抚州市崇仁2016-2017学年七年级下第一次月考数学试卷含解析
2016-2017学年江西省抚州市崇仁县第二中学七年级下学期期中考试数学试卷(带解析)

试卷第1页,共7页绝密★启用前2016-2017学年江西省抚州市崇仁县第二中学七年级下学期期中考试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:73分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a ,b 两个情境:情境a :小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.则情境a ,b 所对应的函数图象分别是( )A .③、②B .②、③C .①、③D .③、①2、已知:等腰三角形两边长分别为9cm ,5cm ,则周长是( ) A .19cm B .23cm C .19cm 或23cm D .不能确定试卷第2页,共7页3、在等式(﹣a ﹣b )( )=a 2﹣b 2中,括号里应填的多项式是( ) A .a ﹣b B .a+b C .﹣a ﹣b D .b ﹣a4、(﹣x 2)3的结果应为( )A .﹣x 5B .x 5C .﹣x 6D .x 6二、选择题(题型注释)5、如图,点C 在∠AOB 的OB 边上,用尺规作出了CN ∥OA ,作图痕迹中,是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧6、某红外线遥控器发出的红外线波长为0.00000094m ,用科学记数法表示这个数是 m .7、如图,顽皮的小聪课间把教师的直角三角板的直角顶点放在黑板的两条平行线a ,b 上,已知∠1=55°,则∠2的度数为( )A .35°B .45°C .55°D .125°试卷第3页,共7页第II 卷(非选择题)三、填空题(题型注释)8、如图①,一张四边形纸片ABCD ,∠A =50°,∠C =150°.若将其按照图②所示方式折叠后,恰好MD′∥AB ,ND′∥BC ,则∠D 的度数为 .9、已知D 是△ABC 的边BC 所在直线上的一点,与B ,C 不重合,过D 分别作DF ∥AC 交AB 所在直接于F ,DE ∥AB 交AC 所在直线于E .若∠A=80°,则∠FDE 的度数是__.10、如图,在△ABC 中,BD 是边AC 上的中线,E 是BC 的中点,连接DE.如果△BDE的面积为2,那么△ABC 的面积为______.11、若a m =2,a n =3,则a m + 2n =______.12、如图是一把剪刀,若∠1与∠2互为余角,则∠1=__°.四、解答题(题型注释)13、已知:∠MON=80°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC=x°. (1)如图1,若AB ∥ON ,则:①∠ABO 的度数是 ;试卷第4页,共7页②如图2,当∠BAD=∠ABD 时,试求x 的值(要说明理由);(2)如图3,若AB ⊥OM ,则是否存在这样的X 的值,使得△ADB 中有两个相等的角?若存在,直接写出x 的值;若不存在,说明理由.(自己画图)14、弹簧挂上物体后会伸长,已知一弹簧的长度(cm )与所挂物体的重量(kg )之间的关系如下表: (1)当所挂物体的重量为3kg 时,弹簧的长度是_____________cm ;(2)如果所挂物体的重量为xkg ,弹簧的长度为ycm ,根据上表写出y 与x 的关系式; (3)当所挂物体的重量为5.5kg 时,请求出弹簧的长度。
人教2016-2017学年度第二学期七年级数学第一次月考试题(A).docx

第15题A BC a b1 23 2016-2017学年度第二学期七年级数学第一次月考试题(A )班级 姓名 座号一、选择题。
(每小题3分,共42分 ) 注意:请将选择题答案填入下面表格中1.如图所示,∠1和∠2是对顶角的是( )ABCD1234(第2题)2.如右图AB ∥CD 可以得到( ) A .∠1=∠2 B .∠2=∠3 C .∠1=∠4 D .∠3=∠4 3.下列现象属于平移的是( )①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走A .③B .②③C .①②④D .①②⑤ 4.在同一平面内,不重合的两条直线的位置关系可能是( )。
A 、相交或平行 B 、相交或垂直 C 、平行或垂直 D 、不能确定 5、下列说法中,错误的是( )。
A 、4的算术平方根是2B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-1 6、下列命题中,是真命题的是( )A .同位角相等.B .邻补角一定互补.C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直.7、641的立方根是( ) A.21± B.41± C.41 D.218、下列各组数中,互为相反数的组是( ) A .-2与2)2(- B .-2和38- C .-21与2 D .︱-2︱和2 9、计算33841627-+-+的值是( )A 、1B 、±1C 、2D 、7 10.如右图,直线AB ∥CD ,∠B=23°,∠D=42°,则∠E=( ) A .23° B .42° C .65° D .19°11、有一个数的相反数、平方根、立方根都等于它本身,这个数( )A、-1 B 、1 C 、0 D 、±1 12、在下列各数:0.51525354…,10049,0.2,π1,7,11131,327,中,无理数的个数是( ) A.2个 B.3个 C.4个 D.5个13.若一个正数的平方根是12-a 和2+-a ,则这个正数是( ) A.1 B.3 C.4 D.914、.已知:如右图,ED 平分∠FEC ,点E 在BC 上,EF ∥AB.若∠ABC=100°, 则∠FED 的度数为( )A.60°B.50°C.40°D.30° 二、填空题。
2017学年江西省抚州市崇仁一中七年级下学期期中数学试卷带答案

2016-2017学年江西省抚州市崇仁一中七年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,满分18分)1.(3分)下列计算正确的是()A.a5•a3=2a8B.a3+a3=a6 C.(a3)2=a5D.a5÷a3=a22.(3分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣63.(3分)如图所示,下列判断正确的是()A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥CDC.若∠A=∠3,则AD∥BC D.若∠3+∠ADC=180°,则AB∥CD4.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°5.(3分)一辆汽车由北戴河匀速驶往北京,下列图象中大致能反映汽车距离北京的路程s(千米)和行驶时间t(小时)的关系的是()A.B.C.D.6.(3分)已知一个等腰三角形的两条边长分别为3和8,则这个等腰三角形的周长为()A.11 B.14 C.19 D.14或19二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.8.(3分)若三角形三个内角的度数之比为2:3:5,则这个三角形一定是三角形.9.(3分)当x2+kx+25是一个完全平方式,则k的值是.10.(3分)若(a3)m=a4•a m,则m=.11.(3分)若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时,电话费y(元)与通话时间t(分)之间的关系式为.12.(3分)如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′处,∠AE D′=40°,则∠EFB=°.三、(本大题共5小题,每小题6分,共30分)13.(6分)计算:(1)x2•x3+x7÷x2(2)201×199+1(简便运算)14.(6分)计算:﹣(﹣)﹣2﹣24×+(﹣2017)0.15.(6分)先化简再求值:[(x+2y)2﹣(x+y)(x﹣y)]÷2y,其中x=﹣,y=2.16.(6分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.17.(6分)如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图所示,图象反映的是:小明从家里跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示小明离家的距离.根据图象回答下列问题:(1)体育场离小明家多远,小明从家到体育场用了多少时间?(2)体育场离文具店多远?(3)小明在文具店逗留了多少时间?(4)小明从文具店回家的平均速度是多少?19.(8分)将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式;(3)求当x=20时,y的值.20.(8分)如图,已知AD∥BC,∠DBC与∠C互余,BD平分∠ABC,∠A=112°,(1)求∠ABC的度数;(2)求∠C的度数.五、(两大题共18分)21.(9分)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE 是∠BAC的平分线,求∠DAE的度数.22.(9分)已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形.(1)你认为图乙中阴影部分的正方形的边长等于多少?.(2)请用两种不同的方法求图乙中阴影部分的面积.方法一:;方法二:.(3)观察图乙,你能写出下列三个代数式之间的等量关系吗?(m+n)2;(m﹣n)2;mm(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,求(a﹣b)2的值.六、(本大题共12分)23.(12分)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).2016-2017学年江西省抚州市崇仁一中七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分)1.(3分)下列计算正确的是()A.a5•a3=2a8B.a3+a3=a6 C.(a3)2=a5D.a5÷a3=a2【解答】解:A、a5•a3=a8,故本选项错误;B、a3+a3=2a3,故本选项错误;C、(a3)2=a6,故本选项错误;D、a5÷a3=a2,故本选项正确;故选:D.2.(3分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6【解答】解:0.000 0025=2.5×10﹣6;故选:D.3.(3分)如图所示,下列判断正确的是()A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥CDC.若∠A=∠3,则AD∥BC D.若∠3+∠ADC=180°,则AB∥CD【解答】解:A、∵∠1=∠2,∵AB∥CD,故本选项错误;B、∵∠1=∠2,∵AB∥CD,故本选项正确;C、∠A=∠3,无法判定平行线,故本选项错误;D、∠3+∠ADC=180°,无法判定平行线,故本选项错误.故选:B.4.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.5.(3分)一辆汽车由北戴河匀速驶往北京,下列图象中大致能反映汽车距离北京的路程s(千米)和行驶时间t(小时)的关系的是()A.B.C.D.【解答】解:∵汽车从北戴河驶往北京的过程中求的是汽车离北京的距离与时间的关系,∴汽车离北京的路程越来越近,也就是说s随t的增大而减小.∵从北戴河到北京行驶的路程是一条线段,∴在备选的4个答案中符合条件的只有B.故选:B.6.(3分)已知一个等腰三角形的两条边长分别为3和8,则这个等腰三角形的周长为()A.11 B.14 C.19 D.14或19【解答】解:①3是腰长时,三角形的三边分别为3、3、8,∵3+3=6<8,∴此时不能组成三角形;②3是底边长时,三角形的三边分别为3、8、8,此时能组成三角形,所以,周长=3+8+8=19,综上所述,这个等腰三角形的周长是19.故选:C.二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是平行.【解答】解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行.8.(3分)若三角形三个内角的度数之比为2:3:5,则这个三角形一定是直角三角形.【解答】解:设三角分别为2x,3x,5x,依题意得2x+3x+5x=180°,解得x=18°.故三角36°,54°,90°.故填直角.9.(3分)当x2+kx+25是一个完全平方式,则k的值是±10.【解答】解:∵x2+kx+25=x2+kx+52,∴kx=±2•x•5,解得k=±10.故答案为:±10.10.(3分)若(a3)m=a4•a m,则m=2.【解答】解:∵(a3)m=a4•a m,∴a3m=a4+m,∴3m=4+m,解得m=2.故答案为:2.11.(3分)若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时,电话费y(元)与通话时间t(分)之间的关系式为y=0.5t+0.3.【解答】解:由题意得:y=1.8+0.5(t﹣3)=0.5t+0.3,故答案为:y=0.5t+0.3.12.(3分)如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′处,∠AE D′=40°,则∠EFB=70°.【解答】解:∵∠AED′=40°,∴∠DED′=180°﹣40°=140°,又由折叠的性质可得,∠D′EF=∠DEF=∠DED′,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=70°.故答案为:70.三、(本大题共5小题,每小题6分,共30分)13.(6分)计算:(1)x2•x3+x7÷x2(2)201×199+1(简便运算)【解答】解:(1)原式=x5+x5=2x5;(2)原式=(200+1)×(200﹣1)+1=2002﹣1+1=40000.14.(6分)计算:﹣(﹣)﹣2﹣24×+(﹣2017)0.【解答】解:原式=﹣9﹣16×+1=﹣9.15.(6分)先化简再求值:[(x+2y)2﹣(x+y)(x﹣y)]÷2y,其中x=﹣,y=2.【解答】解:原式=[x2+4xy+4y2﹣x2+y2]÷2y=[4xy+5y2]÷2y=2x+2.5y,当x=﹣,y=2时,原式=4.16.(6分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.17.(6分)如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.【解答】解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图所示,图象反映的是:小明从家里跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示小明离家的距离.根据图象回答下列问题:(1)体育场离小明家多远,小明从家到体育场用了多少时间?(2)体育场离文具店多远?(3)小明在文具店逗留了多少时间?(4)小明从文具店回家的平均速度是多少?【解答】解:(1)体育场离小明家2.5千米,小明从家到体育场用了15分钟.(2)体育场离文具店2.5﹣1.5=1(千米).(3)小明在文具店逗留的时间为65﹣45=20(分钟).(4)小明从文具店回家的平均速度是=(千米/分钟).19.(8分)将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式;(3)求当x=20时,y的值.【解答】解:(1)4张白纸粘合后的总长度=4×20﹣2×3=80﹣6=74(厘米);(2)由题意得:y=20x﹣(x﹣1)×2=18x+2;(3)当x=20时,y=18x+2=362.20.(8分)如图,已知AD∥BC,∠DBC与∠C互余,BD平分∠ABC,∠A=112°,(1)求∠ABC的度数;(2)求∠C的度数.【解答】解:(1)∵AD∥BC,∠A=112°,∴∠ABC=180°﹣112°=68°;(2)∵BD平分∠ABC,∠ABC=68°,∴∠DBC=34°.∵∠DBC与∠C互余,∴∠C=90°﹣34°=56°.五、(两大题共18分)21.(9分)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE 是∠BAC的平分线,求∠DAE的度数.【解答】解:在△ABC中,∵∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°﹣∠B=25°,∴∠DAE=∠BAE﹣∠BAD=10°.22.(9分)已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形.(1)你认为图乙中阴影部分的正方形的边长等于多少?m﹣n.(2)请用两种不同的方法求图乙中阴影部分的面积.方法一:(m+n)2﹣4mn;方法二:(m﹣n)2.(3)观察图乙,你能写出下列三个代数式之间的等量关系吗?(m+n)2;(m﹣n)2;mm(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,求(a﹣b)2的值.【解答】解:(1)m﹣n;(2)(m+n)2﹣4mn或(m﹣n)2;(3)(m+n)2﹣4mn=(m﹣n)2;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=8,ab=5,∴(a﹣b)2=64﹣20=44.六、(本大题共12分)23.(12分)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).【解答】解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
江西崇仁县二中七年级下第一次月考数学卷(解析版)(初一)月考考试卷.doc

江西崇仁县二中七年级下第一次月考数学卷(解析版)(初一)月考考试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】下列运算正确的是()A. B.C. D.【答案】C【解析】试题分析:根据同类项的意义,可知与不是同类项,不能合并,故不正确;根据同底数幂的乘法,底数不变,指数相加,可知,故不正确;根据单项式乘以单项式的法则,可知,故正确;根据积的乘方,等于各个因式分别乘方,可得,故不正确.故选:l【解析】试题分析:根据积的乘方的性质可得2m=8,2n=6,解得m=4,n=3,因此=16-6=10.故选A考点:积的乘方【题文】已知则()A. B. C. D.52【答案】C【解析】试题分析:根据同底数幂的乘除法,可知,然后整体代入可得原式=27÷25=.故选:C考点:同底数幂的乘除法【题文】计算(a-b)(a+b)(a2+b2)(a4+b4)的结果是()A.a8+2a4b4+b8 B.a8-2a4b4+b8 C.a8+b8 D.a8-b8【答案】D【解析】试题分析:根据平方差公式可直接求解,即原式=()()()=()()=. 故选:D考点:平方差公式【题文】已知,,,则、、的大小关系是()A.>> B.>>C.<< D.>>【答案】A【解析】试题分析:根据同底数幂的乘法,可知,,,因此可得a>b>c.故选A考点:同底数幂的乘法【题文】用科学记数法表示0.000000059=________.【答案】【解析】试题分析:由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.因此0.000000059=.考点:科学记数法【题文】计算:(a-b)(a+2b) = .【答案】a2+ab-2b2【解析】试题分析:根据多项式乘以多项式,可知(a-b)(a+2b)=.考点:整式的乘法【题文】已知x+y=5,x-y=-2,则x2-y2= .【答案】-10【解析】试题分析:先根据因式分解法把分解为(x+y)(x-y),然后整体代入可得原式=5×(-2)=-10. 考点:因式分解【题文】已知,,则_______。
抚州市七年级下学期数学第一次月考试卷

抚州市七年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016八上·唐山开学考) 下列运算正确的是()A . a6÷a2=a3B . a3•a3•a3=3a3C . (a3)4=a12D . (a+2b)2=a2+4b22. (2分) (2018八上·大石桥期末) 下列运算正确的是()A . 3x2+2x3=5x6B . 50=0C . 2-3=D . (x3)2=x63. (2分)(2012·成都) 下列计算正确的是()A . a+2a=3a2B . a2•a3=a5C . a3÷a=3D . (﹣a)3=a34. (2分)(2014·资阳) 下列运算正确的是()A . a3+a4=a7B . 2a3•a4=2a7C . (2a4)3=8a7D . a8÷a2=a45. (2分)下列事件中,为必然事件的是()A . 购买一张彩票,一定中奖.B . 一个袋中只装有5个黑球,从中摸出一个球是黑球.C . 抛掷一枚硬币,正面向上.D . 打开电视,正在播放广告.6. (2分)(2019·沾化模拟) 下列说法中正确的是()A . “打开电视,正在播放新闻节目”是必然事件B . “抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上C . “抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近D . 为了解某种节能灯的使用寿命,选择全面调查7. (2分) (2019八上·宁县期中) 小明到离家900米的中百超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间x(分)与离家的路程y(米)之间的关系的是()A .B .C .D .8. (2分) (2017七下·萍乡期末) 小米和小亮玩一种跳棋游戏,如图,游戏板由大小相等的小正方形组成,小米让棋子在游戏板上随意走动,则棋子落在白色区域的概率是()A .B .C .D .9. (2分)(2017·官渡模拟) 下列运算正确的是()A . 2x2﹣x2=1B . 2x•3x=6xC . (﹣x)3÷(﹣x)2=﹣xD . (2x)﹣2= x210. (2分)若※是新规定的某种运算符号,设a※b=b2-a,则-2※x=6中x的值是()A . 4B . 8C . 2D . -2二、填空题 (共5题;共5分)11. (1分)自从扫描隧道显微镜发明以后,世界上便诞生了一门新兴的学科,这就是“纳米技术”.已知1纳米= 米,则2.25纳米用科学记数法表示为________米 .(结果保留两位有效数字)12. (1分)计算:﹣(﹣3)÷(﹣)×3=________13. (1分)(2018·义乌) 实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm,现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过定点A的三条棱长分别是10cm,10cm,ycm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是________。
2016-2017年江西省七年级(下)第一次大联考数学试卷(解析版)

2016-2017学年江西省七年级(下)第一次大联考数学试卷一、选择题(每小题3分,共6题,共18分)1.(3分)如图所示,∠1和∠2是对顶角的是()A.B.C.D.2.(3分)如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度3.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°4.(3分)如图,四边形ABCD中,点E在AB延长线上,则下列条件中不能判断AB∥CD 的是()A.∠3=∠4B.∠1=∠2C.∠5=∠C D.∠1+∠3+∠A=180°5.(3分)下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中正确的个数为()A.4B.3C.2D.16.(3分)下列语句写成数学式子正确的是()A.9是81的算术平方根:B.5是(﹣5)2的算术平方根:C.±6是36的平方根:D.﹣2是4的负的平方根:二、填空题(每小题3分,共6题,共18分)7.(3分)的平方根是.8.(3分)命题“同位角相等,两直线平行”中,条件是,结论是9.(3分)如图直线AB分别交直线EF,CD于点M,N,只需添一个条件,就可得到EF∥CD.10.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是.11.(3分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.12.(3分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.三、(每小题6分,共5题,共30分)13.(6分)已知2a﹣1的平方根是±,3a﹣2b﹣1的平方根是±3.求:5a﹣3b的平方根.14.(6分)如图,直线AB、CD相交于点OF⊥CD,∠AOF与∠BOD的度数之比为3:2,求∠AOC的度数.15.(6分)如图,已知在△ABC中,AD平分∠EAC且AD∥BC,那么∠B=∠C吗?请说明理由.16.(6分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.17.(6分)如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.求∠BCA的度数.四、(每小题8分,共4题,共32分)18.(8分)根据下列证明过程填空:已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.求证:AD平分∠BAC,填写证明中的空白.证明:∵AD⊥BC,EF⊥BC(已知),∴EF∥AD(),∴=(两直线平行,内错角相等),=∠CAD().∵(已知),∴,即AD平分∠BAC().19.(8分)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.20.(8分)探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=;y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=1.8,若=180,则a=.21.(8分)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)请你判断AD与EC的位置关系,并说明理由;(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠F AB的度数.五、(本大题共10分)22.(10分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.六、(本大题共12分)23.(12分)如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.2016-2017学年江西省七年级(下)第一次大联考数学试卷参考答案与试题解析一、选择题(每小题3分,共6题,共18分)1.(3分)如图所示,∠1和∠2是对顶角的是()A.B.C.D.【解答】解:A:∠1和∠2不是对顶角,B:∠1和∠2不是对顶角,C:∠1和∠2是对顶角,D:∠1和∠2不是对顶角.故选:C.2.(3分)如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度【解答】解:根据题意,点C到直线AB的距离即点C到AB的垂线段的长度,已知CD⊥AB,则点C到直线AB的距离就是线段CD的长度.故选:B.3.(3分)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选:B.4.(3分)如图,四边形ABCD中,点E在AB延长线上,则下列条件中不能判断AB∥CD 的是()A.∠3=∠4B.∠1=∠2C.∠5=∠C D.∠1+∠3+∠A=180°【解答】解:A、∵∠3=∠4,∴AD∥BC,故本选项正确;B、∵∠1=∠2,∴AB∥CD,故本选项错误;C、∵∠5=∠C,∴AB∥CD,故本选项错误;D、∵∠1+∠3+∠A=180°,∴AB∥CD,故本选项错误.故选:A.5.(3分)下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中正确的个数为()A.4B.3C.2D.1【解答】解:①、两条直线相交,同角的补角一定相等,这两条直线不一定垂直,错误;②、两条直线相交,一角与其邻补角互补且相等,则这两条直线垂直;正确.③、内错角相等,则它们的角平分线互相平行,错误.④、同旁内角互补,则它们的角平分线互相垂直,正确;故选:C.6.(3分)下列语句写成数学式子正确的是()A.9是81的算术平方根:B.5是(﹣5)2的算术平方根:C.±6是36的平方根:D.﹣2是4的负的平方根:【解答】解:A、9是81的算术平方根,即=9,错误;B、5是(﹣5)2的算术平方根,即=5,正确;C、±6是36的平方根,即±=±6,错误;D、﹣2是4的负平方根,即﹣=﹣2,错误,故选:B.二、填空题(每小题3分,共6题,共18分)7.(3分)的平方根是±2.【解答】解:的平方根是±2.故答案为:±28.(3分)命题“同位角相等,两直线平行”中,条件是同位角相等,结论是两直线平行【解答】解:命题中,已知的事项是“同位角相等”,由已知事项推出的事项是“两直线平行”,所以“同位角相等”是命题的题设部分,“两直线平行”是命题的结论部分.故空中填:同位角相等;两直线平行.9.(3分)如图直线AB分别交直线EF,CD于点M,N,只需添一个条件∠AME=∠ANC,就可得到EF∥CD.【解答】解:∵∠AME=∠ANC,∴EF∥CD(同位角相等,两直线平行).10.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是25°.【解答】解:∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣∠3=45°﹣20°=25°.故答案为:25°.11.(3分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为10.【解答】解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.12.(3分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.三、(每小题6分,共5题,共30分)13.(6分)已知2a﹣1的平方根是±,3a﹣2b﹣1的平方根是±3.求:5a﹣3b的平方根.【解答】解:∵2a﹣1的平方根是±,3a﹣2b﹣1的平方根是±3.∴2a﹣1=3,3a﹣2b﹣1=9,∴a=2,b=﹣2,∴5a﹣3b=10+6=16,∴16的平方根是±4,∴5a﹣3b的平方根是±4.14.(6分)如图,直线AB、CD相交于点OF⊥CD,∠AOF与∠BOD的度数之比为3:2,求∠AOC的度数.【解答】解:∵OF⊥CD,∴∠COF=90°,∴∠AOC+∠AOF=90°,∵∠AOF与∠BOD的度数之比为3:2,∴∠AOF与∠AOC的度数之比为3:2,设∠AOF=3x,∠AOC=2x,则3x+2x=90°,解得x=18°,∴∠AOC=2x=36°.15.(6分)如图,已知在△ABC中,AD平分∠EAC且AD∥BC,那么∠B=∠C吗?请说明理由.【解答】解:∠B=∠C.理由如下:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AD平分∠EAC,∴∠EAD=∠DAC.∴∠B=∠C.16.(6分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.17.(6分)如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.求∠BCA的度数.【解答】解:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠FCD,∵∠1=∠2,∴∠1=∠FCD,∴DG∥BC,∴∠BCA=∠3=80°.四、(每小题8分,共4题,共32分)18.(8分)根据下列证明过程填空:已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.求证:AD平分∠BAC,填写证明中的空白.证明:∵AD⊥BC,EF⊥BC(已知),∴EF∥AD(平面内,垂直于同一条直线的两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),∠E=∠CAD(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠BAD=∠CAD,即AD平分∠BAC(角平分线定义).【解答】证明:∵AD⊥BC,EF⊥BC,∴∠ADC=∠EFC=90°,∴AD∥EF,(平面内,垂直于同一条直线的两直线平行)∴∠AGE=∠DAB,∠E=∠DAC,∵AE=AG,∴∠E=∠AGE,∴∠DAB=∠DAC,即AD平分∠BAC.故答案为:平面内,垂直于同一条直线的两直线平行,∠1,∠BAD,∠2,两直线平行,同位角相等,∠1=∠2,∠BAD=∠CAD,角平分线定义.19.(8分)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.20.(8分)探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=0.1;y=10;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈31.6;②已知=1.8,若=180,则a=32400.【解答】解:(1)x=0.1,y=10;(2)①31.6,②a=32400,故答案为:0.1,10,31.6,32400.21.(8分)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)请你判断AD与EC的位置关系,并说明理由;(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠F AB的度数.【解答】(1)解:AD∥EC,理由是:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,又∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥EC.(2)解:∵DA平分∠BDC,∴∠ADC=,∴∠2=∠ADC=35°,∵CE⊥AE,AD∥EC,∴∠F AD=∠AEC=90°,∴∠F AB=∠F AD﹣∠2=90°﹣35°=55°.五、(本大题共10分)22.(10分)阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.【解答】解:(1)∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,(2)(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,故(﹣a)3+(b+4)2的平方根是:±4.六、(本大题共12分)23.(12分)如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.【解答】解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°;(2)过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=n°+35°;(3)∠BED的度数改变.过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°﹣n°+35°=215°﹣n°.。
七年级数学下册第一次月考试卷附答案(20170317)

54D3E21C B A 2016-2017学年第二学期月考七年级数学试题一、选择题(每小题3分,共24分)1.在实数π,52-,01.732,-10.232232223…中无理数有 ( B ) A. 2个 B. 3个 C. 4个 D. 5个2.如右图,下列能判定AB ∥CD 的条件有 ( C ) (1) ︒=∠+∠180BCD B ;(2)21∠=∠; (3) 43∠=∠ ;(4) 5∠=∠B .A.1个B.2个C.3个D.4个 3.若2m-4与3m-1是同一个数的平方根,则m 的值是 ( D ) A.-3 B.-1 C.1 D.-3或14.下列语句中,假命题有 ( C ) (1)过一点有且只有一条直线平行于已知直线;(2)不相等的两个角一定不是对顶角;(3)直角的补角必是直角;(4)两条直线被第三条直线所截,内错角相等(5)过一点有且只有一条直线与已知直线垂直;(6)两角之和为180°,这两个角一定是邻补角;(7)若,b a >则22b a >。
A.2个B.3个C.4个D.5个5.如图,四个实数m 、n 、p 、q 在数轴上对应的点分别为M 、N 、P 、Q,若n+q=0,则m 、n 、p 、q 四个实数中,绝对值最大的一个是 ( A ) A.p B.q C.m D.n 6.小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF ⊥AB ,CD ⊥AB , 小明说:“如果还知道∠CDG=∠BFE ,则能得到∠AGD=∠ACB .”小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB ,可得到∠CDG=∠BFE .” 小刚说:“∠AGD 一定大于∠BFE .”小颖说:“如果连接GF ,则GF 一定平行于AB .”他们四人中,说法正确的有 ( B ) A.1个 B.2个 C.3个 D.4个第5题第6题 第9题二、填空题(每小题3分,共24分)7.将命题“等角的补角相等”这个命题改写成“如果……那么……”的形式是如果两个角相等,那么这两个角的补角相等。
2016-2017学年江西省抚州市崇仁县七年级下第一次月考数学试卷含答案

2017年初一下学期第一次月考·数学试卷一、 细心选一选,(每题只有一个正确选项,每题3分共18分) 1.下列计算正确的是 ( )A 、2a -a =2B 、x 3+x 3=x 6C 、422)(ab b a =⋅ D 、2t 2+t 2=3t 22.已知32228287m n a b ab b ÷=,那么m,n 的取值为( ) A.m=4,n=3 B.m=4,n=1 C.m=1,n=3 D.m=2,n=33.计算a 2(2a )3-a (3a +8a 4)的结果是 ( )A .3a 2B .-3aC .-3a 2D .16a 54.如图,已知点O 是直线AB 上一点,∠1=65°,则∠2的度数( )A .25°B .65°C .105°D .115° 5.如图,下列各语句中,错误的是( )A .∠ADE 与∠B 是同位角 B .∠BDE 与∠C 是同旁内角 C .∠BDE 与∠AED 是内错角 D .∠BDE 与∠DEC 是同旁内角6.计算2221000252248-的结果是( )A.62500B.1000C.500D.250 二、细心填一填(每小题3分,共18分)7. 水的质量0.00000204kg,用科学记数法表示为__________.8. 试用几何语言描述下图:_____.9.若216x a x -+是一个完全平方数,则a =10.一个角是52度,那么这个角的补角是 度 11.已知a x=2 ,a y=3则a3x -2y=____________.12. 在下列代数式: ①(x-12y)(x+12y), ②(3a+bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1)中能用平方差公式计算的是 (填序号) 三、解答题。
(每小题6分,共30分) 13.计算下列各式:(1)(-x 2y 5)·(xy )3(2) (3a +2)(4a -1)14.计算下列各式: (1)-24+ ×(2 017+3)0-(2) )2)((422y x y x y x +---)(15.先化简,再求值:abb a ab a ab a 3)129(9)2(24322÷+-⋅-- 其中2,1-=-=b a .16.一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?DC17.直线AB.CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD = 38°,求∠AOC 和∠COB 的度数.四.解答题(每小题8分,共32分)18.已知.三角形的底边长为(2x+1)cm ,高是(x -2)cm ,若把底边和高各增加5厘米,那么三角形面积增加了多少?并求出x =3时三角形增加的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抚州市崇仁2016-2017学年七年级下第一次月考数学试卷含解析2016-2017学年江西省抚州市崇仁七年级(下)第一次月考数学试卷一、选择题(本大题共6小题,共18分)1.下列计算正确的是()A.9a3•2a2=18a5B.2x5•3x4=5x9C.3x3•4x3=12x3D.3y3•5y3=15y92.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x)D.(x2+y)(x﹣y2)3.若x2+mx+16是完全平方式,则m的值等于()A.﹣8B.8C.4D.8或﹣84.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz5.已知a m=6,a n=10,则a m﹣n值为()A.﹣4B.4C.D.6.下列说法中正确的是()①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°.A.①②B.②③C.①④D.②④二、填空题(本大题共6小题,共18分)7.如果x n y4与2xy m相乘的结果是2x5y7,那么mn=.8.用科学记数法表示0.000000023=.9.计算:22016×()2017所得的结果是.10.如果(x2+p)(x2+7)的展开式中不含有x2项,则p=.11.若x+y=2,x2﹣y2=6,则x﹣y=.12.已知∠α=72°,则∠α的余角是,∠α的补角是.三、(本大题共4小题,共30分)13.计算:(1)99×101(2)992.14.计算:(1)(﹣1)2017+(﹣)﹣2﹣(3.14﹣π)0.(2)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).16.如图,已知CD⊥AB,垂足点为O,若∠FOC=5∠COE,求∠AOF的度数?17.把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.四、(本大题共4小题,共32分)18.已知:a+b=7,ab=12.求:(1)a2+b2;(2)(a﹣b)2的值.19.化简求值:已知|x﹣2|+(y+1)2=0,求代数式[(x+2y)(x﹣2y)﹣(x ﹣y)2]÷2y的值.20.如图1所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=(上底+下底)×高).(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b 的式子表示S1和S2;(2)请写出上述过程所揭示的乘法公式.21.如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是,∠COD的余角是(2)OE是∠BOC的平分线吗?请说明理由.五、(本大题共1小题,共10分)22.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.六、(本大题共1小题,共12分)23.计算并观察下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)()=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(4)利用该规律计算1+4+42+43+…+42013=.2016-2017学年江西省抚州市崇仁七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共6小题,共18分)1.下列计算正确的是()A.9a3•2a2=18a5B.2x5•3x4=5x9C.3x3•4x3=12x3D.3y3•5y3=15y9【考点】单项式乘单项式.【分析】直接利用单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式,进而求出答案.【解答】解:A、9a3•2a2=18a5,正确,符合题意;B、2x5•3x4=6x9,错误,不合题意;C、3x3•4x3=12x6,错误,不合题意;D、3y3•5y3=15y6,错误,不合题意;故选:A.2.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x)D.(x2+y)(x﹣y2)【考点】平方差公式.【分析】根据平方差公式的定义进行解答.【解答】解:A、(2+a)(a+2)=(a+2)2,是完全平方公式,故本选项错误;B、(a+b)(b﹣a)=b2﹣(a)2,符合平方差公式,故本选项正确;C、(﹣x+y)(y﹣x)=(y﹣x)2,是完全平方公式,故本选项错误;D、(x2+y)(x﹣y2)形式不符合平方差公式,故本选项错误.故选B.3.若x2+mx+16是完全平方式,则m的值等于()A.﹣8B.8C.4D.8或﹣8【考点】完全平方式.【分析】根据两平方项确定出这两个数是x和4,再根据完全平方公式的乘积二倍项列式求解即可.【解答】解:∵x2+mx+16是完全平方式,∴mx=±2×4•x,解得m=±8.故选D.4.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz【考点】完全平方公式的几何背景.【分析】根据大长方形的面积=3个正方形的面积+6个小长方形的面积,即可解答.【解答】解:根据题意得:(x+y+z)2=x2+y2+z2+2xy+2xz+2yz,故选:C.5.已知a m=6,a n=10,则a m﹣n值为()A.﹣4B.4C.D.【考点】同底数幂的除法.【分析】根据指数相减,可得同底数幂的除法,可得答案.【解答】解:a m﹣n=a,故选:C.6.下列说法中正确的是()①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°.A.①②B.②③C.①④D.②④【考点】余角和补角.【分析】根据余角和补角的定义进行选择即可.【解答】解:①互为补角的两个角不可以都是锐角,故①错误;②互为补角的两个角可以都是直角,故②正确;③互为补角的两个角可以都是钝角,故③错误;④互为补角的两个角之和是180°,故④正确;故选D.二、填空题(本大题共6小题,共18分)7.如果x n y4与2xy m相乘的结果是2x5y7,那么mn=12.【考点】单项式乘单项式.【分析】根据单项式乘以单项式法则即可求出m、n的值.【解答】解:由题意可知:x n y4×2xy m=2x n+1y4+m=2x5y7,∴n+1=5,4+m=7,∴m=3,n=4,∴mn=12,故答案为:128.用科学记数法表示0.000000023= 2.3×10﹣8.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000023=2.3×10﹣8.故答案为:2.3×10﹣8.9.计算:22016×()2017所得的结果是.【考点】幂的乘方与积的乘方.【分析】根据同底数幂的乘法,积的乘方,可得答案.【解答】解:原式=[22016×()2016]×()=(2×)2016×=,故答案为:.10.如果(x2+p)(x2+7)的展开式中不含有x2项,则p=﹣7.【考点】多项式乘多项式.【分析】先把(x2+p)(x2+7)的展开,再让x2项的系数为0即可得出p的值.【解答】解:原式=x4+(7+p)x2+7p∵(x2+p)(x2+7)的展开式中不含有x2项,∴7+p=0,∴p=﹣7;故答案为﹣7.11.若x+y=2,x2﹣y2=6,则x﹣y=3.【考点】平方差公式.【分析】已知第二个等式左边利用平方差公式化简,把x+y=2代入即可求出x﹣y的值.【解答】解:∵x+y=2,x2﹣y2=(x+y)(x﹣y)=6,∴x﹣y=3,故答案为:3.12.已知∠α=72°,则∠α的余角是18°,∠α的补角是108°.【考点】余角和补角.【分析】根据两个角的和为90°,则这两个角互余;两个角的和等于180°,则这两个角互补计算即可.【解答】解:根据定义∠α的余角度数是90°﹣72°=18°.∠α的补角是180°﹣72°=108°′.故答案为:18°,108°三、(本大题共4小题,共30分)13.计算:(1)99×101(2)992.【考点】平方差公式;完全平方公式.【分析】(1)根据平方差公式,可得答案;(2)根据完全平方公式,可得答案.【解答】解:(1)99×101==1002﹣1=9999;(2)992=2=1002﹣2×100+1=9801.14.计算:(1)(﹣1)2017+(﹣)﹣2﹣(3.14﹣π)0.(2)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)原式=1+4﹣1=4;(2)原式=4x6y2•(﹣2xy)+(﹣8x9y3)•=﹣8x7y3﹣4x7y3=﹣12x7y3.16.如图,已知CD⊥AB,垂足点为O,若∠FOC=5∠COE,求∠AOF的度数?【考点】垂线.【分析】先根据邻补角的定义计算出∠COE=30°,再利用对顶角相等得∠DOF=30°,然后根据垂直的定义得∠AOD=90°,最后利用∠AOF=∠AOD+∠DOF 进行计算.【解答】解:∵∠FOC=5∠COE,而∠FOC+∠COE=180°,∴5∠COE+∠COE=180°,∴∠COE=30°,∴∠DOF=30°,∵CD⊥AB,∴∠AOD=90°,∴∠AOF=∠AOD+∠DOF=120°.17.把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.【考点】整式的混合运算.【分析】根据题意表示出原来正方形桌子的面积,以及改变后长方形的面积,比较即可得到结果.【解答】解:根据题意得:(x+2)(x﹣1)﹣x2=x2+x﹣2﹣x2=x﹣2,∵x<1.5,∴x﹣2<0,则改变后的桌子面积比原正方形桌子的面积是减少了.四、(本大题共4小题,共32分)18.已知:a+b=7,ab=12.求:(1)a2+b2;(2)(a﹣b)2的值.【考点】完全平方公式.【分析】(1)根据和的完全平方公式,可得答案;(2)根据差的完全平方公式与和的完全平方公式,可得答案.【解答】(1)a2+b2=(a+b)2﹣2ab=72﹣2×12=49﹣24=25;(2)(a﹣b)2=(a+b)2﹣4ab=72﹣4×12=49﹣48=1.19.化简求值:已知|x﹣2|+(y+1)2=0,求代数式[(x+2y)(x﹣2y)﹣(x ﹣y)2]÷2y的值.【考点】整式的混合运算—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据题意,利用非负数的性质求出x与y的值,原式化简后代入计算即可求出值.【解答】解:∵|2x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,原式=(x2﹣4y2﹣x2+2xy﹣y2)÷2y=(2xy﹣5y2)÷2y=x﹣y,当x=2,y=﹣1时,原式=4.5.20.如图1所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=(上底+下底)×高).(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b 的式子表示S1和S2;(2)请写出上述过程所揭示的乘法公式.【考点】平方差公式的几何背景.【分析】(1)利用正方形的面积公式和梯形的面积公式即可求解;(2)根据(1)所得的两个式子相等即可得到.【解答】解:(1)∵大正方形的边长为a,小正方形的边长为b,∴S1=a2﹣b2.S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)根据题意得:(a+b)(a﹣b)=a2﹣b2.21.如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是∠COE、∠BOE,∠COD的余角是∠COE、∠BOE (2)OE是∠BOC的平分线吗?请说明理由.【考点】余角和补角.【分析】(1)直接利用角平分线的定义得出∠AOD=∠COD,进而利用已知得出∠AOD、∠COD的余角;(2)利用(1)中所求得出OE是∠BOC的平分线.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠COD,∵∠DOE=90°,∴∠DOC+∠COE=90°,∠AOD+∠BOE=90°,∴∠AOD+∠COE=90°,∴∠AOD的余角是:∠COE、∠BOE;∠COD的余角是:∠COE,∠BOE;故答案为:∠COE,∠BOE;∠COE,∠BOE;(2)OE平分∠BOC,理由:∵∠DOE=90°,∴∠AOD+∠BOE=90°,∴∠COD+∠DOE=90°,∴∠AOD+∠BOE=∠COD+∠DOE∵OD平分∠AOC,∴∠AOD=∠COD,∴∠COE=∠BOE∴OE平分∠BOC.五、(本大题共1小题,共10分)22.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=﹣;(2)代数式为完全平方式,则k=±3;(3)解方程:=6x2+7.【考点】完全平方式.【分析】(1)根据新定义运算代入数据计算即可求解;(2)根据新定义运算代入数据计算,再根据完全平方式的定义即可求解;(3)根据新定义运算代入数据得到关于x的方程,解方程即可求解.【解答】解:(1)=[2×(﹣3)×1]÷[(﹣1)4+31]=﹣6÷4=﹣.故答案为:﹣;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为:±3;(3)=6x2+7,(3x﹣2)(3x+2)]﹣[(x+2)(3x﹣2)+32]=6x2+7,解得x=﹣4.六、(本大题共1小题,共12分)23.计算并观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(4)利用该规律计算1+4+42+43+…+42013=.【考点】平方差公式.【分析】(1)利用平方差公式,依此类推得到结果即可;(2)利用发现的规律填写即可;(3)利用得出的规律计算得到结果;(4)原式变形后,利用得出的规律计算即可得到结果.【解答】解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(4)1+4+42+43+…+42013=×(4﹣1)×(1+4+42+43+…+42013)=.故答案为:(1)x2﹣1;x3﹣1;x4﹣1;(2)x5+x4+x3+x2+x+1;(3)x7﹣1;(4).2017年4月7日。