单纯形法matlab求解有约束优化问题实验报告
单纯形法、线性规划实践报告

一、线性规划——单纯形法程序设计1.实验目的:(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C或VB)语言进行程序设计中一些常用方法。
(2)使学生对线性规划的单纯形法有更深的理解.2.问题述本实验主要编写一般线性规划问题的计算程序:Mins.t.x引入松弛变量将其化为一般标准型线性规划问题:Mins.t. Ax=b;xA为m*n的矩阵,有m个约束,n个变量。
求解上述线性规划采用单纯形算法,初始可行基由引入的m个人工变量对应的单位阵组成,并采用大M算法3.算法描述(1)将引入的人工变量对应的单位阵作为初始可行基,则原线性规划问题构造出下面的新线性规划问题:(2)通过判别数计算公式可求出n+m个变量的判别数,若全部判别数,则得到一个最优基本可行解,运算结束;否则,转到下一步(3)找出判别数为负的最小判别数,其对应的变量为入基变量,记下标为k,然后看其对应的列向量,若中的所有元,则原线性规划无最优解,否则,转下一步 (4)计算,则为离基变量,然后对A 进行初等变换,计算 ,();,();lj lj lj ij ij ik lk lk l l l i i ik lk lkljj j klk a a a a a a i l a a b b b b b a i l a a a a σσσ==-≠==-≠=- (5)用入基变量与出基变量对应的列向量、判别、对应的系数均对换,则可用计算机编程循环以上步骤直至得出结果4.计算程序(matlab )程序保存为linpro.m文件5.算例验证⎪⎪⎩⎪⎪⎨⎧=≥=+++≤+--≤-------=4,...,2,1,010012.008.01.015.0min 432143243214321j x x x x x x x x x x x x x x x x z j在窗口输入:Aeq=[1 -1 -1 -1 1 0;0 -1 -1 1 0 1;1 1 1 1 0 0];b=[0;0;1];c0=[-0.15 -0.1 -0.08 -0.12 0 0];linpro(Aeq,b,c0)1000010000-0.1300说明通过三次迭代找到最优解为-0.13.用Matlab 求解线性规划的命令linprog 的计算结果:f = [-0.15;-0.1;-0.08;-0.12];A = [1 -1 -1 -10 -1 -1 1];b = [0; 0];Aeq=[1 1 1 1];beq=[1];lb = zeros(4,1);然后调用linprog 函数:[x,fval] = linprog(f,A,b,Aeq,beq,lb);x =0.50000.25000.00000.2500fval =-0.1300最优值为-0.13,与上面的结果一致,说明程序正确。
实验二:MATLAB编程单纯形法求解

北京联合大学实验报告项目名称:运筹学专题实验报告学院:自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验二:MATLAB 编程单纯形法求解一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进行程序设计中一些常用方法。
(2)使学生对线性规划的单纯形法有更深的理解. 二、实验用仪器设备、器材或软件环境 计算机, Matlab R2006三、算法步骤、计算框图、计算程序等本实验主要编写如下线性规划问题的计算程序:⎩⎨⎧≥≥≤0,0..min b x b Ax t s cx 其中初始可行基为松弛变量对应的列组成. 对于一般标准线性规划问题:⎩⎨⎧≥≥=0,0..min b x b Ax t s cx1.求解上述一般标准线性规划的单纯形算法(修正)步骤如下:对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。
设初始基为B,然后执行如下步骤: (1).解B Bx b=,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量(2).计算单纯形乘子w,BwB C =,得到1B wC B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,可直接计算σ=1B A c c B --令max{}k i Rσσ∈=,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步 (3).解k kBy p =,得到1k k y B p -=;若0k y ≤,即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解,否则,进行步骤(4).确定下标r,使{}:0min ,0t rrktktk b b tk y y t y y >=>且rB x 为离基变量,,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1);2、计算框图为:图1 3.计算程序(Matlab):A=input('A=');b=input('b=');c=input('c=');format rat%可以让结果用分数输出[m,n]=size(A);E=1:m;E=E';F=n-m+1:n;F=F';D=[E,F]; %创建一个一一映射,为了结果能够标准输出X=zeros(1,n); %初始化Xif(n<m) %判断是否为标准型fprintf('不符合要求需引入松弛变量')flag=0;elseflag=1;B=A(:,n-m+1:n); %找基矩阵cB=c(n-m+1:n); %基矩阵对应目标值的cwhile flagw=cB/B; %计算单纯形乘子,cB/B=cB*inv(B),用cB/B的目的是,为了提高运行速度。
实验二MATLAB编程单纯形法求解

北京联合大学实验报告项目名称: 运筹学专题实验报告学院: 自动化专业: 物流工程班级: 1201B 学号:21姓名: 管水城成绩: 2015 年 5 月 6 日实验二:MATLAB 编程单纯形法求解一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进行程序设计中一些常用方法。
(2)使学生对线性规划的单纯形法有更深的理解、二、实验用仪器设备、器材或软件环境计算机, Matlab R2006三、算法步骤、计算框图、计算程序等本实验主要编写如下线性规划问题的计算程序:⎩⎨⎧≥≥≤0,0..min b x b Ax t s cx其中初始可行基为松弛变量对应的列组成、对于一般标准线性规划问题:⎩⎨⎧≥≥=0,0..min b x b Ax t s cx1.求解上述一般标准线性规划的单纯形算法(修正)步骤如下:对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。
设初始基为B,然后执行如下步骤:(1)、解B Bx b =,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量(2)、计算单纯形乘子w, BwB C =,得到1B w C B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,可直接计算σ=1B A c c B --令 max{}k i R σσ∈=,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步(3)、解k k By p =,得到1k k y B p -=;若0k y ≤,即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解,否则,进行步骤(4)、确定下标r,使 {}:0min ,0t rrk tk tk b b tk y y t y y >=>且r B x 为离基变量,,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1);2、计算框图为:图1 3.计算程序(Matlab):A=input('A=');b=input('b=');c=input('c=');format rat%可以让结果用分数输出[m,n]=size(A);E=1:m;E=E';F=n-m+1:n;F=F';D=[E,F]; %创建一个一一映射,为了结果能够标准输出X=zeros(1,n); %初始化Xif(n<m) %判断就是否为标准型fprintf('不符合要求需引入松弛变量')flag=0;elseflag=1;B=A(:,n-m+1:n); %找基矩阵cB=c(n-m+1:n); %基矩阵对应目标值的cwhile flagw=cB/B; %计算单纯形乘子,cB/B=cB*inv(B),用cB/B的目的就是,为了提高运行速度。
matlab做最优化实验

min f ( x )
x
s .t
Ax b , aeq * x beq
( 线性约束
) )
g ( x ) 0 , ceq ( x ) 0 (非线性约束 lb x ub
其中,f(x)为多元实值函数;g(x)为向量函数,并且f(x),g(x)中至 少有一个函数是非线性函数的(否则成为线性规划问题)。
1、了解约束非线性规划问题的求解原理与方法; 2、会用Matlab软件求解约束非线性规划问题。
二、实验原理和方法
对于约束非线性规划,随着目标函数和约束条件的不同, 解法也不同,一般来说,有两类方法: (1)、将约束问题化为无约束问题的求解方法;
(2)、用线性规划来逼近非线性规划;
三、实验内容与步骤
同时返回fval=-2
对应到原来的线性规划中即知目标函数的最大值为2,此时 x1=4,x2=1,x3=9。
第二节 无约束规划计算方法
一、实验目的
1、了解无约束规划问题的求解原理与方法 ;
2、会用Matlab软件求解无约束规划问题。
二、实验原理和方法
无约束规划问题的解法一般按目标函数的形式分为两大类: 一类是一元函数的一维搜索法,如黄金分割法、插值法等; 另一类是求解多元函数的下降迭代法。
在Matlab优化工具箱中,fmincon函数是用SQP算法(SQP就是
sequential quadratic programming,序列二次规划法,用来求解有约束的非线 性规划问题的。)来解决一般的约束非线性规划的函数,它的命令
格式为:
x=fmincon(‘fun’,x0,A,b) x=fmincon(‘fun’,x0,A,b,Aeq,beq) x=fmincon(‘fun’,x0,A,b,Aeq,beq,lb,ub) x=fmincon(‘fun’,x0,A,b,Aeq,beq,lb,ub,nonlco n)
在Matlab中使用优化算法解决约束问题

在Matlab中使用优化算法解决约束问题导言优化算法在工程和科学领域中扮演着重要的角色。
优化问题旨在找到给定约束条件下的最优解。
而在Matlab中,有许多强大而高效的工具和函数可以帮助我们解决这些问题。
本文将介绍如何在Matlab中使用优化算法来解决约束问题,以及一些常用的技巧和方法。
一、优化问题概述优化问题可以被定义为找到使得目标函数取得极值的一组变量的取值。
在很多实际问题中,我们需要在满足一定的约束条件下寻找最优解。
这些约束条件可以是等式约束或者不等式约束。
在Matlab中,我们可以使用优化工具箱来解决这些问题。
Optimization Toolbox 提供了大量的函数和算法,包括线性规划、非线性规划、整数规划等等。
其中,非线性规划问题是最常见和复杂的问题之一。
下面将介绍如何使用这些工具来解决不同类型的优化问题。
二、线性规划问题在线性规划问题中,目标函数和约束条件都是线性的。
通过使用Matlab的线性规划函数linprog,我们可以轻松地解决这类问题。
假设我们要最小化一个目标函数,如下:minimize f(x) = c'x约束条件为:Ax ≤ bAeqx = beqlb ≤ x ≤ ub其中,c是一个向量,A和Aeq是矩阵,b和beq是向量,lb和ub是向量或者标量。
下面是一个实例,我们希望在满足一定约束条件下最小化目标函数:目标函数:f(x) = -2x1 - 3x2约束条件:3x1 + 4x2 ≤ 14, 2x1 + x2 ≤ 8, x1 ≥ 0, x2 ≥ 0首先,我们需要创建目标函数和约束条件的矩阵和向量。
c = [-2; -3]; % 目标函数系数A = [3, 4; 2, 1]; % 不等式约束矩阵b = [14; 8]; % 不等式约束常数lb = [0; 0]; % 变量下界然后,使用linprog函数求解线性规划问题。
[x, fval] = linprog(c, A, b, [], [], lb);最后,输出最优解和目标函数值。
修正单纯形法求解约束优化问题

修正单纯形法求解约束优化问题姓名王铎学号2007021271班级机械078日期2010/6/23 一.问题分析求解约束优化问题中,假如目标函数和约束条件都是线性的,像这类约束函数和目标函数都是线性函数的优化问题称作线性规划问题。
从实际问题中建立数学模型一般有以下三个步骤:1. 根据影响所要达到目的的因素找到决策变量;2. 由决策变量和所在大道目的之间的函数关系确定目标函数;3. 有决策变量所受的限制条件确定决策变量所要满足的约束条件;求解线性规划问题的基本方法是单纯形法,而本文研究的是修正单纯形法。
1965 年由J.A.Nelder 等提出。
是在基本单纯形优化法的基础上,引入了反射、扩展与收缩等操作规则,变固定步长推移单纯形为可变步长推移单纯形,在保证优化精度的条件下,加快了优化速度。
是各种单纯形优化法在分析测试中应用最广的一种。
二.数学模型1、线性规划问题的formalization问题(1.1) 称为线性规划问题:x= arg min_x c A T xs.t. Ax=bx>=0 (1.1)其中x为n维列向量,A为m*n的矩阵,b和c分别为m,n维的常数向量。
任意一个线性不等式组约束下求解线性函数的最大最小值问题都可以归结到问题(1.1) 来。
比如A(i,:) x <= b(i)<=>A(i,:) x + y(i) = b(i)y(i)>=0 (1.2)A(i,:) x >= b(i)<=>A(i,:) x - y(i) = b(i)y(i)>=0 (1.3)x<=>x=x'-x"x'>=0x">=0 (1.4)2、单纯形法设m<n即变量个数大于约束的个数。
(否则若m=n则(1.1)的约束可能唯一确定X,最优问题就没有意义,若m>n则可能符合约束的x 不存在,最优问题同样没有意义。
实验报告(单纯形法的matlab程序)
实验报告(单纯形法的matlab程序)实验一:线性规划单纯形算法一、实验目的通过实验熟悉单纯形法的原理,掌握Matlab 循环语句的应用,提高编程的能力和技巧。
二、算法对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。
设初始基为B,然后执行如下步骤:(1).解B Bx b =,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i mB b i -=i 以b 记的第个分量(2).计算单纯形乘子w , B wB C =,得到1B w C B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,令 max{}k i i i Rz c σ∈=-,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步(3).解k k By p =,得到1kk y B p -=;若0k y ≤,即k y 的每个分量均非正数,则停止计算,问题不存在有限最优解,否则,进行步骤(4).(4).确定下标r,使{}:0min ,0t rrk tk tk b b tk y y t y y >=>且r B x 为离基变量。
k x 为进基变量,用k p 替换r B p ,得到新的基矩阵B ,返回步骤(1)。
对于极大化问题,可以给出完全类似的步骤,只是确定进基变量的准则不同。
对于极大化问题,应令min{}k k j j z c z c -=-四、计算框图是否是否五、计算程序function [x,f]=zuiyouhua(A,b,c)初始可行解B 令1,0,B N B B x B b b x f c x -==== 计算单纯形乘子1B w c B -=,计算判别数,i j j wp c j R σ=-∈(非基变量)令max{,}k j j R σσ=∈ 0?k σ≤ 得到最优解解方程k k By p =,得到1k k y B p -=。
单纯形算法实验报告
x disp('输出线性规划问题的最优值') minf case 0 %有可行解但没有最优值 disp('输出可行解对应的单纯形表') optmatrx disp('输出可行解') x disp('输出线性规划问题的最优值') minf case -1 %没有可行解 disp('没有可行解') disp('输出最优解对应的单纯形表') optmatrx=[] disp('输出最优解') x=[] disp('输出线性规划问题的最优值') minf=-inf end
1 0 0 s = 2 1 0 0 >> dcxsf() 请输入约束中的系数矩阵 A=[-1 0 1 0 0;0 1 0 1 0;-1 2 0 0 1] 请输入约束中的常数向量 b=[4 3 8] 请输入目标函数中的系数向量 c=[-2 -5 0 0 0] i= 1 j= 3 输入的约束中的常数向量b为单行矩阵,已将其转化为单列矩阵 有可行解但没有最优值 flag =
end end A1(x1,1)=i; %将列数既对应的非基变量转换为基变量 decide=find(g1(1,[1:m+n])>0); %再进行查找 end if g1(1,s1)>0 %无解情况 flag=-1; end if g1(1,s1)==0 g1(1,:)=[]; for i6=1:m A(:,n+1)=[]; end for i6=1:m c(n+1)=[]; end decide=find(A1(1:m,1)>n); %查找是否有人工变量 if ~isempty(decide) while ~isempty(decide) x1=decide(1); %存放的是人工变量的行数 text=find(A(x1,1:n)~=0); %该行的所有元素都不为零的列坐标 if isempty(text) decide(1)=[]; A1(x1,:)=[]; A(x1,:)=[]; m=m-1; else i=text(1); %i保存的是列数 A(x1,:)=A(x1,:)/A(x1,i); A1(x1,1)=i; c(1,:)=c(1,:)+(-1*c(1,i)*A(x1,:)); for i1=1:m if i1~=x1 A(i1,:)=A(i1,:)+(-1*A(i1,i)*A(x1,:));
运筹学实验报告(1)
运筹学实验报告一、实验目的:通过实验熟悉单纯形法的原理,掌握matlab循环语句的应用,提高编程的能力和技巧,体会matlab在进行数学求解方面的方便快捷。
二、实验环境:Matlab2012b,计算机三、实验内容(包含参数取值情况):构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,n函数功能如下:function[S,val]=danchun(A1,C,N)其中,S为最优值,Val为最优解,A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注:资源向量要大于零),A1=[A+b];C是目标函数的系数向量,C=c;N为初始基的下标(注:请按照顺序输入,若没有初始基则定义N=[])。
先输入A1,C,N三个必要参数,然后调用danchun(A1,C,N)进行求解。
在此函数中,首先判断N的长度是否为空,若为空,则flag=1,进入初始解问题的迭代求值,添加辅助问题,构建单纯形表,求g所对应的RHS值,若其>0,则返回该问题无解,若其=0,则返回A1,C,N三个参数,继续构造单纯形表求解。
A1为经过变换后的系数及资源向量,C为单纯形表的第一行,N为经过辅助问题求解之后的基的下标。
否则,直接构建单纯形表,对该问题进行求解,此时flag=2,多次迭代后找到解。
另外,若在大于零的检验数所对应的系数均小于零时,会显示“此问题无界”。
若找到最优解和最优值时,会输出“val”和“S=”以及具体数值。
四、源程序(在matlab中输入edit后回车,写在.M文件中,并保存为danchun.M)function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数,将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4在workspace中写入,形式如下:>> A=[-2 2 1 0 43 1 0 1 6]A =-2 2 1 0 43 1 0 1 6>> C=[3 1 1 1]C =3 1 1 1>> N=[3 4]N =3 4>> danchun(A,C,N)已找到最优解和最优值val0 2 0 4ans =6例2:初始解问题Min z=5x1+21x3s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1xj>=0,j=1,…,5在workspace中写入,形式如下:>> A=[1 -1 6 -1 0 21 12 0 -1 1]A =1 -1 6 -1 0 21 12 0 -1 1 >> C=[5 0 21 0 0]C =5 0 21 0 0>> N=[]N =[]>> danchun(A,C,N)已找到最优解和最优值val0.5000 0 0.2500 0 0ans =7.7500六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型,并用你自己的单纯形算法程序进行计算,最后给出计算结果。
单纯形方法(Simplex Method)Matlab 仿真详解
最近在上最优理论这门课,刚开始是线性规划部分,主要的方法就是单纯形方法,学完之后做了一下大M 算法和分段法的仿真,拿出来与大家分享一下。
单纯形方法是求解线性规划问题的一种基本方法。
单纯形方法基本步骤如下: 1) 将所给的线性规划问题化为标准形式:min ()..0Tf x c x s t Ax bx ==≥s.t.是英文subject to 的简写,意思是受约束,也就是说第一个方程(目标函数)受到后面两个方程的约束。
对于求最大值问题可以将目标函数加负号转换为最小值问题。
max ()min ()T T f x c x f x c x =⇒=-其他的问题就是将实际问题中的不等式约束改为等式约束,主要方法是引进松弛变量和剩余变量,以及将自有变量转换为非负变量。
①对于不等式1b ,1,2,nij ji j a xi m =≤=∑ ,引入松弛变量将其变为等式形式如下:1b ,1,2,0,1,2,nij jn i i j n i a xx i mx i m+=++==≥=∑②对于不等式1b ,1,2,nij ji j a xi m =≥=∑ ,引入剩余变量将其变为等式形式如下:1b ,1,2,0,1,2,nij jn i i j n i a xx i mx i m+=+-==≥=∑③若变量为自有变量(可取正、负或零,符号无限制),则引入两个非负变量将其表示如下:j j j j j x x x x x '''⎧=-⎪'≥⎨⎪''≥⎩ 2)找出一个初始可行基B ,作出单纯形表,这里假设输入的线性规划问题已经有初始可行基。
0T c S A b ⎡⎤=⎢⎥⎢⎦⎣3)测试所有的检验数(目标函数的系数C ),记录检验数中的正数,若全部小于等于0,则已经找到最优解,计算终止。
否则转至4)。
4)测试所有为正的检验数,若在单纯性表中,其所在的列中其他元素全部小于等于0,则此问题无最优解,计算终止,否则转至5)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单纯形法matlab求解有约束优化问题实验报告
一、实验目的
本次实验旨在通过使用MATLAB软件中的单纯形法,求解约束优化问题,熟悉单纯形法的基本原理和操作方法,并掌握MATLAB软件中单纯形法的使用。
二、实验原理
1.单纯形法基本原理
单纯形法是一种线性规划问题的求解方法,其基本思想是通过不断地
移动一个n维空间中的“单纯形”(即一个n+1个顶点组成的凸多面体),寻找到目标函数最小值或最大值所对应的顶点。
在每次移动时,都会将当前顶点与其它顶点进行比较,选择一个更优秀的顶点来替换
当前顶点,并不断重复这个过程直到找到最优解为止。
2.单纯形法步骤
(1)确定初始可行解;
(2)检查当前可行解是否为最优解;
(3)如果当前可行解不是最优解,则选择一个非基变量进入基变量集合,并确定该变量使目标函数值下降最多;
(4)计算新可行解;
(5)判断新可行解是否存在并继续执行步骤2-4直到找到最优解。
三、实验步骤
1.建立约束优化问题模型
本次实验采用如下线性规划问题模型:
$max\quad z=2x_1+3x_2$
$s.t.\quad x_1+x_2\leq 4$
$x_1\geq 0,x_2\geq 0$
2.使用MATLAB软件求解
(1)打开MATLAB软件,新建一个m文件;
(2)输入以下代码:
%建立约束优化问题模型
f=[-2,-3];
A=[1,1];
b=[4];
lb=zeros(2,1);
[x,fval]=linprog(f,A,b,[],[],lb);
(3)保存并运行该m文件,即可得到最优解。
四、实验结果与分析
根据上述步骤,我们可以得到该线性规划问题的最优解为:
$x_1=3,x_2=1,z=9$。
五、实验总结
本次实验通过使用MATLAB软件中的单纯形法,成功求解了一个约束优化问题,并深入了解了单纯形法的基本原理和操作方法。
通过实践操作,加深了对MATLAB软件中单纯形法的使用和应用。