《数论》第一章补充例题
数论专题一

例题4、学校打算在1月4日或1月10日组织同学们 看电影,确定好日期后,老师告诉了班长,但是 由于“四”和“十”发音接近,班长有10%的可 能性听错(把4听成10或者把10听成4),班长又 把日期告诉了小明,小明也有10%的可能性听错。 那么小明认为看电影的日期是正确的可能性为 _____%;
考点:概率问题 详解:小明认为正确的情况有两种:(1)班长正 确、小明正确,共(1−10%)×(1−10%)=81%; (2)两人都错误,10%×10%=1%。共 81%+1%=82%。 评注:本题最容易的错误答案是81%。
例题9、如果一个四位数与一个三位数的和是 1999,并且四位数与三位数是由7个不同的数字 组成的。问这样的四位数共有多少个?
解:我们不妨设这个四位数为abcd,三位数为efg.由题意得: abcd +ef g 1 9 9 9 ,显然a=1,且b+e=9 c+f=9 d+g=9.我 们知道:7+2=6+3=5+4=9+0=9(1和8不能选,因为1已经 用过了),又因为e不能为0,那么b就不能为9,则b共有7 种选择(0、2、3、4、5、6、7)。当b确定后,e也就随 之确定,所以c只剩下6种取法,同理f就确定了,d就只剩 下4种取法,d确定后,g也就确定了 所以一共:7×6×4=168(个)
例题8、 有4个不同的数字共可组成18个不同的 4位数。将这18个不同的4位数由小到大排成一 排,其中第一个是一个完全平方数,倒数第二 个也是完全平方数。那么这18个数的平均数是 多少?
解:4个不同的数可以组成24个不同的数,但是现在题目 中说有18个不同的数,那只有一种可能,4个数中有一个 是0. 设另外3个数分别为:a,b,c 且a<b<c 4个数中最小的数为a0bc,倒数第二大的数为cb0a 这个时候我们就要涉及到尝试法:a0bc最小可以为1023, 但是1023不是完全平方数,完全数最接近1023的是 32²=1024,然后4201不是完全平方数。继续假设 a0bc=33²=1089,而9801=99²,成立。 所以a=1,b=8.c=9 然后把18个罗列出来算平均数=6444
奥赛经典

奥赛经典——初中数学竞赛中的数论问题第一章 整数的封闭性运算【典型例题与基本方法】例1 (1995年全国联赛题)方程组⎩⎨⎧=+=+2363yz xz yz xy 的正整数解的组数是( ). A.1 B.2 C.3 D.4 例2 (2007年天津市竞赛题)八年级二班的同学参加社区公益活动——收集废旧电池,其中甲组同学平均每人收集17个,乙组同学平均每人收集20个,丙组同学平均每人收集21个.若这三个小组共收集了233个废旧电池,则这三个小组共有学生( )人.A.12B.13C.14D.15例3 (2002年“我爱数学”初中生夏令营竞赛题)如果一个正整数等于它的各位数字之和的4倍,那么,我们就把这个正整数叫做四合数.所有四合数的总和等于 .【解题思维策略分析】1.注意整数乘积或幂中的特殊因数例5 (2008年青少年数学国际城市邀请赛题)已知n 为正整数,使得()()()k n n n n n n 2621211=--+-++(k 是正整数).求所有可能的n 值的总和. 2.注意整数运算的封闭性例6 (2007年“新知杯”上海市竞赛题)求满足下列条件的正整数n 的所有可能值:对这样的n ,能找到实数a ,b ,使得函数()b ax x n x f ++=21对任意整数x ,()x f 都是整数. 3.注意在分数不等式中取整数的条件例7 已知n ,k 均为正整数,且满足不等式4396371<+-<k n k n .若对于某一给定的正整数n ,只有唯一的一个正整数k 使不等式成立.求所有符合要求的正整数n 中的最大值和最小值.【模拟实战】A 组1.若满足不等式137158<+<k n n 的整数k 只有一个,则正整数n 的最大值为( ). A.100 B.112 C.120 D.1502.若12032+m 是整数,则所有满足条件的正整数m 的和为( ).A.401B.800C.601D.12033.若直角三角形的一条直角边长为12,另两条边长均整数,则符合这样条件的直角三角形共有( )个.A.1B.6C.4D.无数多4.2009是一个具有如下性质的年号:它的各位数码之和为11.那么,自古至今,这种四位数的年号共出现过______次.5.(2005年全国联赛题)不超过100的自然数中,将凡是3或5的倍数的数相加,其和为_____.B 组1.(2008年四川省竞赛题)已知正整数a 、b 、c 满足c b a <<,且abc ca bc ab =++.求所有符合条件的a 、b 、c .2.(2009年南昌市竞赛题)已知n 是大于1的整数.求证:3n 可以写成两个正整数的平方差.3.(第4届中国趣味数学决赛题)有20堆石子,每堆都有2006粒石子.从任意19堆中各取一粒放入另一堆,称为一次操作.经过不足20次操作后,某一堆中有1990粒石子,另一堆石子数在2080到2100之间,这一堆石子有______粒.4.(1995年全国联赛(民族卷)题)已知正整数a 、b 、c 满足下列条件:c b a >>,()()()72=---c a c b b a ,且100<abc ,求a ,b ,c .5.(2006年全国联赛题)2006个都不等于119的正整数200621,,a a a 排成一行,其中任意连续若干项之和都不等于119,求200621a a a +++ 的最小值.6.(第13届日本奥数决赛题)平太给大介出了一道计算题(A ,B 各代表两位数中各位上的数字,相同的字母代表相同的数字):=⨯BA AB .大介:“得数是2872.”平太:“不对”.大介:“个位的数字对吗?”平太:“对”.大介:“其它位的数字有对的吗?”平在:“这是保密的.但你调换一下四位数2872中4个数字的位置,就能得出正确答案.” 请求出正确答案.第二章 正整数的多项式表示及应用【典型例题与基本方法】例1 将()102010化为下列进位制的数:⑴二进位制的数;⑵八进位制的数.例2 试证:形如abcabc 的六位数总含有7,11,13的因数.例3 一个三位数xyz (其中x ,y ,z 互不相等),将其各个数位的数字重新排列,分别得到的最大数和最小数仍是三位数.若所得到的最大三位数与最小三位数之差是原来的三位数,求这个三位数.例4 设两个三位数xyz ,zyx 的乘积为一个五位数xzyyx (其中x ,y ,z 互不相等),求x ,y ,z.【解题思维策略分析】1.善于运用正整数的十进位制的多项式表示解题例5 若一个首位数字是1的六位数abcde 1乘以3所得的积是一个末位数字为1的六位数1abcde ,求原来的六位数.例6 有一个若干位的正整数,它的前两位数字相同,且它与它的反序数(011a a a a n n -与n n a a a a 110- 互为反序数,其中00≠a ,0≠n a )之和为10879,求原数.2.会利用非十进位制多项式表示解题例7 设在三进位置中,数N 的表示是20位数:12112211122211112222.求N 在九进位制中表示最左边的一位数字.例8 设1987可以在b 进位制中写成三位数xyz ,且7891+++=++z y x ,试确定出所有可能的x ,y ,z 和b .【模拟实战】A 组1.M 表示一个两位数,N 表示一个三位数,如果把M 放在N 的左边,组成一个五位数,那么这个五位数是( ).A. M+NB. MNC. 10000M+ND. 1000M+N2.一个两位数,它是本身数字和的k 倍,将个位数字与十位数字交换位置后,组成一个新数,则新数为其数字和的( ).A.()1-k 倍B.()k -11倍C.()k -10倍D.()k -9倍3.在大于10、小于100的正整数中,数字变换位置后所得的数比原数增加9的数的个数为_____.4.一个两位数,它的各位数字和的3倍与这个数加起来所得的和恰好是原数的两个数字交换了位置所得的两位数,这样的两位数有____个.5.已知ab 为两位数,且满足bbb ab b a =⋅⋅,求这个两位数.6.求一个最小的正整数n ,它的个位数字为6,将6移到首位,所得的新数是原数的4倍.B 组1.已知一个四位数的各位数字的和与这个四位数相加等于2010,试求这个四位数.2.有一种室内游戏,魔术师要求某参赛者想好一个三位数abc ,然后,魔术师再要求他记下五个数acb 、bac 、bca 、cab 、cba ,并把这五个数加起来求出和N ,只要讲出N 的大小,魔术师就能说出原数abc 是什么.如果3194=N ,请你确定abc .3.两位数ab (个位数字与十位数字不同)的平方等于三位数xyz ;而这两位数ba 的平方恰好等于三位数zyx ,求上述两位属于三位数.4.(2008年全国联赛(江西卷)题)一本书共有61页,顺次编号1,2,...,61.某人在将这个数相加时,有两个两位数页码都错把个位数与十位数弄反了(形如ab 的两位数被当成了两位数ba ),结果得到的总和是2008.那么,书上这两个两位数页码之和的最大值是多少?5.(1998年“中小学数学杯”竞赛题)把()21101001.0化为十进制小数. 6.(1998年长春市竞赛题)证明:1218-能被7整除.7.(江西省第4届“八一杯”竞赛题)求证:12222222101112131415-++-+-+- 能被5整除.8.(第5届沈阳市竞赛题)若m ,n 是两个自然数,且2>n ,那么12+m 不能被12-n 整除,试说明理由.9.(江西省第2届探索与应用能力竞赛题)将十进制数2002化成二进制数.10.(1997年广州市竞赛题)化()1084375.53为二进制小数.11.有一个写成7进制的三位数,如果把各位数码按相反顺序写出,并把它看成是九进制的三位数,且这两数相等,求这个数.12.在哪种进位制中,16324是125的平方?13.N 是整数,它的b 进制表示是777.求最小的正整数b ,使得N 是十进制整数的4次方.14.在哪种进制中,100134=⋅?15.(2007年“卡西欧杯”武汉市竞赛题)军训基地购买苹果慰问学员.已知苹果总数用八进位制表示为abc ,七进位制表示为cba .那么,苹果的总数用十进位制表示为_____.16.(1998年“中小学数学杯”竞赛题)化()81325为二进制数.17.(1995年“祖冲之”邀请赛决赛题)求证:对于任意进位制的数,10201都是合数.18.(第2届华杯赛决赛题)下面是两个1989位整数相乘:119891198911111111个个⨯. 问:乘积的数字和是多少?19.(第10届《中小学生数学报》邀请赛题)计算:⑴()()22101101111011010+; ⑵()()2210101101101101-; ⑶()()()222101101100111000000--.。
高考数论必考经典题型-第一讲

因为 d = 0, 故: d = 2a2.
所以 公比 q = a3 = a2 + d = 3a2 = 3.
a2
a2
a2
2
考点: 等差数列的通项公式,等比数列的中项公式,公比的定义。
例 6. 已知等差数列 {an} 的前 n 项和 Sn, 且 a1 = 1, S11 = 33. 设 bn = 比数列, 并求其前 n 项和 Tn.
可以得到这是一个首项为 a1 = 2, 公差为 d = 7 的等差数列.
故这些数构成的数列为: an = 2 + 7(n − 1) = 7n − 5.
由于需要在 100 之内, 因此: 7n − 5 ≤ 100, 即:n ≤ 15.
由等差数列的求和公式: Sn =
(a1 + an)n 2
, 可 得 这 些 数 之 和 为:
1 2
2
·
1
−
1 2
1
−
1 2
5
1 = 1 − 2n .
25
考点: 等差数列的通项公式,等差数列的求和公式,等比数列的通项公式,等比数列的求和公式,
等比数列的定义。
例
7.
若
x = y,
且两个数列:
x,
a1,
a2,
y
和
x,
b1,
b2,
b3,
y
均为等差数列,
求:
a1 − x y − b3
=
?
解析: 设两个等差数列的公差分别为: d1 和 d2, 则由等差数列的通项公式: an = a1 + (n − 1)d ,
可得 a1 = x + d1, y = x + 3d1; y = b3 + d2, y = x + 3d2.
初等数论 第一章 整除理论

第一章整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节数的整除性定义1设a,b是整数,b≠0,如果存在整数c,使得a = bc成立,则称a被b整除,a是b的倍数,b是a 的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被b整除,记为b|/a。
显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1下面的结论成立:(ⅰ) a∣b⇔±a∣±b;(ⅱ) a∣b,b∣c⇒a∣c;(ⅲ) b∣a i,i = 1, 2, , k⇒b∣a1x1+a2x2++a k x k,此处x i(i = 1, 2, , k)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒ |b| ≤ |a|;b∣a且|a| < |b| ⇒a = 0。
证明留作习题。
定义2若整数a≠ 0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。
以后在本书中若无特别说明,素数总是指正素数。
定理2任何大于1的整数a都至少有一个素约数。
证明若a是素数,则定理是显然的。
若a不是素数,那么它有两个以上的正的非平凡约数,设它们是d1, d2, , d k 。
不妨设d1是其中最小的。
若d1不是素数,则存在e1 > 1,e2 > 1,使得d1= e1e2,因此,e1和e2也是a的正的非平凡约数。
这与d1的最小性矛盾。
所以d1是素数。
证毕。
推论任何大于1的合数a必有一个不超过证明使用定理2中的记号,有a = d1d2,其中d1 > 1是最小的素约数,所以d12≤a。
证毕。
例1设r是正奇数,证明:对任意的正整数n,有n + 2|/1r + 2 r + + n r 。
初等数论习题集参考答案

习题参考答案第一章习题一1. (ⅰ) 由a∣b知b = aq,于是b = (-a)(-q),-b = a(-q)及-b = (-a)q,即-a∣b,a∣-b及-a∣-b。
反之,由-a∣b,a∣-b及-a∣-b也可得a∣b;(ⅱ) 由a∣b,b∣c知b = aq1,c = bq2,于是c = a(q1q2),即a∣c;(ⅲ) 由b∣a i知a i= bq i,于是a1x1+a2x2+ +a k x k = b(q1x1+q2x2+ +q k x k),即b∣a1x1+a2x2+ +a k x k;(ⅳ) 由b∣a知a = bq,于是ac = bcq,即bc∣ac;(ⅴ) 由b∣a知a = bq,于是|a| = |b||q|,再由a ≠ 0得|q| ≥ 1,从而|a| ≥ |b|,后半结论由前半结论可得。
2. 由恒等式mq+np = (mn+pq) - (m-p)(n-q)及条件m-p∣mn+pq可知m-p∣mq+np。
3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a+ 1, , a+ 9, a+ 19的数字和为s, s+ 1, , s+ 9, s+ 10,其中必有一个能被11整除。
4. 设不然,n1 = n2n3,n2≥p,n3≥p,于是n = pn2n3≥p3,即p≤3n,矛盾。
5. 存在无穷多个正整数k,使得2k+ 1是合数,对于这样的k,(k+ 1)2不能表示为a2+p的形式,事实上,若(k+ 1)2 = a2+p,则(k+ 1 -a)( k+ 1 +a) = p,得k+ 1 -a = 1,k+ 1 +a = p,即p = 2k+ 1,此与p 为素数矛盾。
第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。
2.写a = 3q1+r1,b = 3q2+r2,r1, r2 = 0, 1或2,由3∣a2+b2 = 3Q+r12+r22知r1 = r2 = 0,即3∣a且3∣b。
《初等数论》各章习题参考解答

3
1
48
,
在100! 的分解式中的指数
2
100!
100 2
100 4
100 8
100 16
100 64
50
25
12
6
1
94
,
100! 294 348 k 447 348 k 1247 3k,k, 6 1。
故 nmax 47 , M min 3k , k, 6 1。
k
+
1 位正整数,记其最左边
那一位数字为 a Î {2,5},则 xk' + 1 = a´ 10k + xk' ,其中 xk' 是由 2 和 5 组成的十进制 k 位
正整数,由 2k+ 1
若 k = 轾犏臌3 n = 8 ,则 3创5 7篡8 n 840 n ,从而 k = 轾犏臌3 n 吵轾犏臌3 840 9 > 8 ,矛盾!
若 k = 7 ,则 3创4 5篡7 n 420 n ,但 n < 840 ,所以最大的正整数 n = 420 。
6.证明:当 n = 1 时,存在唯一的 x1 = 2 ,则有 21 x1 ;当 n = 2 时,存在唯一的 x2 = 52 ,有 22 x2 ;当 n = 3 时,存在唯一的 x3 = 552 ,有 23 x3 。
n 炒2a
3b 创5g
7 11
77创
k 2
k 3
k 5
77 30
k 3。
由 k ³ 11 ,可得 k ³
11 12
(k
+
1),从而
n>
77 30
壮k 3
77 30
113 123
初等数论课后习题答案.pptx

而b是••个有限数, f顷,便.=。 二(。0)=01) = 04)=(斗而)=(L,L" J =〔砧+。)=L ,存在其求法为
(a,t>) = (b,a-bs) = (a — bs,b — (a —血)禹)=… .(76501,9719) = (9719,76501-9719x7) = (S4«8,9719-S468) -(1251,8468-1251x6)
© 下证唯一性
当B 为奇数时,设 & =bs-^t=bsl +4 则|ETJ = p?(q _$)| >|Z?|
而时磚周達却一勺副+市岡矛盾故
当0为偶数时,“不咐、举^如队此时?为整数
3-?=ai+?=小 £+(_?),%=?,kJ E?
学最大公因数与辗转相除法
I.讹叨推论4.1
推论41小b的公■数.与3, m的因数相同一
=(3J) 丄 证明木节(I)式屮的"最
4
证:由P3§1习观4知在(1.盘3。沙=蛙,叩応囈
2
log log 2
§3整除的进一步性质及最小公倍數
1. 证明两整数a, b互质的充分与必要条件是:存在两个整数s, t满足条件ax+bt = \
证明 必要性-若(fl,fe) = l.则由推论1.1知存在两个整数s, t满足:as+bt=(a,b)
as+ bt = \
充分性。若存在整数s, t使as+bt= 1,则a, b不全为0°
又因为(a,b)\a,(a,b)\b .所以(a,b\as + bt)即(<z,b)ll°
又皿*”。. .*,&) = I
初等数论备课

数论相关题目第一章 整数的整除性1.1 整除1.整数(1)自然数、正整数、非负整数、整数等的表示方法(2)字母表示数字的方法:字母相乘时如何表示,以字母表示多位数如何表示1.一个两位数,个位上的数字比十位上的数字大1,把个位数字与十位数字交换位置后得到一个新的两位数。
原数与新数相加的和是121,求这个两位数。
2.一个三位数,个位上的数字是5,如果将个位上的数字移到第一位数字前面时,所得的新数比原数大288,原数是多少?3.由3个不同的数字(都不为0)组成的所有的三位数的和是1332,这样的三位数中最大的是多少?4.有一个四位数,各位上的数字各不相同,它和它的反序数(所谓反序数就是将原来的数字顺序倒过来排列,例如1234的反序数是4321)之和是一个五位数,且这个五位数的数字排列是以当中的数字为对称的,这样的四位数最大可以是多少?5.已知算式1994=-EFGH ABCD ,其中ABCD 、EFGH 均为四位数;A 、B 、C 、D 、E 、F 、G 、H 是0、1、2…9中的8个不同整数,且0≠A 、0≠E 。
那么ABCD 与EFGH 之和的最大值是多少?最小值是多少?6.七位数abcdefgh 中,不同的字母分别代表0~9中不同的数字。
已知abcd-efg=8721,abcd+efg=10183,这个七位数是多少?7.两位数ab中,数字a比数字b大2,ab+ba的和是88,ab是多少?8.用1、2、3、4、5、6、7七个数字组成三个两位数,一个一位数。
已知这4个数的各个数位上的数字都不相同,并且4个数的和等于100。
如果要求其中最大的两位数尽可能大,那么这个最大的两位数是多少?9.一个三位数,个位上的数字是5.如果将个位上的数字移到第一位数字前面时,所得的新数比原数大288,原数是多少?10.abcd是四位数,a,b,c,d均代表0、1、2、3中的某个数字,且各不相同。
那么,满足关系a<c,c>b>d的四位数都有哪些?11.将一个三位数末两位数字交换位置后得到一个新的三位数,这个新三位数与原三位数的和是一个四位数BA73,那么,符合上述条件的原三位数共有多少个?12.一个多位数的个位是8,将个位8移到这个数的前位,其它数字顺次往后移一位,得到一个新的多位数,它是原数的8倍,则原数最小应是多少?13.一个六位数,最高位是1,将它移到最右边,得到的新的六位数是原来六位数的3倍,求原来的六位数是多少?2.整除(1)整除定义(非显然约数)定理1.1.1结论(1)~(9)定理1.1.2 带余除法定理推论 当a=bq+r ,b r <≤0时,⇔a b r=0例题1 若199019921994199619982000222222-+-+-=N ,则N 9例题2 已知+∈N n 且4n ,求证:)4321(5n n n n +++例题3 求证:任意5个连续整数中必有一个数能被5整除例题4 任意9个连续自然数中,最多有几个质数?任取8个自然数,必有两个数的差是7的倍数求证:任意四个整数中,至少有两个整数的差能够被3整除 任意10个整数中,至少有几个数的两两之差是3的倍数?任取5个整数,必然能够从中选出三个,使它们的和能够被3整除 求证:任意k 个连续整数中必有一个能被k 整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数论》第一章补充例题整除性理论是初等数论的基础.本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用.1整数的整除性例1设A={d1,d2,···,dk}是n的所有约数的集合,则}{nnn,,···,B=d1d2dk也是n的所有约数的集合.解由以下三点理由可以证得结论:(i)A和B的元素个数相同;(ii)若di∈A,即di|n,则(iii)若di=dj,则问:d(1)+d(2)+···+d(1997)是否为偶数?n解对于n的每个约数d,有n=d·n,因此,n的正约数d与是成对地出现的.只有n2当d=n,即d=n时,d和才是同一个数.故当且仅当n是完全平方数时,d(n)是奇数.nini|n,反之亦然;=nj.例2以d(n)表示n的正约数的个数,例如:d(1)=1,d(2)=2,d(3)=2,d(4)=3,···.因为442<1997<452,所以在d(1),d(2),···,d(1997)中恰有44个奇数,故d(1)+d(2)+···+d(1997)是偶数.问题d2(1)+d2(2)+···+d2(1997)被4除的余数是多少?例3证明:存在无穷多个正整数a,使得n4+a(n=1,2,3,···)都是合数.??例题中引用的定理或推论可以在教材相应处找到.1解取a=4k4,对任意的n∈N,有n4+4k4=(n2+2k2)2?4n2k2=(n2+2k2+2nk)(n2+2k2?2nk).由n2+2k2?2nk=(n?k)2+k2??k2,所以,对于任意的k=2,3,···以及任意的n∈N,n4+a是合数.例4设a1,a2,···,an是整数,且n∑k=1ak=0,n∏k=1ak=n,则4|n.解如果2??n,则n,a1,a2,···,an都是奇数.于是a1+a2+···+an是奇数个奇数之和,不可能等于零,这与题设矛盾,所以2|n,即在a1,a2,···,an中至少有一个偶数.如果只有一个偶数,不妨设为a1,那么2??ai(2??k??n).此时有等式a2+···+an=?a1,在上式中,左端是(n?1)个奇数之和,右端是偶数,这是不可能的,因此,在a1,a2,···,an 中至少有两个偶数,即4|n.例5若n是奇数,则8|n2?1.解设n=2k+1,则n2?1=(2k+1)2?1=4k(k+1),在k与k+1中有一个偶数,所以8|n2?1.2带余数除法例1设a,b,x,y是整数,k和m是正整数,并且a=a1m+r1,0??r1<m,b=b1m+r2,0??r2<m,则ax+by和ab被m除的余数分别与r1x+r2y和r1r2被m除的余数相同.特别地,ak与k被m 除的余数相同.r1解由ax+by=(a1m+r1)x+(b1m+r2)y=(a1x+b1y)m+r1x+r2y可知,若r1x+r2y被m除的余数是r,即r1x+r2y=qm+r,0??r<m,2则ax+by=(a1x+b1y+q)m+r,0??r<m,即ax+by被m除的余数也是r.例2设a1,a2,···,an为不全为零的整数,以y0表示集合A={y|y=a1x1+···+anxn,xi∈Z,1??i??n}中的最小正数,则对任何的y∈A,y0|y;特别地,y0|ai,1??i??n.′解设y0=a1x′1+···+anxn,?y∈A,由带余除法,?q,r0∈Z,使得y=qy0+r0,0??r0<y0.因此′r0=y?qy0=a1(x1?qx′1)+···+an(xn?qxn)∈A.如果r0=0,那么,因为0<r0<y0,所以r0是A中比y0还小的正数,这与y0的定义矛盾.所以r0=0,即y0|y.显然ai∈A(1??i??n),所以y0整除每个ai(1??i??n).例3任意给出的五个整数中,必有三个数之和被3整除.解设这五个数是ai,i=1,2,3,4,5,记ai=3qi+ri,0??ri<3,i=1,2,3,4,5.分别考虑以下两种情形:(i)若r1,r2,···,r5中数0,1,2都出现,不妨设r1=0,r2=1,r3=2,此时a1+a2+a3=3(q1+q2+q3)+3可以被3整除;(ii)若r1,r2,···,r5中数0,1,2至少有一个不出现,这样至少有三个ri要取相同的值,不妨设r1,r2,r3=r(r=0,1或2),此时a1+a2+a3=3(q1+q2+q3)+3r可以被3整除.例4设a0,a1,···,an∈Z,f(x)=anxn+···+a1x+a0,已知f(0)与f(1)都不是3的倍数,证明:若方程f(x)=0有整数解,则3|f(?1)=a0?a1+a2?···+(?1)nan.证对任意整数x,都有x=3q+r,r=0,1或2,q∈Z.(i)若r=0,即x=3q,q∈Z,则f(x)=f(3q)=an(3q)n+···+a1(3q)+a0=3Q1+a0=3Q1+f(0),3其中Q1∈Z,由于f(0)不是3的倍数,所以f(x)=0;(ii)若r=1,即x=3q+1,q∈Z,则f(x)=f(3q+1)=an(3q+1)n+···+a1(3q+1)+a0=3Q2+an+···+a1+a0=3Q2+f(1),其中Q2∈Z.由于f(1)不是3的倍数,所以f(x)=0.因此若f(x)=0有整数解x,则必是x=3q+2=3q′?1,q′∈Z,于是0=f(x)=f(3q′?1)=an(3q′?1)n+···+a1(3q′?1)+a0=3Q3+a0?a1+a2?···+(?1)nan.其中Q3∈Z.所以3|f(?1)=a0?a1+a2?···+(?1)nan.例5设n是奇数,则16|n4+4n2+11.证我们有n4+4n2+11=(n2?1)(n2+5)+16.由上节例题知道,8|n2?1,由此及2|n2+5得到16|(n2?1)(n2+5).例6证明:若a被9除的余数是3,4,5或6,则方程x3+y3=a没有整数解.证?x,y∈Z,记x=3q1+r1,y=3q2+r2,0??r1,r2<3.则存在Q1,R1,Q2,R2∈Z,使得x3=9Q1+R1,y3=9Q2+R2,3和r3被9除的余数相同,即其中R1和R2被9除的余数分别与r12R1=0,1或8,R2=0,1或8.因此x3+y3=9(Q1+Q2)+R1+R2.(2.1)又由式(2.1)可知,R1+R2被9除的余数只可能是0,1,2,7或8,所以,x3+y3不可能等于a .例7证明:方程22a21+a2+a3=1999(2.2)无整数解.证若a1,a2,a3都是奇数,则存在整数A1,A2,A3,使得22a21=8A1+1,a2=8A2+1,a3=8A3+1,于是22a21+a2+a3=8(A1+A2+A3)+3.4由于1999被8除的余数是7,所以a1为奇数.由式(2.2),a1,a2,a3中只有一个奇数,设a1为奇数,a2,a3为偶数,则存在整数A1,A2,A3,使得22a21=8A1+1,a2=8A2+r,a3=8A3+s,于是22a21+a2+a3=8(A1+A2+A3)+1+r+s,22其中r和s是整数,而且只能取值0或4.这样a21+a2+a3被8除的余数只可能是1或5, 但1999被8除的余数是7,所以这样的a1,a2,a3也不能使式(2.2)成立.3最大公约数例1(105,140,350)=(105,(140,350))=(105,70)=35.21n+4例2证明:若n是正整数,则是既约分数.14n+3证由辗转相除法得到(21n+4,14n+3)=(7n+1,14n+3)=(7n+1,1)=1.??4辗转相除法例1用辗转相除法求(125,17),以及x,y,使得125x+17y=(125,17).解作辗转相除法:125=7×17+6,17=2×6+5,6=1×5+1,5=5×1,q1=7,r1=6,q2=2,r2=5,q3=1,r3=1,q4=5.由推论1.1,(125,17)=r3=1.利用定理1计算(这里n=3)P0=1,P1=7,P2=2·7+1=15,P3=1·15+7=22,Q0=0,Q1=1,Q2=2·1+0=2,Q3=1·2+1=3,取x=(?1)3?1Q3=3,y=(?1)3P3=?22,则125·3+17·(?22)=(125,17)=1.例2在m个盒子中放若干个硬币,然后以下述方式往这些盒子里继续放硬币:每一次在n(n<m)个盒子中各放一个硬币.证明:若(m,n)=1,那么无论开始时每个盒子中有多少个硬币,经过若干次放硬币后,总可使所有盒子含有同样数量的硬币.5证由于(m,n)=1,所以存在整数x,y,使得mx+ny=1.因此对于任意的自然数k,有1+m(?x+kn)=n(km+y),这样,当k充分大时,总可找出正整数x0,y0,使得1+mx0=ny0.上式说明,如果放y0次(每次放n个),那么在使m个盒子中各放x0个后,还多出一个硬币.把这个硬币放入含硬币最少的盒子中(这是可以做到的),就使它与含有最多硬币的盒子所含硬币数量之差减少1.因此经过若干次放硬币后,必可使所有盒子中的硬币数量相同.5素数与算术基本定理例1写出51480的标准分解式.解我们有51480=2·25740=22·12870=23·6435=23·5·1287=23·5·3·429=23·5·32·143=23·32·5·11·13.例2设a,b,c是整数,证明:(i)(a,b)[a,b]=ab;(ii)(a,[b,c])=[(a,b),(a,c)].证为了叙述方便,不妨假定a,b,c是正整数.(i)设a=pααβ11pα22···p1β2βkk,b=p1p2···pkk,其中p1,p2,···,pk是互不相同的素数,αi,βi(1??i??k)都是非负整数.由推论3.3,有(a,b)=pλ11pλ22···pλkk,λi=min{αi,βi},1??i??k,[a,b]=pμ11pμ22···pμkk,μi=max{αi,βi},1??i??k.由此知∏k(a,b)[a,b]=pλi+μi∏kαi=pmin{αi,βi}+max{αi,βi}∏ki=pii+βi=ab;i=1i=1i=1(ii)设a=∏kpα∏kii,b=∏kpβii,c=pγii,i=1i=1i=1其中p1,p2,···,pk是互不相同的素数,αi,βi,γi(1??i??k)都是非负整数.由推论3.3,有(a,[b,c])=∏kpλii,[(a,b),(a,c)]=∏kpμii,i=1i=16其中,对于1??i??k,有λi=min{αi,max{βi,γi}},μi=max{min{αi,βi},min{αi,γi}},不妨设βi??γi,则min{αi,βi}??min{αi,γi},所以μi=min{αi,γi}=λi,即(a,[b,c])=[(a,b),(a,c)].7。