 几何解释[1]罗尔中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦(或x轴).拉格朗日中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦.柯西中值定理在曲线()()f xyxg x=⎧⎨=⎩(其中x为参数,a x b<<)存在一点,使曲线过该点的切线平行于过曲线两端点((),()),((),())A f a g aB f b g b的弦.综上所述,这三个中值定理归纳起来,用几何解释为:在区间[,]a b上连续且除端点外每一点都存在不垂直于x轴的切线的曲线,它们有个共同的特征()y f x=在曲线上至少存在一点,过该点的切线平行于曲线端点的连线.3.2 三定理之间的关系[3]从这三个定理的内容不难看出它们之间具有一定的关系.利用推广和收缩的观点来看这三个定理.在拉格朗日中值定理中,如果()()f a f b=,则变成罗尔中值定理,在柯西中值定理中,如果()F x x=,则变成拉格朗日中值定理.因此,拉格朗日中值定理是罗尔中值定理的推广,柯西中值定理是拉格朗日中值定理的推广.反之,拉格朗日中值定理是柯西中值定理的特例,罗尔中值定理是拉格朗日中值定理的特例.总的来说,这三个定理既单独存在,相互之间又存在着联系.从上面的讨论中可以总结得到,罗尔中值定理是这一块内容的基石,而拉格朗日中值定理则是这一块内容的核心,柯西中值定理则是这一块内容的推广应用.4 三定理的深层阐述4.1 罗尔中值定理4.1.1 罗尔中值定理结论[8](1) 符合罗尔中值定理条件的函数在开区间,a b ()内必存在最大值或最小值. (2) 在开区间,a b ()内使'()=0f x 的点不一定是极值点. 例如 函数3()(53)4xf x x =-在闭区间[1,2]-上满足罗尔定理的三个条件, 由25'()3()4f x x x =- ,显然0x =,有'(0)=0f 成立,但0x =不是()f x 的极值点.如果加强条件, 可得如下定理:定理 1 若函数在闭区间,a b []上满足罗尔中值定理的三个条件,且在开区间,a b ()内只有唯一的一个点,使()=0f x '成立,则点x 必是()f x 的极值点.完全按照罗尔中值定理的证法,即可证得使()'=0f x 成立的唯一点x 就是()f x 在,a b ()内的最值点,当然是极值点. 4.1.2 逆命题不成立[3]罗尔中值定理的逆命题 设函数()y=f x 在闭区间,a b []上连续,在开区间,a b ()内可导,若在点x 在,a b ()处,有()=0f x ',则存在,[,]p q a b ∈,使得()()=fp f q .例 函数3y x =,[,](0)x a a a ∈->,显然3y x =在,a a [-]上连续,在a a (-,)内可导,()=0f x ',但是不存在,[,]p q a a ∈- ,p q <,使得()()=f p f q .但如果加强条件,下述定理成立:定理2 设函数y ()f x =在闭区间,a b []上连续,在开区间,a b ()内可导,且导函数()f x '是严格单调函数,则在点(,)x a b ∈处,有()=0f x '的充分必要条件是存在,[,]p q a b ∈,p q<,使得()()=f p f q .4.2 拉格朗日中值定理4.2.1 点x 不是任意的[7]拉格朗日中值定理结论中的点x 不是任意的. 请看下例:问题 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim ()x f x c →+∞=(c 为常数),则lim ()0x f x →+∞=这一命题正确吗?证明 设x 为任意正数,由题设知()f x 在闭区间[,2]x x 上连续,在开区间(,2)x x 内可导,由拉格朗日中值定理知,至少存在一点(,2)x x ξ∈,使得()(2)()=f x f x f xξ-',又因为li m ()x f x c →+∞=,故(2)()limx f x f x x→+∞-=.由于ξ夹在x与2x 之间,当x +→∞时,ξ也趋于+∞,于是lim '()lim '()0x x f x f ξ→+∞→+∞==.上述证明是错误的,原因在于ξ是随着x 的变化而变化,即()g x ξ=,但当+x →∞时,()g x 未必连续地趋于+∞,可能以某种跳跃方式趋于+∞,而这时就不能由()f ξ'趋于0推出lim ()0x f x →+∞=了.例如 函数()2s i n =x f x x满足l i m ()0x f x→+∞=,且2221'()2cos sin f x x xx=-在+∞(0,)内存在,但2221lim '()lim [2cos sin ]x x f x x x x→+∞→+∞=-并不存在,当然li m '()0x f x →+∞=不会成立.4.2.2 条件补充[5]定理 3 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim '()x f x →+∞存在,若lim '()x f x c→+∞=(c 为常数),则lim '()0x f x →+∞=.4.3 柯西中值定理柯西中值定理的弱逆定理[8]设()()f x g x ,在[,]a b 上连续,在(,)a b 内可微,且'()'()f g ξξ严格单调,'()0g x ≠,则对于12,a b x x ξξ∀∈∃<<(), ,使得2121'()'()=[()()][()()]f g f x f x g x g x ξξ--成立.证明:对,a b ξ∀∈(),作辅助函数 '()'()F x f x f g x ξξ()=()-()g().显然,()f x 在[,]a b 上连续,在(,)a b 内可微,并且由()()f x g x ,严格单调易知'()F x 也严格单调.由拉格朗日定理知,对于12,a b x x ξξ∀∈∃<<(),,使得 2121()()'()()F x F x F x x ξ-=-成立.而'()='()('()'())'()0F f f g g ξξξξξ-=所以有21()()0F x F x -=即2211['()('()'())'()]['()('()'())'()]0f x f g g x f x f g g x ξξξξ---=整理得2121'()'()[()()][()()]f g f x f x g x g x ξξ=--证毕.5 定理的应用三个定理的应用主要有讨论方程根的存在性、求极限、证明等式不等式、求近似值等.以下主要以例题的形式分别展示三个定理的应用.5.1 罗尔中值定理的应用例1 设(1,2,3,,)i a R i n ∈= 且满足1200231n a a a a n ++++=+ ,证明:方程2012++++0n n a a x a a x x = 在(0,1)内至少有一个实根. 证明: 作辅助函数23+1120231n n a a a F x a x x x xn +++++ ()=则=0(0F (),=(1)F 0,Fx ()在[0,1]上连续,在(0,1)内可导,故满足罗尔中值定理条件,因此存在(0,1)ξ∈,使'()0F ξ=,又2012'()++++0nn F x a a x a x a x==由此即知原方程在(0,1)内有一个实根.例2 设函数()f x 在[,]a b 上连续,在,a b ()内可导,且()()0f a f b ==.试证: 在[,]0a b a >()内至少存在一点ξ,使得'()f f ξξ=(). 证明:选取辅助函数()()x F x f x e -=,则F x ()在[,]a b 上连续,在,a b ()内可导,(a)()0F F b ==,由R olle 定理,至少存在一点,a b ξ∈(),使'()'()e['()()]0F f f f f ξξξξξξξξ---=-=-=()e e因 0e ξ-> 即'()()=0f f ξξ-或'()=()f f ξξ.例 3 设函数()f x 于有穷或无穷区间,a b ()中的任意一点有有限的导函数()f x ',且0lim ()lim ()x a x b f x f x →+→-=,证明:'()0f c =,其中c 为区间,a b ()中的某点.证明: 当,a b ()为有穷区间时,设()(,)(),f x x a b F x A x a b ∈⎧=⎨=⎩,当时,当与时,其中0lim ()lim ()x a x b A f x f x →+→-==.显然()F x 在[,]a b 上连续,在,a b ()内可导,且有()()F a F b =,故由R o l l e 定理可知,在,a b ()内至少存在一点c ,使'()=0F c .而在,a b ()内,'()'()F x f x =,所以'()=0F c .下设,a b ()为无穷区间,若,a b =-∞=+∞,可设tan ()22x t t ππ=-<<,则对由函数()f x 与tan x t=组成的复合函数g()(tan )t f t =在有穷区间()22ππ-,内仿前讨论可知:至少存在一点0t (,)22ππ∈-,使20g '()'()sec 0t f c t =⋅=,其中t a n c t =,由于20s e c 0t ≠,故'()=0f c .若a 为有限数,b =+∞,则可取0m a x {,0}b a >,而令00()b a t x b t-=-.所以,对复合函数00()g()()b a t t f b t-=-在有穷区间0,a b ()上仿前讨论,可知存在00t ,a b ∈()使000200()g '()'()=0)b b a t fc b t -=⋅-(,其中0000()b a t c b t -=-,显然a c <<+∞由于00200())b b a b t ->-(,故'()=0fc .对于a =-∞,b 为有限数的情形,可类似地进行讨论.5.2 拉格朗日中值定理的应用例 4 证明0x >时,ln(1)1x x x x<+<+证明: 设()ln(1)f x x =+ , 则()f x 在[0,]x 上满足Lagrange 中值定理1ln(1)ln(10)ln(1)'(),(0,)10x x f x x xξξξ+-++===∈+-又因为111x ξ<+<+所以1111+1xξ<<+所以1ln(1)11+x xx+<<即ln(1)1x x xx<+<+例 5 已知()()()11112na n n n n n n n =++++++ ,试求lim n x na →.解: 令()2f x x=,则对于函数()f x 在()(),1n n k n n k +++⎡⎤⎣⎦上满足L a g r a n g e定理可得: ()()()()21211n n k n n k n n k n n k ξ++-+=++-+ ,()()()(),1n n k n n k ξ∈+++所以()()111221n k n k nnn n k n n k +++<-<+++当0,1,,1k n =- 时,把得到的上述n 个不等式相加得:()()()()211111222121n n n n n n n n n n+++<-<+++++ ()()11221n n n n ++++-即112222n n a a n n<-<+-故11022212n a n ⎛⎫<--<- ⎪⎝⎭所以lim 222n n a →∞=-例 6 求0.97的近似值. 解: 0.97是()f x x=在0.97x =处的值, 令001,0.97x x x x ==+∆=,则0.03x ∆=-, 由Lagrange 中值定理,存在一点0.97,1ξ∈()(1)(0.97)'()0.03f f f ξ-=可取1ξ≈近似计算,得110.971+)'(0.03)1(0.03)0.9852x x =≈⋅-=+-=(5.3 柯西中值定理的应用例 7 设0x >,对01α<<的情况,求证1xx ααα-≤-.证明:当1x =时结论显然成立,当1x≠时,取[],1x 或[]1,x ,在该区间设()f x xα=,()F x x α=由Canchy 定理得:()()()()()()11f x f f F x F F ξξ'-='- (),1x ξ∈或()1,x ξ∈ 即111x x ααααξξααα---==-当1x >时,(),1x ξ∈,11αξ->即11x x ααα->-又()10x x ααα-=-<故1x x ααα->-即11x αα-<-当1x >时,()1,x ξ∈,11αξ-<则()10x x ααα-=->故1x x ααα->-即11x αα-<-证毕例 8 设()f x 在[,]a b 上连续,(,)a b 内可导,a b ≤≤(0),()()f a f b ≠ ,试证 ,a b ξη∃∈,(),使得'()'()2a b f f ξηξ+= .证明: 在等式'()'()2a b f f ξηξ+=两边同乘b a -,则等价于22'()'()()2f f b a b a ηξξ-=-(),要证明此题, 只需要证明上式即可.在[,]a b 上,取()()F x f x =,G x x ()=,当,a b ξ∈()时,应用Cauchy 中值定理()()'()()()'()f b f a f G b G a G ξξ-=-即()()'()1f b f a f b aξ-=-在[,]a b 上,再取()()F x f x =,2G x x ()= ,当,a b η∈()时,应用C a u c h y 中值定理()()'()()()'()f b f a f G b G a G ηη-=-即22()()'()2f b f a f b aηη-=-即22'()'()()()2f f b a b a ηξξ-=-即'()'()2a b f f ξηξ+=例 9 设函数f 在[,]0a b a >()上连续,在(,)a b 上可导.试证:存在(,)a b ξ∈使得()()'()lnb f b f a f aξξ-=证明: 设()ln g x x =,显然它在[,]a b 上与()f x 一起满足柯西中值定理条件,所以存在,a b ξ∈(),使得 ()()'()1ln ln f b f a f b aξξ-=-整理后即得()()'()lnb f b f a f aξξ-=6 定理的应用总结 6.1 三定理的应用关系一般来说, 能用R o l l e 定理证得的也可用Lagrange 定理或C a u c h y 定理证得,因此,在解题的过程中根据问题本身的特点能选取合适的中值定理,以取得事半功倍的效果.如上面例9 利用R olle 中值定理.令()[()()]ln ()(ln ln )F x f b f a x f x b a =---,则()()F a F b -,所以存在,a b ξ∈()使得'()0F x =, 即()()'()lnf b f a b f aξξ--=整理后即得所欲证明.上面的这个例子还不难看出在利用R olle 中值定理和Cauchy 中值定理证明的同一个不等式中,用R olle 中值定理时辅助函数的构造显然需要更多的观察和技术.相比之下,用Cauchy 中值定理则要简单得多.6.2 定理的应用方法技巧从定理应用的例题中不难发现,微分中值定理大多都是通过构造辅助函数来完成证明的.有的可以从函数本身出发构造辅助函数,有的需要利用指数、对数、三角函数等初等函数来构造辅助函数,还有的要根据需要证明的目标出发适当构造辅助函数.可见,在微分中值定理的应用中,广泛地使用辅助函数是做证明题的关键,在学习时应该掌握一些常用的构造辅助函数方法.在做证明题时一般先从要证的结论出发,观察目标式的特征,分析目标式可能要用的辅助函数,然后对目标式作相应的变形,这是构造辅助函数的关键.有了辅助函数就可以直接对辅助函数应用微分中值定理得到结论.7 结束语本课题的研究成果是通过大学阶段的有关数学分析知识的学习,和一些相关学科内容知识的学习,并结合一些相关的参考图书资料,以及通过网络收集期刊、报刊和杂志上的相关内容,其中还包括自己对这些内容的理解,还通过多方面的了解和研究,且在和老师及同学们的一起探讨下,了解到微分中值定理的内在联系,也对微分中值定理深层进行了探讨,还对微分中值定理的应用做了归纳总结.本课题主要是以罗尔中值定理、拉格朗日中值定理和柯西中值定理三个微分中值定理,感受到了定理来解决数学问题的方便快捷,学以致用得到充分体现.微分中值定理是微分学的基本定理,而且它是微分学的理论核心,有着广泛的应用.本课题主要是对微分中值定理证明等式不等式,方程根的存在性,求极限以及求近似值等的应用.应用微分中值定理证明命题的关键是构造辅助函数,构造满足某个微分中值定理的条件而得到要证明的结论.而构造辅助函数技巧性强,构造合适的辅助函数往往是困难的.因此,在构造辅助函数上本文没有深入系统论述,有待于研究.9 参考文献[1] 党艳霞. 浅谈微分中值定理及其应用[J]. 廊坊师范学院学报(自然科学版).2010,(1): 28-31.[2] 陈传璋. 数学分析[M]. 北京: 高等教育出版社. 2007.[3] 刘玉琏, 傅沛仁. 数学分析讲义[M]. 北京:高等教育出版社. 1982.[4] 林源渠, 方企勤等. 数学分析习题集[M]. 北京:高等教育出版社. 1986.[5] 赵香兰. 巧用微分中值定理[J]. 大同职业技术学院学报. 2004,(2):64-66.[6] 刘章辉. 微分中值定理及其应用[J]. 山西大同大学学报(自然科学版).2007.23(2): 12-15.[7] 何志敏. 微分中值定理的普遍推广[J]. 零陵学院学报. 1985. (1): 11-13.[8] 李阳, 郝佳. 微分中值定理的延伸及应用[J]. 辽宁师专学报. 2011.(3): 13-18.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
2 设 f ( x) 在 N (a) 连续,在 N (a) 可导,且
lim f ( x) k (有限数).证明:
xa
f ( x) 在点 a 处可导,且 f (a) k .
对单侧导数,也有类似结论,参见书 P118,13
Rolle Thm、Lagrange中值Thm和Cauchy中值Thm间关系
§5 微分学基本定理及其应用
y
y f (x) T
M
B
y
P y f (x)
A
f ห้องสมุดไป่ตู้a)
f (b)
o a x b x oa x b
x
如果连续曲线 y f ( x) 除端点外处处都有不垂直
于 x轴 的切线,那么该曲线上是否存在这样一的点,
使得在该点处曲线的切线平行于连结两端点的直线?
§5 微分基本定理及其应用
f (x) 0 ,则在 (a, b) 内 f ( x) 严格单增;
f (x) 0 ,则在(a, b) 内 f ( x) 严格单减.
f (b) f (a) f (x )(b a) , x 介于 a , b 间.
―――Lagrange 中值公式
例 3 证: arctan b arctan a b a .
f
(
y
x)
f
(
x0
)P,则称 x y
0f
为 (x
f )
(
x
)
的一个极小值,
f ( x0 ) 为 f ( x) 的一个极小值.
极值 o极 极a大 小f (值 值a ).x
f (b)
bx
Fermat Thm:若 f ( x0 ) 存在,且在 N ( x0 , ) 内
恒有 f ( x) f ( x0 ) ( 或 f ( x) f ( x0 ) ),则 f ( x0 ) 0
Thm 2(Rolle Thm) 设
(1) f ( x) C[a, b] ; ( 闭区间[a, b] 上连续) (2) f ( x) D(a, b) ; ( 开区间 (a, b) 内可导)
(3) f ( a) f ( b.)
则至少存在一点x (a, b) ,使
代数意义:
f (x ) 0 .f (b) f (a) .
(3) f (a) f (b) . 则至少存在一点x (a, b) ,使 f (x ) 0 .
Rolle Thm 用于判断 f (x) 0 有实根以及实根的个数.
例2
设
f ( x) C[0,
,
1]
f ( x) D(0, 1)
,且
f (1)
0.
证明:至少 x (0, 1),使
f (x ) f (x ) . x
Lagrange 中值 Thm 的几何意义:
x2 b x
如果连续曲线 y f ( x) 除端点外处处都有不垂直
于 x轴 的切线,那么该曲线上至少有这样一点存在,
在该点处曲线的切线平行于连结两端点的直线.
Rolle Thm: (1)
f ( x) C[a, b] ;
(2)
f
(x)
D( a ,
;
b)
(3) f (a) f (b) .
推广:若 f (x) 在(a, b) 内可导,且
lim f ( x) lim f ( x) (即 f (a 0) f (b 0) ).
xa
xb
则至少存在一点x (a, b) ,使 f (x ) 0 .
例 1 证 x3 3x 2 0 在 (0, 1) 内有且仅有一个实根.
Rolle Thm: (1) f ( x) C[a, b] ; (2) f ( x) D(a, b) ;
,且
b)
f
( x)
0.
则在[a, b] 上, f (x) C (常数).
Corol. 2 若在[a ,b 内] , f ( x) g ( x,) 则
f ( x1 ) f ( xf2()x) f (gx()x()x1 Cx.2 ) , x 介于 x1, x2 间.
Corol. 3 若在 (a ,b 内) ,
一、微分中值定理
Def. 1 设函数 f ( x) 在区间 I 内有定义, x0 I .
o
若存在 ( x0 , ) I ,使对 x N ( x0 , ) ,都有
f ( x) f ( x0 ) ,则称 x0 为 f ( x) 的一个 极大值点,
f ( x0 ) 为 f ( x) 的一个极大值;
则至少存在一点x (a, b) ,使 f (x ) 0f.(b) f (a) 0.
ba
Thm 3(Lagrange 中值 Thm) 设
(1)
f ( x) C[a, b] ;
(2)
f
(x)
D( a ,
.
b)
则至少存在一点x (a, b) ,使
f (x ) f (b) f (a) .
ba
例 4 证 x ln(1 x) x, x 0 . x1
例 5 设 f ( x) 在[0, C] 上具有严格单减的导数 f ( x) , 且 f (0) 0 .证:对满足 0 a b a b C 的任意
a, b ,都有 f (a) f (b) f (a b) .
L例-Th6m设:f((1x)
Rolle Thm
f (x)0
推广
f (a) f (b)
Lagrange-Thm
f (b) f (a) ba
推 广 g(x) x
Cauchy-Thm f (b) f (a) f (x). g(b) g(a) g(x)
ba
f (a) f (b) 0 至少存在x (a, b) ,使 f (x ) 0 .
可微函数 f ( x) 的任意两个零点之间
至少存在 f (x) 的一个零点.
y
P
y f (x)
f (a)
f (b)
oa x b
x
Rolle Thm 的几何意义:若连续曲线 y f ( x) 除端点
外处处都有不垂直于 x 轴 的切线,且两端点处的纵坐标
思考 若改为:
Rolle Thm:证(1明) :F至( x少) 存C在[a, 一b];点 x(2)(0,F1()x,) D(a, b) ;
(3) F(a) F(b) .
则至少存使在f一(x点)
x
nf (x )
(ax, b)
,. 使”F该如(x )何设0 辅.助函数呢?
y
y f (x) T
y
M
B
)
在f ( xN) f (0)
(0C,f[a(), 0内 b]);有L(n2)阶f导 f ((n数 x1)), (0D)且(a,
. 0b).
则至少存在一o点 x
证:对 x N (0,
(a, b)
) ,有
,f (使x)
xn
f(b)f
(n)f((ax)),f 0(x)(b
n!
a) .
1.
Thm 4 (Cauchy 中值 Thm) 设
相等,则其上是至少存在一条平行于 x 轴 的切线.
(1) f ( x) C[a, b] ; (2) f ( x) D(a, b) ;(3) f (a) f (b) .
Note:① Rolle Thm 条件(1)-(3)中只要有一个不成立, 则 Rolle Thm 的结论未必成立.如
② Rolle Thm 的条件只是充分的,可推广为
若进一步假设 (3) 在 (a, b) 内 g(t) 0 , 则
f (b) f (a) f (x ) . g(b) g(a) g(x )
f (b) f (a) f (x )(b a) , x 介于 a , b 之间.
―――Lagrange 中值公式
思考
1 证: arcsin x arccos x , 1 x 1.
(1) f (t ) C[a, b] , g(t ) C[a, b] ; 由Rolle Thm知 (2) f (t) D(a, b) , g(t) D(a, b) . g(b) g(a) 0
则至少 x (a, b) ,使
f (x ) g(b) g(a) g(x ) f (b) f (a) .
P y f (x)
A
f (a)
f (b)
o a x b x oa x b
x
如果连续曲线 y f ( x) 除端点外处处都有不垂直
于 Rolxle轴T的hm切:线((1,3))那ff么((xa该))曲Cf线 [a(,b上b)] ;.是否(2)存在f (这x)样 一D(a的, b点) ;,
则使至得少在存该在点一处点曲x线 (的a,切b线) ,平使行f于(x连) 结 两f (b端) 点f的(a直) .线0?.
―――Lagrange 中值公式
30 x, x x (a, b),在[x, x x]上应用 L-Th,得
f ( x x) f ( x) f ( x x)x , 01 .
―――有限增量公式
“常数函数的导数是零”的逆命题是否成立?
Corol. 1
若
f
( x) C[a,
,
b]
f
(x)
D( a ,
瞬时变化率
在[a, b]上的 平均变化率
Note:② Lagrange Thm 的几种形式
10 a, b ,若 f ( x) 在[a, b] 或[b, a] 上满足 L-Th 的条件,
则 f (b) f (a) f (x )(b a) , x 介于 a , b 之间.
―――微分中值公式
20 f (b) f (a) f (a (b a))(b a) , 0 1 .
y
P
y f (x)
? x (a,b), f (x ) 0