历年高考数学真题-2003年普通高等学校招生全国统一考试数学试题(天津卷)理科试卷及答案

合集下载

2003年高考数学(理科)真题及答案[全国卷I]

2003年高考数学(理科)真题及答案[全国卷I]

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( )(A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN中点的横坐标为32-,则此双曲线的方程是 ( )(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( )(A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π6二.填空题:本大题共4小题,每小题4分,共16分。

2003年高考数学试题(全国理)及答案

2003年高考数学试题(全国理)及答案

2003年高考数学试题(全国理)及答案2003年普通高等学校招生全国统一考试数学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知==-∈x tg x x 2,54cos ),0,2(则π ( )A .247B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12- D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( ) A .22R πB .249R π C .238R π D .223r π 7.已知方程0)2)(2(22=+-+-n x x m x x的四个根组成的一个首项为41的等差数列,则=-||n m ( ) A .1B .43 C .21 D .838.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x fx x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x1),0,44则若<<x 的取值范围是( )A .)1,31( B .)32,31( C .)21,52( D .)32,52( 11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )A .3B .31 C .61 D .6的说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分)如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G . (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示);(Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分) 已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos (=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭?21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.22.(本小题满分12分,附加题4分) (Ⅰ)设Z}t s,,0|2{2}{t∈<≤+且是集合t s a s n中所有的数从小到大排列成的数列, 即.,12,10,9,6,5,3654321======a a a a a a将数列}{na 各项按照上小下大,左小右大的原则写成如下的三角形数表: 3 5 6 9 10 12— — — —— — — — —(i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分) 设Z}t s,r,,0|22{2}{r∈<<≤++且是集合t s r b s t n中所有的数都是从小到大排列成的数列,已知k.,1160求=kb2003年普通高等学校招生全国统一考试数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos r r z+=,则复数.2rz 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1, 3.(4)31262,.2,22,23, 3.3622sin .arcsin .3D E CC A B DC ABC CDEF DE G ADB G DF EFD EF FG FD FD EF FD ED EG FC CD AB A B EB EG EBG A B ABD EB ⊥∴∆∴∈=⋅==∴=⨯=====∴===∴∠==⋅=∴分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。

2003年高考天津卷理科数学试题及答案

2003年高考天津卷理科数学试题及答案

2003年普通高等学校招生全国统一考试(天津卷)数学(理工农医类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.=+-2)3(31i iA.i 4341+ B.i 4341-- C.i 2321+ D.i 2321-- 2.已知(2x π∈-,0),54cos =x ,则tan 2x =A.247B.724-C.724D.247-3.设函数⎪⎩⎪⎨⎧>≤-=-)0()0(12)(21x x x x f x ,若1)(0>x f ,则0x 的取值范围是A.1(-,)1B.1(-,)∞+C.-∞(,0()2Y -,)∞+D.-∞(,1()1Y -,)∞+4.O 是平面上一定点,A 、B 、C 是平面上不共线的三点,动点P 满足()([0||||AB ACOP OA AB AC λλ=++∈u u u r u u u ru u u r u u u r u u ur u u u r ,))∞+,则P 的轨迹一定通过ABC ∆的 A.外心 B.内心 C.重心 D.垂心 5.函数1ln1x y x +=-,1(∈x ,)∞+的反函数为 A.11x x e y e -=+,0(∈x ,)∞+ B.11x x e y e +=-,0(∈x ,)∞+C.11x x e y e -=+,-∞∈(x ,)0D.11x x e y e +=-,-∞∈(x ,)06.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为 A.33a B.43a C.63a D.123a7.设0a >,2()f x ax bx c =++,曲线)(x f y =在点0(x P ,))(0x f 处切处的倾斜角的取值范围为0[,]4π,则P 到曲线)(x f y =对称轴距离的取值范围为A.[0,1]aB.[0,1]2aC.[0,||]2b a D.[0,1||]2b a - 8.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n mA.1B.43C.21D.839.已知双曲线中心在原点且一个焦点为(7F ,0),直线1y x =-与其相交于M N 、两点,MN 中点的横坐标为23-,则此双曲线的方程是A.14322=-y xB.13422=-y xC.12522=-y xD.15222=-y x10.已知长方形的四个顶点(0A ,0),(2B ,0),(2C ,1)和(0D ,1).一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P ,3P 和4P (入射角等于反射角).设4P 的坐标为4(x ,0),若412x <<,则θtan 的取值范围是A.1(3,1) B.1(3,23) C.2(5,1)2 D.2(5,2)311.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ΛΛA.3B.31C.61D.612.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 A.3π B.4π C.33π D.6π二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是________________. 14.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______、__________、__________辆.15.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出l ⊥面MNP 的图形的序号是______.(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数)cos (sin sin 2)(x x x x f +=. ⑴求函数)(x f 的最小正周期和最大值;⑵在给出的直角坐标系中,画出函数)(x f y =在区间[2π-,]2π上的图象. 18.(本小题满分12分) 如图,直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒,侧棱12AA =,D E 、分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .⑴求1A B 与平面ABD 所成角的正弦值; ⑵求点1A 到平面AED 的距离.19.(本小题满分12分)设0>a ,求函数()ln()((0f x x x a x =+∈,)+∞的单调区间. 20.(本小题满分12分)A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是1A ,2A ,3A ,B 队队员是B ,B ,B ,按以往多次比赛的统计,对阵队员之间胜负概率如下:对阵队员A 队队员胜的概率A 队队员负的概率1A 对1B32 312A 对2B 52 53 3A 对3B52 53 别为ξ、η.⑴求ξ、η的概率分布; ⑵求E ξ,E η.21.(本小题满分14分)已知常数0a >,向量(0)c a =r,,(1i =r ,0),经过原点O 以c i λ+r r 为方向向量的直线与经过定点(0)A a ,以2i c λ-r r为方向向量的直线相交于点P ,其中R λ∈.试问:是否存在两个定点E F 、,使得||||PE PF +为定值.若存在,求出E F 、的坐标;若不存在,说明理由.22.(本小题满分14分)设0a 为常数,且)(2311N n a a n n n ∈-=--.⑴证明对任意1n ≥,101[3(1)2](1)25nn n n n n a a -=+-⋅+-⋅; ⑵假设对任意1≥n 有1->n n a a ,求0a 的取值范围.2003年普通高等学校招生全国统一考试(天津卷)数学试题(理工农医类)参考解答一、选择题:本题考查基本知识和基本运算每小题5分,满分60分 1.B 2.D 3.D 4.B 5.B 6.C 7.B 8.C 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分13.221-14.6,30,10 15.120 16.①④⑤ 三、解答题17.本小题主要考查三角函数的基本性质和恒等变换的基本技能,考查画图的技能.满分12分.解:(1)x x x x f cos sin 2sin 2)(2+=x x 2sin 2cos 1+-= )4sin 2cos 4cos2(sin 21ππx x -+= )42sin(21π-+=x所以函数)(x f 的最小正周期为π,最大值为21+.(2)由(1)知 185218318218183πππππ+---yx故函数)(x f y =在区间]2,2[ππ-上的图象是 18.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力. 满分12分. 解法一:(Ⅰ)解:连结BG ,则BG 是BE 在面ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角.设F 为AB 中点,连结EF 、FC ,BA 1.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥ΘΛΛΘΘ(Ⅱ)连结A 1D ,有E AA D AED A V V 11--=,,,F AB EF EF ED AB ED =⋂⊥⊥又ΘAB AED 1平面⊥∴, 设A 1到平面AED 的距离为h ,则ED S h S AB A AED ⋅=⋅∆∆1 362=. 故A 1到平面AED 的距离为362.19.本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力. 满分12分.解:)0(121)(>+-='x ax x x f .当0,0>>x a 时 0)42(0)(22>+-+⇔>'a x a x x f .0)42(0)(22<+-+⇔<'a x a x x f(i )当1>a 时,对所有0>x ,有0)42(22>+-+a a x .即0)(>'x f ,此时)(x f 在),0(+∞内单调递增.(ii )当1=a 时,对1≠x ,有0)42(22>+-+a x a x ,即0)(>'x f ,此时)(x f 在(0,1)内单调递增,又知函数)(x f 在x=1处连续,因此,函数)(x f 在(0,+∞)内单调递增(iii )当10<<a 时,令0)(>'x f ,即0)42(22>+-+a x a x .解得a a x a a x -+->---<122,122或.因此,函数)(x f 在区间)122,0(a a ---内单调递增,在区间),122(+∞-+-a a 内也单调递增.令0)42(,0)(22<+-+<'a x a x x f 即, 解得a a x a a -+-<<---122122.因此,函数)(x f 在区间)122,12-2a a a a -+---(内单调递减. 20.本小题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力(满分12分). 解:(1)ξ、η的可能取值分别为3,2,1,0.758525232)3(=⨯⨯==ξP 7528525332525231535232)2(=⨯⨯+⨯⨯+⨯⨯==ξP52525331535231535332)1(=⨯⨯+⨯⨯+⨯⨯==ξP ,253535331)0(=⨯⨯==ξP又24121111=⋅==∆∆AB A A S S AB A AE B , 2621=⋅=∆ED AE S AED , 3622622=⨯=h . 解法二:(1)连结BG ,则BG 是BE 在面ABD 的射影,即∠A 1BG 是A 1B 与平面ABD 所成的角.如图所示建立坐标系,坐标原点为O ,设CA=2a , 则A (2a ,0,0),B (0,2a ,0),D (0,0,1) A 1(2a ,0,2)E (a ,a ,1) G (31,32,32a a ). )1,2,0(),32,3,3(a BD a a GE -==∴,032322=+-=⋅∴a BD GE ,解得a =1.),31,34,32(),2,2,2(1-=-=∴BA372131323/14||||cos 111=⋅=⋅=∠∴BG BA BA BG A .A 1B 与平面ABD 所成角是37arccos.y(2)由(1)有A (2,0,0),A 1(2,0,2),E (1,1,1),D (0,0,1)0)0,1,1()2,0,0(001,1()1,1,1(1=--⋅=⋅=--⋅-=⋅,), ⊥∴ED 平面AA 1E ,又ED ⊂平面AED.∴平面AED ⊥平面AA 1E ,又面AED I 面AA 1E=AE ,∴点A 在平面AED 的射影K 在AE 上.设AK λ=, 则)2,,(11--=+=λλλA A 由01=⋅A ,即02=-++λλλ, 解得32=λ. )34,32,32(1--=∴K A根据题意知ξ+η=3,所以 P(η=0)=P(ξ=3)=758, P(η=1)=P(ξ=2)= 7528P(η=2)=P(ξ=1)= 52, P(η=3)=P(ξ=0)= 253.(2)15222530521752827583=⨯+⨯+⨯+⨯=ξE ; 因为ξ+η=3,所以.15233=-=ξηE E 21.本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力,满分12分.解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到两定点距离的和为定值. ∵i =(1,0),c=(0,a ), ∴c+λi =(λ,a ),i -2λc=(1,-2λa ). 因此,直线OP 和AP 的方程分别为 ax y =λ 和 ax a y λ2-=-. 消去参数λ,得点),(y x P 的坐标满足方程222)(x a a y y -=-. 整理得 .1)2()2(81222=-+aa y x ……① 因为,0>a 所以得:(i )当22=a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (ii )当220<<a 时,方程①表示椭圆,焦点)2,2121(2a a E -和)2,2121(2a a F --为合乎题意的两个定点;(iii )当22>a 时,方程①也表示椭圆,焦点))21(21,0(2-+a a E 和))21(21,0(2--a a F 为合乎题意的两个定点.22.本小题主要考查数列、等比数列的概念,考查数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分. (1)证法一:(i )当n=1时,由已知a 1=1-2a 0,等式成立; (ii )假设当n=k (k ≥1)等式成立,则,2)1(]2)1(3[5101a a k k k kk ---+=- 那么01112)1(]2)1(3[52323a a a k k k k kkk kk +-+---+-=-= .2)1(]2)1(3[5101111a k k k k k ++++-+-+=也就是说,当n=k+1时,等式也成立. 根据(i )和(ii ),可知等式对任何n ∈N ,成立.证法二:如果设),3(23111-----=n n n n a a a 用1123---=n n n a a 代入,可解出51=a .所以⎭⎬⎫⎩⎨⎧-53nn a 是公比为-2,首项为531-a 的等比数列.).()2)(5321(5310N n a a n n n ∈---=-∴- 即.2)1(52)1(301a a n n nn n n -+-+=-(2)解法一:由n a 通项公式 .23)1(523)1(32011111a a a n n n n n n n -----⨯-+⨯-+⨯=-)(1N n a a n n ∈>∴-等价于 ).()23()15()1(201N n a n n ∈<----……①(i )当n=2k -1,k=1,2,…时,①式即为 32022)23()15()1(--<--k k a即为 .51)23(51320+<-k a ……②②式对k=1,2,…都成立,有 .3151)23(5110=+⨯<-a(ii )当n=2k ,k=1,2,…时,①式即为 .)23()15()1(22012--<--k k a即为 .51)23(51220+⨯->-k a ……③ ③式对k=1,2,…都成立,有 .051)23(512120=+⨯->-⨯a 综上,①式对任意n ∈N *,成立,有.3100<<a故a 0的取值范围为).31,0(解法二:如果1->n n a a (n ∈N *)成立,特别取n=1,2有 .031001>-=-a a a.06012>=-a a a 因此 .3100<<a 下面证明当.3100<<a 时,对任意n∈N *,.01>--n n a a 由a n 的通项公式.235)1(23)1(32)(5011111a a a n n n n n n n -----⨯⨯-+⨯-+⨯=-(i )当n=2k -1,k=1,2…时, 011112352332)(5a a a n n n n n ----⨯⨯-⨯+⨯=->023********=⨯⨯-⨯+⨯---n n n(ii )当n=2k ,k=1,2…时,011112352332)(5a a a n n n n n ----⨯⨯+⨯-⨯=- >.0233211≥⨯-⨯--n n故a 0的取值范围为).31,0(本试卷来源于《七彩教育网》。

2003高考天津卷理科数学试题及答案

2003高考天津卷理科数学试题及答案

2003年普通高等学校招生全国统一考试(天津卷)数学(理工农医类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.=+-2)3(31i iA.B. C. D.i 4341+i 4341--i 2321+i 2321--2.已知,,,则(2x π∈-0)54cos =x tan 2x =A. B. C. D.247724-724247-3.设函数,若,则的取值范围是⎪⎩⎪⎨⎧>≤-=-)0()0(12)(21x x x x f x 1)(0>x f 0x A., B.,1(-)11(-)∞+C.,, D.,,-∞(0()2 -)∞+-∞(1()1 -)∞+4.是平面上一定点,、、是平面上不共线的三点,动点满足O A B C P ,,则的轨迹一定通过的()([0||||AB ACOP OA AB AC λλ=++∈))∞+P ABC ∆A.外心 B.内心 C.重心 D.垂心5.函数,,的反函数为1ln1x y x +=-1(∈x )∞+A.,, B.,,11x x e y e -=+0(∈x )∞+11x x e y e +=-0(∈x )∞+C.,, D.,,11x x e y e -=+-∞∈(x )011x x e y e +=--∞∈(x )06.棱长为的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为a A. B. C. D.33a 43a 63a 123a 7.设,,曲线在点,处切处的倾斜角0a >2()f x ax bx c =++)(x f y =0(x P ))(0x f 的取值范围为,,则到曲线对称轴距离的取值范围为0[]4πP )(x f y =A., B.,C.,D.,[01a[01]2a [0||]2b a [01||]2b a-8.已知方程的四个根组成的一个首项为的等差数列,0)2)(2(22=+-+-n x x m x x 41则=-||n mA.1B.C. D.4321839.已知双曲线中心在原点且一个焦点为,直线与其相交于F 0)1y x =-两点,中点的横坐标为,则此双曲线的方程是M N 、MN 23-A. B.14322=-y x 13422=-y x C. D.12522=-y x 15222=-y x 10.已知长方形的四个顶点,,,,,和,.一质点从(0A 0)(2B 0)(2C 1)(0D 1)的中点沿与夹角为的方向射到上的点后,依次反射到、和AB 0P AB θBC 1P CD DA 上的点,和(入射角等于反射角).设的坐标为,,若,AB 2P 3P 4P 4P 4(x 0)412x <<则的取值范围是θtan A., B., C., D.,1(31)1(323)2(51)22(52311.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C A.3 B. C. D.6316112.一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为2A. B. C. D.3π4π6π二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上.13.展开式中的系数是________________.92)21(xx -9x 14.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______、__________、__________辆.15.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____.(以数字作答)16.下列五个正方体图形中,是正方体的一条对角线,点、、分别为其所在棱l M N P的中点,能得出面的图形的序号是______.(写出所有符合要求的图形序号)l ⊥MNP三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数.)cos (sin sin 2)(x x x x f +=⑴求函数的最小正周期和最大值;)(x f ⑵在给出的直角坐标系中,画出函数在区间,上的图象.)(x f y =[2π-]2π18.(本小题满分12分)如图,直三棱柱中,底面是等腰直角三角形,,侧棱111ABC A B C -90ACB ∠=︒,分别是与的中点,点在平面上的射影是的重12AA =D E 、1CC 1A B E ABD ABD ∆心.G ⑴求与平面所成角的正弦值;1A B ABD ⑵求点到平面的距离.1A AED19.(本小题满分12分)设,求函数,的单调区间.0>a ()ln()((0f x x a x =-+∈)+∞20.(本小题满分12分)、两个代表队进行乒乓球对抗赛,每队三名队员,队队员是,,,A B A 1A 2A 3A B队队员是,,,按以往多次比赛的统计,对阵队员之间胜负概率如下:1B 2B 3B 对阵队员队队员胜的概率A 队队员负的概率A对1A 1B 3231对2A 2B 5253对3A 3B 5253现按表中对阵方式出场,每场胜队得1分,负队得0分,设队、队最后所得总分分A B 别为、.ξη⑴求、的概率分布;ξη⑵求,.E ξE η21.(本小题满分14分)已知常数,向量,,,经过原点以为方向向量的直0a >(0)c a = ,(1i = 0)O c i λ+线与经过定点以为方向向量的直线相交于点,其中.试问:(0)A a ,2i c λ-P R λ∈是否存在两个定点,使得为定值.若存在,求出的坐标;若E F 、||||PE PF +E F 、不存在,说明理由.22.(本小题满分14分)设为常数,且.0a )(2311N n a a n n n ∈-=--⑴证明对任意,;1n ≥101[3(1)2](1)25n n n n nn a a -=+-⋅+-⋅⑵假设对任意有,求的取值范围.1≥n 1->n n a a 0a 2003年普通高等学校招生全国统一考试(天津卷)数学试题(理工农医类)参考解答一、选择题:本题考查基本知识和基本运算每小题5分,满分60分1.B2.D3.D4.B5.B6.C7.B8.C9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分13. 14.6,30,10 15.120 16.①④⑤221-三、解答题17.本小题主要考查三角函数的基本性质和恒等变换的基本技能,考查画图的技能.满分12分.解:(1)x x x x f cos sin 2sin 2)(2+=xx 2sin 2cos 1+-= )4sin 2cos 4cos2(sin 21ππx x -+=42sin(21π-+=x 所以函数的最小正周期为,最大值为.)(x f π21+(2)由(1)知 185218318218183πππππ+---yx故函数在区间上的图象是)(x f y =]2,2[ππ-18.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力. 满分12分.解法一:(Ⅰ)解:连结BG ,则BG 是BE 在面ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角.设F 为AB 中点,连结EF 、FC ,BA 1.32arcsin.323136sin .332,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥ (Ⅱ)连结A 1D ,有EAA D AED A V V 11--=,,,F AB EF EF ED AB ED =⋂⊥⊥又 , 设A 1到平面AED 的距离为h ,AB A ED 1平面⊥∴则 . 故A 1到平面AED 的距离为.ED S h S AB A AED ⋅=⋅∆∆136236219.本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力. 满分12分.解:.)0(121)(>+-='x a x xx f当时 .0,0>>x a 0)42(0)(22>+-+⇔>'a x a x x f 0)42(0)(22<+-+⇔<'a x a x x f (i )当时,对所有,有.1>a 0>x 0)42(22>+-+a a x 即,此时在内单调递增.0)(>'x f )(x f ),0(+∞(ii )当时,对,有,1=a 1≠x 0)42(22>+-+a x a x 即,此时在(0,1)内单调递增,又知函数在x=1处连续,0)(>'x f )(x f )(x f 因此,函数在(0,+)内单调递增)(x f ∞(iii )当时,令,即.10<<a 0)(>'x f 0)42(22>+-+a x a x 解得.a a x a a x -+->---<122,122或因此,函数在区间内单调递增,在区间)(x f )122,0(a a ---),122(+∞-+-a a 内也单调递增.令,0)42(,0)(22<+-+<'a x a x x f 即解得.a a x a a -+-<<---122122因此,函数在区间内单调递减.)(x f )122,12-2a a a a -+---(20.本小题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力(满分12分).解:(1)ξ、η的可能取值分别为3,2,1,0.758525232)3(=⨯⨯==ξP 7528525332525231535232)2(=⨯⨯+⨯⨯+⨯⨯==ξP ,52525331535231535332)1(=⨯⨯+⨯⨯+⨯⨯==ξP 253535331)0(=⨯⨯==ξP 又, ,24121111=⋅==∆∆AB A A S S AB A AE B 2621=⋅=∆ED AE S AED .3622622=⨯=h 解法二:(1)连结BG ,则BG 是BE 在面ABD 的射影,即∠A 1BG 是A 1B 与平面ABD 所成的角.如图所示建立坐标系,坐标原点为O ,设CA=2a ,则A (2a ,0,0),B (0,2a ,0),D (0,0,1) A 1(2a ,0,2)E (a ,a ,1) G ().31,32,32a a,)1,2,0(32,3,3(a BD a a GE -==∴,解得a =1.032322=+-=⋅∴a BD GE ),31,34,32(),2,2,2(1-=-=∴BG BA .372131323/14||||cos 111=⋅=⋅=∠∴BG BA BGBA BG A A 1B 与平面ABD 所成角是37arccos.y(2)由(1)有A (2,0,0),A 1(2,0,2),E (1,1,1),D (0,0,1)0)0,1,1()2,0,0(001,1()1,1,1(1=--⋅=⋅=--⋅-=⋅ED AA ED AE ,),平面AA 1E ,又ED 平面AED.⊥∴ED ⊂∴平面AED⊥平面AA 1E ,又面AED 面AA 1E=AE ,∴点A 在平面AED 的射影K 在AE 上.设, 则AE AK λ=)2,,(11--=+=λλλAK A A K A 由,即, 解得.01=⋅AE K A 02=-++λλλ32=λ34,32,32(1--=∴K A 根据题意知ξ+η=3,所以 P(η=0)=P(ξ=3)=, P(η=1)=P(ξ=2)= 7587528P(η=2)=P(ξ=1)=, P(η=3)=P(ξ=0)= .52253(2); 因为ξ+η=3,所以15222530521752827583=⨯+⨯+⨯+⨯=ξE .15233=-=ξηE E 21.本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力,满分12分.解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P到两定点距离的和为定值.∵i =(1,0),c=(0,a ), ∴c+λi =(λ,a ),i -2λc=(1,-2λa ).因此,直线OP 和AP 的方程分别为 和 .ax y =λax a y λ2-=-消去参数λ,得点的坐标满足方程.),(y x P 222)(x a a y y -=-整理得 ……① 因为所以得:.1)2()2(81222=-+aa y x ,0>a (i )当时,方程①是圆方程,故不存在合乎题意的定点E 和F ;22=a (ii )当时,方程①表示椭圆,焦点和为合乎220<<a )2,2121(2a a E -)2,2121(2a a F --题意的两个定点;(iii )当时,方程①也表示椭圆,焦点和22>a ))21(21,0(2-+a a E 为合乎题意的两个定点.))21(21,0(2--a a F 22.本小题主要考查数列、等比数列的概念,考查数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.(1)证法一:(i )当n=1时,由已知a 1=1-2a 0,等式成立;(ii )假设当n=k (k≥1)等式成立,则,2)1(]2)1(3[5101a a k k k kk ---+=- 那么01112)1(]2)1(3[52323a a a k k k k kkk kk +-+---+-=-= .2)1(]2)1(3[5101111a k k k k k ++++-+-+=也就是说,当n=k+1时,等式也成立. 根据(i )和(ii ),可知等式对任何n∈N,成立.证法二:如果设 用代入,可解出. ),3(23111-----=n n n n a a a 1123---=n n n a a 51=a 所以是公比为-2,首项为的等比数列. ⎭⎫⎩⎨⎧-53n n a 531-a即).()2)(5321(5310N n a a n n n ∈---=-∴-.2)1(52)1(301a a n n nn n n -+-+=- (2)解法一:由通项公式 n a .23)1(523)1(32011111a a a n n n n n n n -----⨯-+⨯-+⨯=-等价于 ……①)(1N n a a n n ∈>∴-).()23()15()1(201N n a n n ∈<---- (i )当n=2k -1,k=1,2,…时,①式即为 3202223()15()1(--<--k k a 即为 ……②.51)23(51320+<-k a ②式对k=1,2,…都成立,有 .315123(5110=+⨯<-a (ii )当n=2k ,k=1,2,…时,①式即为 .)23()15()1(22012--<--k k a 即为 ……③ ③式对k=1,2,…都成立,有.5123(51220+⨯->-k a 综上,①式对任意n∈N *,成立,有.051)23(512120=+⨯->-⨯a .3100<<a 故a 0的取值范围为).31,0(解法二:如果(n∈N *)成立,特别取n=1,2有 1->n n a a .031001>-=-a a a 因此 下面证明当时,对任意.06012>=-a a a .3100<<a .3100<<a n∈N *,由a n 的通项公式.01>--n n a a .235)1(23)1(32)(5011111a a a n n n n n n n -----⨯⨯-+⨯-+⨯=- (i )当n=2k -1,k=1,2…时, 011112352332)(5a a a n n n n n ----⨯⨯-⨯+⨯=->02352322111=⨯⨯-⨯+⨯---n n n (ii )当n=2k ,k=1,2…时,011112352332)(5a a a n n n n n ----⨯⨯+⨯-⨯=- >.0233211≥⨯-⨯--n n 故a 0的取值范围为本试卷来源于《七彩教育网》).31,0(。

2003年高考数学试题(全国理)及答案

2003年高考数学试题(全国理)及答案

2003年普通高等学校招生全国统一考试数学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区 域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP的图形的序号是 .(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分) 如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由. 22.(本小题满分12分,附加题4分)(Ⅰ)设Z}t s,,0|2{2}{t ∈<≤+且是集合t s a sn 中所有的数从小到大排列成的数列,即.,12,10,9,6,5,3654321 ======a a a a a a将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表: 35 69 10 12— — — —— — — — — (i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设Z}t s,r,,0|22{2}{r ∈<<≤++且是集合t s r b st n 中所有的数都是从小到大排列成的数列,已知k.,1160求=k b2003年普通高等学校招生全国统一考试数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos r r z+=,则复数.2rz 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1, 3.(4)31262,.2,22,23, 3.336122sin .arcsin .3333D E CC A B DC ABC CDEF DE G ADB G DF EFD EF FG FD FD EF FD ED EG FC CD AB A B EB EG EBG A B ABD EB ⊥∴∆∴∈=⋅==∴=⨯=====∴===∴∠==⋅=∴分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。

2003年高考数学(理科)真题及答案[全国卷I]

2003年高考数学(理科)真题及答案[全国卷I]

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54co s =x ,则2tg x = ( )(A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( )(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π6二.填空题:本大题共4小题,每小题4分,共16分。

2003年高考数学试题(全国理)及答案

2003年高考数学试题(全国理)及答案

2003年普通高等学校招生全国统一考试数学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ΛΛ( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区 域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP的图形的序号是 .(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分) 如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由. 22.(本小题满分12分,附加题4分)(Ⅰ)设Z}t s,,0|2{2}{t ∈<≤+且是集合t s a sn 中所有的数从小到大排列成的数列,即.,12,10,9,6,5,3654321Λ======a a a a a a将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表: 35 69 10 12— — — —— — — — — (i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设Z}t s,r,,0|22{2}{r ∈<<≤++且是集合t s r b st n 中所有的数都是从小到大排列成的数列,已知k.,1160求=k b2003年普通高等学校招生全国统一考试数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos οοr r z+=,则复数.2rz 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1, 3.(4)31262,.2,22,23, 3.3622sin .arcsin .3D E CC A B DC ABC CDEF DE G ADB G DF EFD EF FG FD FD EF FD ED EG FC CD AB A B EB EG EBG A B ABD EB ⊥∴∆∴∈=⋅==∴=⨯=====∴===∴∠==⋅=∴Q Q L L Q 分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又Θ.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x Θ20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。

2003年高考数学试卷(全国理)

2003年高考数学试卷(全国理)

页脚内容1绝密★启用前2003年普通高等学校招生全国统一考试数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724-2.圆锥曲线的准线方程是θθρ2cos sin 8= ( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .2页脚内容25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =( )A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则 =-||n m( )A .1B .43 C .21 D .838.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是( )A .14322=-y xB .13422=-y xC .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x π页脚内容3C .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是 ( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ΛΛ( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 . 15.如图,一个地区分为5个行政区域, 现给地图着色,要求相邻区域不得 使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种.(以数字作答)16.下列五个正方体图形中,l是正方体的一条对角线,点M、N、P分别为具所在棱的中点,能得出l⊥面MNP的图形的序号是 .(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤.17.(本小题满分12分)已知复数z的辐角为60°,且|1|-z是||z和|2|-z的等比中项. 求||z.页脚内容418.(本小题满分12分)如图,在直三棱柱ABC—A1B1C1中,底面是等腰直角三形,∠ACB=90°,侧棱AA1=2,D、E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.(Ⅰ)求A1B与平面ABD所成角的大小(结果用反三角函数值表示);(Ⅱ)求点A1到平面AED的距离.页脚内容519.(本小题满分12分)已知.0c设>P:函数x cy=在R上单调递减.Q:不等式1x+cx的解集为R,如果P和Q有且仅有一个正确,求c的取值范围.|2|>-页脚内容6页脚内容720.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭?页脚内容821.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.页脚内容922.(本小题满分12分,附加题4分)(Ⅰ)设Z}t s,,0|2{2}{t ∈<≤+且是集合t s a s n 中所有的数从小到大排列成的数列,即.,12,10,9,6,5,3654321Λ======a a a a a a将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表: 3 5 6 9 10 12 — — — —— — — — — (i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)页脚内容10设Z}t s,r,,0|22{2}{r ∈<<≤++且是集合t s r b s t n 中所有的数都是从小到大排列成的数列,已知k.,1160求=k b绝密★启用前2003年普通高等学校招生全国统一考试数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A页脚内容11二、填空题13.221- 14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos οοr r z +=,则复数.2rz 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin .323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥ΘΛΛΘΘ(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又Θ.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.页脚内容12解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x Θ20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有 .)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADC CD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①页脚内容13直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a 整理得1)(21222=-+aa y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003年普通高等学校招生全国统一考试(天津卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页第Ⅱ卷3至10页考试结束后. 将本试卷和答题卡一并交回第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、考试科目用铅笔涂写在答题卡上 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡 皮擦干净后,再选涂其它答案,不能答在试题卷上参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=P (A )+P (B ) S=4πR 2 如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式如果事件A 在一次试验中发生的概率是P.334R V π=那么n 次独立重复试验中恰好发生k 次的概 率 其中R 表示球的半径k n k k n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.=+-2)3(31i i( )A .i 4341+ B .i 4341--C .i 2321+ D .i 2321-- 2. 已知==-∈x x x 2tan ,54cos ),0,2(则π( )A .247 B .-247 C .724D .-7243.设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(,21x xx x f x 若1)(0>x f ,则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞) 4.O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 ).,0[||||(+∞∈++=λλAC AB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心 5.函数),1(,11ln+∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y xx B .),0(,11+∞∈-+=x e e y xxC .)0,(,11-∞∈+-=x e e y xx D .)0,(,11-∞∈-+=x e e y xx 6.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为( )A .33aB .43aC .63aD .123a7.设c bx ax x f a ++=>2)(,0,曲线)(x f y =在点))(,(00x f x P 处切处的倾斜角的取值范围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为( )A .]1,0[aB .]21,0[aC .|]2|,0[abD .|]21|,0[ab - 8.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则 =-||n m( )A .1B .43 C .21 D .83 9.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y xB .13422=-y xC .12522=-y xD .15222=-y x10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB上的点P 2,P 3和P 4(入射角等于反射角)设P 4的坐标为(x 4,0),若214<<x ,则θtan 的取值范围是 ( )A .(31,1) B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 ( ) A .3πB .4πC .π33D .6π第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 , , 辆15.某城市在中心广场建造一个花圃,花圃分为6个部分 (如图).现要栽种4种不同颜色的花,每部分栽种一 种且相邻部分不能栽种同样颜色的花,不同的栽种方 法有 (以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出l ⊥面MNP 的图形的序号是 .(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数)cos (sin sin 2)(x x x x f +=. (1)求函数)(x f 的最小正周期和最大值;(2)在给出的直角坐标系中,画出函数)(x f y =在区间]2,2[ππ-上的图象.18.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的垂心G.(Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离.ABA 119.(本小题满分12分) 设0>a ,求函数),0()(ln()(+∞∈+-=x a x x x f 的单调区间.20.(本小题满分12分)A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是A 1,A 2,A 3,B 队队员是B ,B ,B ,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分,设A 队、B 队最后所得总 分分别为ξ、η(1)求ξ、η的概率分布; (2)求E ξ,E η. 21.(本小题满分14分)已知常数a >0,向量c =(0,a ),i =(1,0),经过原点O 以c +λi 为方向向量的直线与经过定点A (0,a )以i -2λc 为方向向量的直线相交于点P ,其中λ∈R.试问:是否存在两个定点E 、F ,使得|PE|+|PF|为定值.若存在,求出E 、F 的坐标;若不存在,说明理由. 22.(本小题满分14分) 设0a 为常数,且)(2311N n a a n n n ∈-=-- (1)证明对任意012)1(]2)1(3[51,1a a n n n n n nn ⋅-+⋅-+=≥-;(2)假设对任意1≥n 有1->n n a a ,求0a 的取值范围.2003年普通高等学校招生全国统一考试(天津卷)数学试题(理工农医类)参考解答一、选择题:本题考查基本知识和基本运算每小题5分,满分60分1.B2.D3.D4.B5.B6.C7.B8.C9.D 10.C 11.B 12.A二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分13.221- 14.6,30,10 15.120 16.①④⑤ 三、解答题17.本小题主要考查三角函数的基本性质和恒等变换的基本技能,考查画图的技能.满分12分. 解:(1)x x x x f cos sin 2sin 2)(2+=x x 2sin 2cos 1+-=)4sin 2cos 4cos2(sin 21ππx x -+= )42sin(21π-+=x所以函数)(x f 的最小正周期为π,最大值为21+.(2)由(1)知 185218318218183πππππ+---yx故函数)(x f y =在区间]2,2[ππ-上的图象是 18.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力. 满分12分.解法一:(Ⅰ)解:连结BG ,则BG 是BE 在面ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,A 1.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)连结A 1D ,有E AA D AEDA V V 11--=,,,F AB EF EF ED AB ED =⋂⊥⊥又AB A ED 1平面⊥∴, 设A 1到平面AED 的距离为h ,则ED S h S AB A AED ⋅=⋅∆∆1362=. 故A 1到平面AED 的距离为362.19.本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力. 满分12分.解:)0(121)(>+-='x ax xx f . 当0,0>>x a时 0)42(0)(22>+-+⇔>'a x a x x f .0)42(0)(22<+-+⇔<'a x a x x f(i )当1>a 时,对所有0>x ,有0)42(22>+-+a a x .即0)(>'x f ,此时)(x f 在),0(+∞内单调递增.(ii )当1=a 时,对1≠x ,有0)42(22>+-+a x a x ,即0)(>'x f ,此时)(x f 在(0,1)内单调递增,又知函数)(x f 在x=1处连续,因此, 函数)(x f 在(0,+∞)内单调递增(iii )当10<<a 时,令0)(>'x f ,即0)42(22>+-+a x a x .解得a a x a a x -+->---<122,122或.因此,函数)(x f 在区间)122,0(a a ---内单调递增,在区间),122(+∞-+-a a内也单调递增. 令0)42(,0)(22<+-+<'a x a x x f 即,解得a a x a a -+-<<---122122.因此,函数)(x f 在区间)122,12-2a a a a -+---(内单调递减.20.本小题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力(满分12分).解:(1)ξ、η的可能取值分别为3,2,1,0.758525232)3(=⨯⨯==ξP 7528525332525231535232)2(=⨯⨯+⨯⨯+⨯⨯==ξP 52525331535231535332)1(=⨯⨯+⨯⨯+⨯⨯==ξP , 253535331)0(=⨯⨯==ξP 又24121111=⋅==∆∆AB A A S S AB A AEB , 2621=⋅=∆ED AE S AED , 3622622=⨯=h .解法二:(1)连结BG ,则BG 是BE 在面ABD 的射影,即∠A 1BG 是A 1B 与平面ABD 所成的角. 如图所示建立坐标系,坐标原点为O ,设CA=2a ,则A (2a ,0,0),B (0,2a ,0),D (0,0,1) A 1(2a ,0,2) E (a ,a ,1) G (31,32,32a a ). )1,2,0(),32,3,3(a BD a a GE -==∴,032322=+-=⋅∴a ,解得a =1.),31,34,32(),2,2,2(1-=-=∴BA372131323/14||||cos 111=⋅=⋅=∠∴BG BA BGBA BG A .A 1B 与平面ABD 所成角是37arccos.y (2)由(1)有A (2,0,0),A 1(2,0,2),E (1,1,1),D (0,0,1)0)0,1,1()2,0,0(001,1()1,1,1(1=--⋅=⋅=--⋅-=⋅AA ,), ⊥∴ED 平面AA 1E ,又ED ⊂平面AED.∴平面AED ⊥平面AA 1E ,又面AED 面AA 1E=AE ,∴点A 在平面AED 的射影K 在AE 上.设AK λ=, 则)2,,(11--=+=λλλA A 由01=⋅AE K A ,即02=-++λλλ, 解得32=λ. )34,32,32(1--=∴A 根据题意知ξ+η=3,所以 P(η=0)=P(ξ=3)=758, P(η=1)=P(ξ=2)= 7528 P(η=2)=P(ξ=1)=52, P(η=3)=P(ξ=0)= 253. (2)15222530521752827583=⨯+⨯+⨯+⨯=ξE ; 因为ξ+η=3,所以 .15233=-=ξηE E 21.本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力,满分12分.解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到两定点距离的和为定值.∵i =(1,0),c=(0,a ), ∴c+λi =(λ,a ),i -2λc=(1,-2λa ).因此,直线OP 和AP 的方程分别为 ax y =λ 和 ax a y λ2-=-.消去参数λ,得点),(y x P 的坐标满足方程222)(x a a y y -=-.整理得 .1)2()2(81222=-+a a y x ……① 因为,0>a 所以得:(i )当22=a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ;(ii )当220<<a 时,方程①表示椭圆,焦点)2,2121(2a a E -和)2,2121(2a a F --为合乎题意的两个定点;(iii )当22>a 时,方程①也表示椭圆,焦点))21(21,0(2-+a a E 和))21(21,0(2--a a F 为合乎题意的两个定点.22.本小题主要考查数列、等比数列的概念,考查数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.(1)证法一:(i )当n=1时,由已知a 1=1-2a 0,等式成立;(ii )假设当n=k (k ≥1)等式成立,则,2)1(]2)1(3[5101a a k k k k k---+=- 那么01112)1(]2)1(3[52323a a a k k k k k k k k k +-+---+-=-= .2)1(]2)1(3[5101111a k k k k k ++++-+-+= 也就是说,当n=k+1时,等式也成立. 根据(i )和(ii ),可知等式对任何n ∈N ,成立.证法二:如果设),3(23111-----=n n n n a a a 用1123---=n n n a a 代入,可解出51=a . 所以⎭⎬⎫⎩⎨⎧-53n n a 是公比为-2,首项为531-a 的等比数列. ).()2)(5321(5310N n a a n n n ∈---=-∴- 即.2)1(52)1(301a a n n n n n n -+-+=- (2)解法一:由n a 通项公式 .23)1(523)1(32011111a a a n n n n n n n -----⨯-+⨯-+⨯=- )(1N n a a n n ∈>∴-等价于 ).()23()15()1(201N n a n n ∈<----……① (i )当n=2k -1,k=1,2,…时,①式即为 32022)23()15()1(--<--k k a即为 .51)23(51320+<-k a ……② ②式对k=1,2,…都成立,有 .3151)23(5110=+⨯<-a(ii )当n=2k ,k=1,2,…时,①式即为.)23()15()1(22012--<--k k a 即为 .51)23(51220+⨯->-k a ……③ ③式对k=1,2,…都成立,有 .051)23(512120=+⨯->-⨯a 综上,①式对任意n ∈N *,成立,有.3100<<a 故a 0的取值范围为).31,0( 解法二:如果1->n n a a (n ∈N *)成立,特别取n=1,2有 .031001>-=-a a a.06012>=-a a a 因此 .3100<<a 下面证明当.3100<<a 时,对任意n ∈N *, .01>--n n a a 由a n 的通项公式 .235)1(23)1(32)(5011111a a a n n n n n n n -----⨯⨯-+⨯-+⨯=- (i )当n=2k -1,k=1,2…时, 011112352332)(5a a a n n n n n ----⨯⨯-⨯+⨯=->023********=⨯⨯-⨯+⨯---n n n(ii )当n=2k ,k=1,2…时,011112352332)(5a a a n n n n n ----⨯⨯+⨯-⨯=->.0233211≥⨯-⨯--n n 故a 0的取值范围为).31,0(。

相关文档
最新文档