空调房间冷(热)、湿负荷计算汇总

合集下载

2.3 空调房间冷、湿负荷计算方法

2.3 空调房间冷、湿负荷计算方法

26/81
空调房间冷、 2.3 空调房间冷、湿负荷计算方法
模拟分析软件:中国, 模拟分析软件:中国,状态空间法
DeST 90年代清华大学开发的建筑与 年代清华大学开发的建筑与HVAC系统分析和辅助设计软件。 系统分析和辅助设计软件。 年代清华大学开发的建筑与 系统分析和辅助设计软件 负荷模拟部分采用状态空间法,即采用现代控制论中的“ 负荷模拟部分采用状态空间法,即采用现代控制论中的“状 态空间”的概念,把建筑物的热过程模型表示成: 态空间”的概念,把建筑物的热过程模型表示成: & CT = AT + Bu 状态空间法的求解是在空间上进行离散,在时间上保持连续。 状态空间法的求解是在空间上进行离散,在时间上保持连续。 对于多个房间的建筑, 对于多个房间的建筑,可对各围护结构和空间列出方程联立 求解,因此可处理多房间问题。 求解,因此可处理多房间问题。 其解的稳定性及误差与时间步长无关, 其解的稳定性及误差与时间步长无关,因此求解过程所取时间 步长可大至1小时 小至数秒钟, 小时, 步长可大至 小时,小至数秒钟,而有限差分法只能取较小 的时间步长以保证解的精度和稳定性。 的时间步长以保证解的精度和稳定性。但状态空间法与反应 系数法和谐波反应法相同之处是均要求系统线性化, 系数法和谐波反应法相同之处是均要求系统线性化,不能处 理相变墙体材料、变表面换热系数、变物性等非线性问题。 理相变墙体材料、变表面换热系数、变物性等非线性问题。
8/81
空调房间冷、 2.3 空调房间冷、湿负荷计算方法
瞬时日射得热与轻、 瞬时日射得热与轻、中、重型建筑实际冷负荷之关系
9/81
空调房间冷、 2.3 空调房间冷、湿负荷计算方法
一般结构中荧光灯形成的冷负荷 灯具开启后,大部分的热量被蓄存起来,随着 灯具开启后,大部分的热量被蓄存起来, 时间的延续,蓄存的热量就逐渐减小 时间的延续,

房间负荷如何计算公式

房间负荷如何计算公式

房间负荷如何计算公式房间负荷是指房间内需要供应的热量或冷量,是建筑空调设计中非常重要的参数。

正确计算房间负荷可以保证室内环境的舒适度,同时也可以节约能源,降低运行成本。

本文将介绍房间负荷的计算公式以及相关的计算方法。

房间负荷计算公式一般可以分为冷负荷和热负荷两种情况。

冷负荷是指在夏季需要从室内空间中移除的热量,而热负荷则是指在冬季需要向室内空间供应的热量。

下面将分别介绍冷负荷和热负荷的计算公式。

首先是冷负荷的计算公式。

一般来说,冷负荷可以通过以下公式进行计算:Q = U A (ΔT)。

其中,Q表示冷负荷,U表示传热系数,A表示传热面积,ΔT表示温度差。

传热系数和传热面积可以通过建筑物的设计参数来确定,温度差则可以根据室内外温度差来计算。

这个公式可以帮助工程师确定在夏季需要从室内空间中移除多少热量,从而确定空调系统的制冷负荷。

接下来是热负荷的计算公式。

热负荷的计算一般可以分为传导热和传送热两部分。

传导热的计算公式可以表示为:Q = U A (ΔT)。

其中,Q表示热负荷,U表示传热系数,A表示传热面积,ΔT表示温度差。

传送热的计算公式可以表示为:Q = m Cp ΔT。

其中,Q表示热负荷,m表示空气的质量,Cp表示空气的比热容,ΔT表示温度差。

这两个公式可以帮助工程师确定在冬季需要向室内空间供应多少热量,从而确定供暖系统的热负荷。

除了以上的计算公式,还有一些其他因素需要考虑,比如室内外温度差、室内外温度变化、建筑结构、建筑材料等。

这些因素都会对房间负荷的计算产生影响,因此在实际工程中需要综合考虑这些因素。

在实际工程中,一般会使用专业的建筑能耗软件来进行房间负荷的计算。

这些软件可以根据建筑的设计参数和环境条件,自动计算出冷负荷和热负荷,并给出相应的空调或供暖系统的设计参数。

这样可以大大提高工程师的工作效率,同时也可以提高计算的准确性。

在进行房间负荷计算时,还需要考虑到建筑的节能设计。

比如通过合理的隔热、隔音设计,可以减小建筑的冷负荷和热负荷,从而降低空调和供暖系统的能耗。

暖通空调-第2章-热负荷、冷负荷与湿负荷计算

暖通空调-第2章-热负荷、冷负荷与湿负荷计算

第2章 热负荷、冷负荷与湿负荷计算华北电力大学-荆有印为了保持建筑物的热湿环境,在某一时刻需向房间供应的冷量称为冷负荷;相反,为了补偿房间失热需向房间供应的热量称为热负荷;为了维持房间相对湿度恒定需从房间除去的湿量称为湿负荷。

热负荷、冷负荷与湿负荷是暖通空调工程设计的基本依据,暖通空调设备容量的大小主要取决于热负荷、冷负荷与湿负荷的大小。

热负荷、冷负荷与湿负荷=f(室外气象参数,室内空气参数)2.1 室内外空气计算参数2.1.1 室外空气计算参数1. 夏季空调室外计算参数空调室外计算干球温度:取室外历年平均不保证50h 的干球温度;空调室外计算湿球温度:取室外历年平均不保证50h 的湿球温度。

空调室外计算日平均温度:取室外历年平均不保证5d 的平均温度;空调室外设计日逐时温度,按下式计算:d m o r t t t ∆+=β. (2-1)式中 m o t .—夏季空调室外计算日平均温度,℃; β—室外空气温度逐时变化系数,按表2-1确定;d t ∆—夏季空调室外计算平均日较差,℃,s o t .—夏季空调室外计算干球温度,℃。

表2-1空调室外空气计算温度:采用历年平均不保证1d 的日平均温度;空调室外空气计算相对湿度:采用历年一月份平均相对湿度的平均值。

3.冬季采暖室外计算温度和冬季通风计算温度采暖室外计算温度:取历年平均不保证5天的日平均温度; 通风室外计算温度:取累年最冷月平均温度;4.夏季通风室外计算温度和夏季通风室外计算相对湿度通风室外计算温度:取历年最热月14时的月平均温度的平均值;通风室外计算相对湿度:取历年最热月14时的月平均相对湿度的平均值。

2.1.2 室内空气计算参数1.室内空气计算参数的主要影响因素 ⑴建筑房间使用功能对舒适性的要求。

⑵地区、冷热源情况、经济条件和节能要求等因素。

2.室内空气计算参数的选择根据我国国家标准《采暖通风与空气调节设计规范》(GBJ19-87)的规定: ⑴对舒适性空调和采暖夏季:温度 24-28℃ 相对湿度 40%-65%: 风速 ≯0.3m/s 。

第二章空调房间冷、热、湿负荷的计算

第二章空调房间冷、热、湿负荷的计算

2.1 冷负荷的计算:根据本工程的设计特点,故空调房间冷负荷包括以下几个部分:①外围护结构的瞬变传热(外墙,窗,屋顶,地面,玻璃幕墙);②窗的日射得热;③人员散热;④照明散热和其他散热。

若邻室为非空调房间,则需考虑内维护结构的传热问题。

各部分计算方法具体介绍如下:1. 内围护结构冷负荷:当邻室为通风良好的非空调房间时,通过内墙和楼板的温差传热而产生的冷负荷可按上式计算;当邻室与空调区的夏季温差大于3℃时应按下式计算通过空调房间隔墙、楼板、内窗等内围护结构的温差传热而产生的冷负荷。

()ls N CL FK t t =-ls wp ls t t t =+∆式中:CL ——内墙传热引起的逐时冷负荷,(W );F ——内墙的面积,(㎡);K ——内墙的传热系数,(w/㎡·℃);t ls ——邻室计算平均温度,(℃);ls t ∆——邻室计算平均温度与夏季空气调节室外计算温度的差值,(℃)。

2. 外墙冷负荷:根据已知外墙体的构造,查《空调冷负荷专刊》表3-1(外墙结构类型表)中查得本设计中此类外墙体做法属于与Ⅲ型,k=0.7w/㎡·℃。

再由表3-3(外墙冷负荷计算温度l t 表)查得Ⅲ型的逐时l t 值。

可按下式计算:()l n CL FK t t =- 式中:CL ——外墙墙传热引起的逐时冷负荷,(W );F ——外墙的面积,(㎡);K ——外墙的传热系数,(w/㎡·℃); lt——外墙的冷负荷计算温度的逐时值(℃); t n ——夏季空气调节室内计算温度(℃)。

3. 屋顶瞬变传热引起的冷负荷:根据已知屋面的构造,查《空调冷负荷专刊》表3-2(屋面结构类型表)中查得本设计中此类屋面做法Ⅳ型,k=0.45w/㎡·℃。

再由表3-4(屋面冷负荷计算温度l t 表)查得Ⅳ型的逐时l t 值。

可按下式计算:()l n CL FK t t =- 式中:CL ——屋顶瞬变传热引起的逐时冷负荷(W );F ——屋顶的面积(㎡);K ——屋顶的传热系数(w/㎡·℃);l t ——屋顶的冷负荷计算温度的逐时值(℃);t n ——夏季空气调节室内计算温度(℃)。

热负荷冷负荷与湿负荷计算

热负荷冷负荷与湿负荷计算

热负荷冷负荷与湿负荷计算热负荷、冷负荷和湿负荷是在建筑设计和能源管理领域中常用的概念。

它们用来分析建筑物的热量和湿度变化,以确定适当的空调和通风系统设计。

热负荷是指建筑物在特定时间段内所需的热量。

它受到多个因素的影响,包括建筑的尺寸、材料、朝向、外部气象条件和内部热源(如人员和设备)。

热负荷的计算可以帮助决定建筑物所需的供暖或冷却系统的容量。

其计量单位通常是千瓦或英国热量单位(BTU)。

冷负荷与热负荷相对应,指的是建筑物在特定时间段内所需的冷量。

它是通过将室内温度与理想的室内温度进行比较来计算的。

如果室内温度超过了预定的理想温度范围,那么冷负荷就存在。

冷负荷的计算可以用来确定建筑物所需的空调系统容量。

湿负荷是指建筑物在特定时间段内所需的湿度。

湿负荷的计算是通过测量建筑物内外的湿度差来进行的。

如果建筑物内部的湿度超过了一定限制,那么湿负荷就存在。

湿负荷的计算可以用来确定建筑物所需的除湿系统容量。

热负荷、冷负荷和湿负荷的计算通常基于建筑物的设计规格和预测的使用情况。

下面是一些常用的计算方法:1.热负荷计算:热负荷计算可以采用热平衡方程来进行。

该方程考虑了建筑物的传热和传递过程,其中包括传导、对流和辐射。

此外,它还考虑了太阳辐射、建筑物内部热源和热损失。

通过计算建筑物内外热量的平衡,可以确定所需的供暖或冷却系统容量。

2.冷负荷计算:冷负荷计算主要基于热负荷计算。

它还考虑了建筑物内外的温度差和空调系统的效率。

冷负荷计算通常通过使用经验公式来估算建筑物的冷却需求。

3.湿负荷计算:湿负荷计算涉及到湿度的传递和变化。

湿负荷可以通过计算空气的湿度差、质量流量和湿度变化速率来估算。

通过测量建筑物内外湿度和气流的传递,可以确定所需的除湿系统容量。

在实际设计中,常常采用计算机模拟软件来进行热负荷、冷负荷和湿负荷的计算。

这些软件通常基于建筑物的几何形状、材料特性、使用情况和气象数据等参数来进行模拟。

通过使用这些模拟软件,可以更精确地估算建筑物的热量和湿度变化,从而确定合适的空调和通风系统设计。

第3章空调房间的冷(热)、湿负荷计算

第3章空调房间的冷(热)、湿负荷计算

3、室内热源散热形成的冷负荷 (1)设备散热形成的冷负荷
LQ Q CLQ
(2)照明散热形成的冷负荷
白炽灯
LQ 1000N CLQ
荧光灯
LQ 1000n1n2 N CLQ
(3)人体散热形成的冷负荷 人体潜热散热量立刻构成瞬时冷负荷
LQs qs n n' CLQ
三、室内湿源散湿形成的湿负荷 室内湿源包括人体散湿和工艺设备散湿。 人体散湿量应与散热量同样考虑和计算。不同 温度下成年男子散湿量可直接查得。
空调精度——空调区域内,在要求空调的工件 旁所设一个或数个测温(或测相对湿度)点 上,在要求的持续时间内,空气温度(或相对 湿度)偏离室内温(湿)度基数的最大差值。
舒适性空调主要从人体舒适感出发确定室内温、 湿度设计标准:
参数 温度(°C) 风速(m/s) 相对湿度(%)
冬季
18~24
0.2
30~60
一、太阳辐射强度及其影响因素 太阳辐射强度——1m2黑体表面在太阳照射下
所获得的热量值,单位为kW/m2(或W/m2)。可 以利用太阳辐射仪直接测量某一地区的太阳辐 射强度。 影响因素:地球对太阳的相对运动,即被照射 地点与太阳射线形成的高度角和太阳光线通过 大气层的厚度。另外,地理纬度不同、季节不 同、昼夜不同,太阳辐射强度都不同。
瞬时得热中以对流方式传递的显热得热和潜热得热 部分,直接放散到室内空气中,立刻构成房间的瞬 时冷负荷;而显热得热中以辐射方式传递的部分却 不能立刻构成房间的瞬时冷负荷。原因如下:
以辐射方式传递的得热量首先投射到具有蓄热性能 的围护结构和家具等室内物体的表面上,并为之吸 收,这些室内物体的温度将不断升高,当其表面温 度高于室内空气温度后,所蓄存的部分热量再借助 对流方式逐渐放出加热室内空气而成为房间的冷负 荷,但这一冷负荷是滞后的。

第五章 空调房间的冷(热)湿负荷计算《通风与空调系统》

第五章 空调房间的冷(热)湿负荷计算《通风与空调系统》

2、有效温度区 和舒适区 美国供暖、制 冷、空调工程师学 会定义有效温度: 一个具有相同温度 且相对湿度为50℅ 的封闭黑体空间的 温度,在此环境中 人体的全热损失与 实际环境相同。 两块舒适区: 菱形和阴影部分。
§5.1 室内外空气计算参数 3、PMV-PPD指标
PMV-预期平均评价,代 表了对同一环境绝大多数人 的冷热感觉。 PPD-预期不满意百分率, 表示对热环境不满意的百分 数。
§5.2 太阳辐射热对建筑物的热作用
二、室外空气综合温度 外表面单位面积上得到的热量
I R q w t w w w w w tZ w
综合温度:相当于室外气温由原来的tw值增加了一 个太阳辐射的等效温度值。 注意:综合温度并非真实的空气温度。
§5.3 空调房间冷(热)、湿负荷 的计算 3)南外窗:双层钢窗(3mm厚普通玻璃),80% 玻璃,内挂深黄色布窗帘。面积F=6㎡ (外围护结构为浅色,αn=8.7W/㎡.K,αw=18.6W/ ㎡.K) 4)内墙:邻室包括走廊,均与客房温度相同 5)人员:客房内有2人,在客房内总小时数为16h, 从16:00到次日8:00 6)照明:莹光灯200W,明装,开灯时数8h,空 调运行24h 7)室内设计参数:温度24℃,相对湿度60%
§5.1 室内外空气计算参数 一、室内空气计算参数 空调房间室内温度、湿度 通常用两组指标来规定:
温、湿度基数 空调精度
室内温、湿度基数:在空调区域内所需要保持的空气 基准温度与基准湿度。 空调精度:在空调区域内,在要求的工件旁一个或 数个测温(或测相对湿度)点上水银温度计(或相对 湿度计)在要求的持续时间内,所示的空气温度(或 相对湿度)偏离温(湿)度基数的最大偏差。

空调房间湿负荷的计算

空调房间湿负荷的计算

空调房间湿负荷计算:湿负荷是指空调房间的湿源向室内的散湿量(室内设计温湿度分别为26 ℃,60%)(1)人体散湿量式中W1—人体散湿量,kg/s;n—室内全部人数;—群集系数,见表2-6《温湿度独立控制空调系统》g—成年男子的小时散湿量,g/h.见表2-5. 《温湿度独立控制空调系统》(2)敞开水面或潮湿水面的散湿量W2—自由水面散湿量,kg/s;A w—水分蒸发的总表面积,m2;a w—不同水温下的蒸发系数,kg/(N•s),见表2-7《温湿度独立控制空调系统》;—蒸发表面的空气流动速度,建议取0.3m/s;—相应于水表面温度的饱和水蒸气分压力,Pa;3353Pa(《空调工程》附录一)—空气中的水蒸气分压力,Pa;2050Pa (查湿空气的焓湿图)B0—标准大气压,Pa;B—当地实际大气压,Pa。

(广州夏季室外大气压力100287Pa)(3)渗透空气的湿负荷渗入空气量的计算1) 通过外门开启渗入室内空气量G1(kg/h),按下式估算:式中 n1—小时人流量;V1—外门开启一次的渗入空气量,m3/h;见表ρw—夏季空调室外干球温度下的空气密度,kg/m3。

一般取1.13每小时通过的人数普通门带门斗的门转门单扇一扇以上单扇一扇以上单扇一扇以上100 3.0 4.75 2.50 3.50 0.80 1.00 100~700 3.0 4.75 2.50 3.50 0.70 0.90 700~1400 3.0 4.75 2.25 3.50 0.50 0.60 1400~2100 2.75 4.0 2.25 3.25 0.30 0.30 2) 通过房间门、窗渗入空气量G2(kg/h),按下式估算:式中 n2—每小时换气次数;(设计参考:民用建筑空调负荷计算中应考虑的几个问题)V2—房间容积,m3。

ρw—夏季空调室外干球温度下的空气密度,kg/m3。

(33℃时的空气密度1.154 kg/m3)G=G1+G2=23.08kg/h渗透空气带入室内的湿量(kg/h),按下式计算:式中 dw—室外空气的含湿量,g/kg;dn—室内空气的含湿量,g/kg;(室内空气的相对湿度为60%,温度为26℃,含湿量12.8g/kg干空气)相对湿度(%)温度℃含湿量g/kg 30 32 34 36 38 4080 21.5 24.2 27.7 30.5 34.0 37.885 23.0 26 29.5 32.6 36 40.290 24.3 27.6 31.2 34.5 38.4 4395 25.7 29 33 36.7 41 ---100 27.`1 30.6 34.5 38 44 ----相对湿度(%)温度℃30 32 34 36 38 40湿负荷kg/h80 2.06 2.33 2.69 2.97 3.33 3.7285 2.21 2.52 29.5 3.19 3.53 3.9890 2.34 2.68 3.05 3.38 3.69 4.2495 2.49 2.82 3.23 3.60 4.04 ---100 2.63 2.98 3.38 3.74 4.34 ----(4)外部空气带入的水分由新风代入的水分,《采暖通风与空气调节设计规范》规定办公室、图书馆、会议室、餐厅为17m3/(h•人),旅馆客房为30 m3/(h•人)(1-13) 式中 W4—新风带入的湿量,g/h;V f—进入建筑物的新风量,m3/h;—空气的密度,kg/m3;d w—室外空气湿度,g/kg;人d n—室内空气湿度,g/kg。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 t cl实际=(tcl +td K a K ρ(9-5 ; CLq =KF(tcl实际 -t N (9-62、 t cl ——屋顶的冷负荷逐时计算温度(℃,由附录9-8和9-9查取;应用公式(9-5计算,应注意外墙和屋顶的逐时冷负荷计算温度值tcl 是以北京地区气象参数数据为依据计算出来的。

所何用的外表面放热系数为18.6W/(m2.K;内表面放热系数为8.7W/(m2.K。

所采用的外墙和屋面的吸收系数为ρ=0.90。

房间传递系数 V0=0.681,W1=-0.87。

3、 t d ——地点修正值(℃,见附录9-104、 K a ——外表放热系数修正值,见表9-75、K ρ——外表面吸收系数修正值,考虑到城市大气污染和中浅颜色的耐久性差,建议吸收系数均采用K ρ=0.9,但确有把握经久保持建筑围护结构表面的中、浅色时,风可采用表9-8的修正值。

6、 t N ——室内计算温度(℃7、 K ——屋顶的传热系数[W/(m2.K],参见附录9-8和9-98、 F ——屋顶的计算面积(m2南外墙冷负荷说明:1、 t cl实际 =(tcl +td K a K ρ(9-5 ; CLq =KF(tcl实际 -t N (9-62、 t cl ——外墙的冷负荷逐时计算温度(℃,由附录9-8和9-9查取;应用公式(9-5计算,应注意外墙和屋顶的逐时冷负荷计算温度值tcl 是以北京地区气象参数数据为依据计算出来的。

所何用的外表面放热系数为18.6W/(m2.K;内表面放热系数为8.7W/(m2.K。

所采用的外墙和屋面的吸收系数为ρ=0.90。

房间传递系数 V0=0.681,W1=-0.87。

3、 t d ——地点修正值(℃,见附录9-104、 K a ——外表放热系数修正值,见表9-75、K ρ——外表面吸收系数修正值,考虑到城市大气污染和中浅颜色的耐久性差,建议吸收系数均采用K ρ=0.9,但确有把握经久保持建筑围护结构表面的中、浅色时,风可采用表9-8的修正值。

6、 t N ——室内计算温度(℃7、 K ——外墙的传热系数[W/(m2.K],参见附录9-8和9-98、 F ——外墙的计算面积(m2北外墙冷负荷1、 t cl实际=(tcl +td K a K ρ(9-5 ; CLq =KF(tcl实际 -t N (9-62、 t cl ——外墙的冷负荷逐时计算温度(℃,由附录9-8和9-9查取;应用公式(9-5计算,应注意外墙和屋顶的逐时冷负荷计算温度值tcl 是以北京地区气象参数数据为依据计算出来的。

所何用的外表面放热系数为18.6W/(m2.K;内表面放热系数为8.7W/(m2.K。

所采用的外墙和屋面的吸收系数为ρ=0.90。

房间传递系数 V0=0.681,W1=-0.87。

3、 t d ——地点修正值(℃,见附录9-104、 K a ——外表放热系数修正值,见表9-75、K ρ——外表面吸收系数修正值,考虑到城市大气污染和中浅颜色的耐久性差,建议吸收系数均采用K ρ=0.9,但确有把握经久保持建筑围护结构表面的中、浅色时,风可采用表9-8的修正值。

6、 t N ——室内计算温度(℃7、 K ——外墙的传热系数[W/(m2.K],参见附录9-8和9-98、 F ——外墙的计算面积(m2东外墙冷负荷1、 t cl实际=(tcl +td K a K ρ(9-5 ; CLq =KF(tcl实际 -t N (9-62、 t cl ——外墙的冷负荷逐时计算温度(℃,由附录9-8和9-9查取;应用公式(9-5计算,应注意外墙和屋顶的逐时冷负荷计算温度值tcl 是以北京地区气象参数数据为依据计算出来的。

所何用的外表面放热系数为18.6W/(m2.K;内表面放热系数为8.7W/(m2.K。

所采用的外墙和屋面的吸收系数为ρ=0.90。

房间传递系数 V0=0.681,W1=-0.87。

3、 t d ——地点修正值(℃,见附录9-104、 K a ——外表放热系数修正值,见表9-75、K ρ——外表面吸收系数修正值,考虑到城市大气污染和中浅颜色的耐久性差,建议吸收系数均采用K ρ=0.9,但确有把握经久保持建筑围护结构表面的中、浅色时,风可采用表9-8的修正值。

6、 t N ——室内计算温度(℃7、 K ——外墙的传热系数[W/(m2.K],参见附录9-8和9-98、 F ——外墙的计算面积(m2西外墙冷负荷1、 t cl实际=(tcl +td K a K ρ(9-5 ; CLq =KF(tcl实际 -t N (9-62、 t cl ——外墙的冷负荷逐时计算温度(℃,由附录9-8和9-9查取;应用公式(9-5计算,应注意外墙和屋顶的逐时冷负荷计算温度值tcl 是以北京地区气象参数数据为依据计算出来的。

所何用的外表面放热系数为18.6W/(m2.K;内表面放热系数为8.7W/(m2.K。

所采用的外墙和屋面的吸收系数为ρ=0.90。

房间传递系数 V0=0.681,W1=-0.87。

3、 t d ——地点修正值(℃,见附录9-104、 K a ——外表放热系数修正值,见表9-75、K ρ——外表面吸收系数修正值,考虑到城市大气污染和中浅颜色的耐久性差,建议吸收系数均采用K ρ=0.9,但确有把握经久保持建筑围护结构表面的中、浅色时,风可采用表9-8的修正值。

6、 t N ——室内计算温度(℃7、 K ——外墙的传热系数[W/(m2.K],参见附录9-8和9-98、 F ——外墙的计算面积(m2南外窗瞬时传热冷负荷1、 CLc=KF(tcl -t N (9-7 或 C L c =C k KF (t cl +t d -t N (9-82、 CLc ——玻璃窗瞬变传热引起的冷负荷(W ;3、 K ——玻璃窗的传热系数 [W/(m2.K],由附录9-11和附录9-12查得;4、 F ——窗口面积(m25、 t cl ——玻璃窗冷负荷计算温度(℃,参见表9-9查取。

4、 t d ——地点修正值(℃,见附录9-13;附录9-11和附录9-12中的 K 值当窗框情况不同时,按表9-10进行修正;有内遮阳设施时,单层玻璃窗K值应减少25%,双层窗K值应减少15%。

因此式(9-7相应变为 CL c =C k KF(t cl +t d -t N5、 C k ——玻璃窗传热系数修正值,查表9-10可得。

6、 t N ——室内计算温度(℃北外窗瞬时传热冷负荷1、 CLc=KF(tcl -t N (9-7 或 C L c =C k KF (t cl +t d -t N (9-82、 CLc ——玻璃窗瞬变传热引起的冷负荷(W ;3、 K ——玻璃窗的传热系数 [W/(m2.K],由附录9-11和附录9-12查得;4、 F ——窗口面积(m25、 t cl ——玻璃窗冷负荷计算温度(℃,参见表9-9查取。

4、 t d ——地点修正值(℃,见附录9-13;附录9-11和附录9-12中的 K 值当窗框情况不同时,按表9-10进行修正;有内遮阳设施时,单层玻璃窗K值应减少25%,双层窗K值应减少15%。

因此式(9-7相应变为 CL c =C k KF(t cl +t d -t N5、 C k ——玻璃窗传热系数修正值,查表9-10可得。

6、 t N ——室内计算温度(℃说明:1、 CLc=KF(tcl -t N (9-7 或 C L c =C k KF (t cl +t d -t N (9-82、 CLc ——玻璃窗瞬变传热引起的冷负荷(W ;3、 K ——玻璃窗的传热系数 [W/(m2.K],由附录9-11和附录9-12查得;4、 F ——窗口面积(m25、 t cl ——玻璃窗冷负荷计算温度(℃,参见表9-9查取。

4、 t d ——地点修正值(℃,见附录9-13;附录9-11和附录9-12中的 K 值当窗框情况不同时,按表9-10进行修正;有内遮阳设施时,单层玻璃窗K值应减少25%,双层窗K值应减少15%。

因此式(9-7相应变为 CL c =C k KF(t cl +t d -t N5、 C k ——玻璃窗传热系数修正值,查表9-10可得。

6、 t N ——室内计算温度(℃说明:1、 CLc=KF(tcl -t N (9-7 或 C L c =C k KF (t cl +t d -t N (9-82、 CLc ——玻璃窗瞬变传热引起的冷负荷(W ;3、 K ——玻璃窗的传热系数 [W/(m2.K],由附录9-11和附录9-12查得;4、 F ——窗口面积(m25、 t cl ——玻璃窗冷负荷计算温度(℃,参见表9-9查取。

4、 t d ——地点修正值(℃,见附录9-13;附录9-11和附录9-12中的 K 值当窗框情况不同时,按表9-10进行修正;有内遮阳设施时,单层玻璃窗K值应减少25%,双层窗K值应减少15%。

因此式(9-7相应变为 CL c =C k KF(t cl +t d -t N5、 C k ——玻璃窗传热系数修正值,查表9-10可得。

6、 t N ——室内计算温度(℃说明:1、 CL=F*Cz D j,max *C cl (9-9 即:CL =C αF w *C s C n *D j,max *C cl2、 CL——透过玻璃窗日射得热形成的冷负荷(W ;3、 F ——窗玻璃的净面积(m2,为窗口面积 F w 乘以有效面积系数C α, 即:F =C αF w , 见表9-11;4、 C z ——窗玻璃的综合遮挡系数,为窗玻璃的遮阳系数 C s (见表9-12与窗内遮阳设施的遮阳系数 C n (见表9-13的乘积 (C z =C s C n ;5、 D j,max ——不同纬度带日射得热因数最大值(W/m2,见表9-14。

6、 C cl ——窗玻璃冷负荷系数,以北纬27030'为界,划为南北两区,其冷负荷系数见附录9-14。

注意:公式(9-9适用于无外遮阳的情况。

有外遮阳时,阴影部分的日射冷负荷 CL s 与照光部分的日射冷负荷 CL r 之和为总的日射冷负荷,即: CL=CL s +CL r =F s C s C n (D j,max N (C cl N +F r C s C n D j,max C cl式中 F s ——窗户的阴影面积(m2F r ——窗户的照光面积(m2(D j,max N ——北向的日射得热因数最大值(W/m2;(C cl N ——北向玻璃窗冷负荷系数。

1、 CL=F*Cz D j,max *C cl (9-9 即:CL =F *C s C n *D j,max *C cl2、 CL——透过玻璃窗日射得热形成的冷负荷(W ;3、 F ——窗玻璃的净面积(m2,为窗口面积 F w 乘以有效面积系数C α, 即:F =C αF w , 见表9-11;4、 C z ——窗玻璃的综合遮挡系数,为窗玻璃的遮阳系数 C s (见表9-12与窗内遮阳设施的遮阳系数 C n (见表9-13的乘积 (C z =C s C n ;5、 D j,max ——不同纬度带日射得热因数最大值(W/m2,见表9-14。

相关文档
最新文档