第二章 单纯形法1基本思路和原理

合集下载

单纯形法的基本原理

单纯形法的基本原理

单纯形法的基本原理单纯形法是一种用于线性规划问题求解的数学方法,它的基本原理是通过不断地在可行解空间中移动,寻找到最优解的过程。

在实际应用中,单纯形法被广泛地应用于生产调度、资源分配、运输优化等领域,它的高效性和可靠性使得它成为了解决复杂实际问题的重要工具。

单纯形法的基本原理可以简单地概括为以下几个步骤:1. 初始可行解的构造。

在单纯形法中,首先需要构造一个初始的可行解。

这个可行解需要满足线性规划问题的约束条件,并且需要在可行解空间内。

构造初始可行解的方法有多种,常见的方法包括人工构造、单纯形表法等。

2. 迭代移动。

一旦得到了初始可行解,单纯形法就开始了迭代移动的过程。

在每一步迭代中,单纯形法会根据当前的可行解,寻找一个移动方向,并且沿着这个方向进行移动。

移动的目的是寻找到更优的解,直到找到最优解为止。

3. 优化目标的改善。

在每一步迭代中,单纯形法都会尝试改善优化目标的值。

优化目标通常是线性规划问题的目标函数值,单纯形法的目标是找到一个可行解,使得优化目标的值最小或最大。

4. 终止条件的判断。

单纯形法在迭代移动的过程中,需要不断地判断是否满足终止条件。

终止条件通常包括目标函数值不再改善、可行解空间已经被完全搜索等情况。

通过以上几个基本步骤,单纯形法可以在有限的迭代次数内找到线性规划问题的最优解。

它的高效性和可靠性使得它成为了解决实际问题的重要工具。

在实际应用中,单纯形法还可以通过一些改进的方法来提高求解效率,例如对初始可行解的选择、对移动方向的选择、对终止条件的判断等方面进行优化。

这些改进方法可以使得单纯形法更加适用于复杂的实际问题。

总的来说,单纯形法是一种强大的数学方法,它具有较高的求解效率和可靠性,可以被广泛地应用于各种领域的实际问题求解中。

通过深入理解单纯形法的基本原理,我们可以更好地应用它来解决复杂的实际问题,为各种决策问题提供科学的决策支持。

3.12 4单纯形法(人工变量法)3.12

3.12 4单纯形法(人工变量法)3.12

一个x12方x程12把中x第去2x二2个x方5x程3直接x加4

4 6
x1 , x一2个, 变x3量,(人x4工, 变x量5 ) 0
规范化
考虑一般问题:
bi > 0 , i = 1 , … , m
Max Z = c1 x1 + c2 x2 + … + cn xn a11 x1 + a12 x2 + …+ a1n xn = b1 a21 x1 + a22 x2 + …+ a2n xn = b2 … am1 x1+ am2 x2+…+ amn xn = bm
jm 1 j j
i1 i
i
j m 1 ij j
m
n
m
c b (c c a )x
i1 n i i
jm 1
j
i 1 i ij
j
n
Z (c z )x
0
j 1
j
j
j
n
Z C jx
0
j 1
j
其 Z m c 中 b ,C j c z ,z m c a
一、单纯形法的基本原理
(一)基本变量: 如果变量xj在某一方程中系数为1,而在其它一切方
程中的系数为零,则称xj为该方程中的基本变量。否则 为非基本变量。 (二)基本解:
在典型方程中,设非基本变量为零,求解基本变量 得到的解,称为基本解 。 (三)基本可行解:
基本变量为非负的一组基本解称为基本可行解 。
(2)最优解判别 如果任何一个非基变量的值增加都不能
使目标函数值增加,即所有检验数非正,则 当前的基本可行解就是最优解,计算结束。

第二章 单纯形法

第二章 单纯形法

最小比值规则
当确定进基变量后, 当确定进基变量后,以进基变量的系数列向量 中的正数为分母, 中的正数为分母,以相应的方程右端常数为分子求 最小比值,所得到的最小比值的分母就是主元 主元. 最小比值,所得到的最小比值的分母就是主元.主 元所在的方程中的基变量就是离基变量 离基变量. 元所在的方程中的基变量就是离基变量.即:
bi bl min α ik > 0 = a ik a lk
令新的非基变量 x3 = x 4 = 0 ,得到新的 基本可行解: 基本可行解: T 经济含义—— 经济含义—— 分别生产甲,乙产品20 20个 分别生产甲,乙产品20个,此时可获得 利润200百元. 200百元 利润200百元.
几个名词
进基, 进基,进基变量 离基, 离基,离基变量 最大检验数规则 最小比值规则 主元/ 主元/主方程 迭代(旋转运算) 迭代(旋转运算)
增加单位产品甲比乙对目标函数 的贡献值大(600>400),故先把非 的贡献值大(600>400),故先把非 ), 变成基变量, 基变量 x1 变成基变量,称为让 x1 进基, 进基变量. 进基,同时称 x1 为进基变量.
R( A) = R( A, b ) = 3 < 5
则该函数约束等式方程组有无穷多组解. 则该函数约束等式方程组有无穷多组解.
分析目标函数表达式
max z = 6 x1 + 4 x 2 + 0 x3 + 0 x 4
非基变量的系数都是正数,若将它们转换 非基变量的系数都是正数, 为基变量,目标函数值则就会可能增加. 为基变量,目标函数值则就会可能增加. 经济含义:每分别多生产一个单位产品甲, 经济含义:每分别多生产一个单位产品甲, 目标函数值分别增加6 乙,目标函数值分别增加6,4,即利润分 别增加600 600元 400元 别增加600元, 400元.

第二章 单纯形法(1基本思路和原理)

第二章 单纯形法(1基本思路和原理)

§5.1 单纯形法的基本思路和原理
线性规划问题
max z = n ∑ a ij x j=1 x ≥ 0 j
最优解: 最优解: 使目标函数(E)达到最大值的可行解称为最优解. 使目标函数(E)达到最大值的可行解称为最优解. (E)达到最大值的可行解称为最优解

j
n
c
j=1
j
x
j
(i=1,…,m) (j=1,…,n)
1 1 0 B3 = 1 0 0 1 0 1
为零, 令这个基的非基变量 x1, x2 为零, 这时约束方程就变为基变量 即: 0 x2 + s1 = 300 1 1 1 0 0 x2 300 s1 = 400 2 1 0 1 0 ⋅ x2 = 400 0 1 0 0 1 0 x + s = 250 250 s 2 3 3 求解,即可得到基变量的唯一一组解: 求解,即可得到基变量的唯一一组解: x2= 400 , s1= -100 , s3= -150 加上非基变量: 得到此线性规划的一个基解. 加上非基变量: x1= 0, s2 = 0, 得到此线性规划的一个基解. 的约束方程: 的约束方程:
可行解: 可行解: 满足上述约束条件(F),(G)的解 满足上述约束条件(F),(G)的解 (F),(G)

j
n
c
j=1
j
x
j
(i=1,…,m) (j=1,…,n)
(E) (F) (G)
= b
i
X = ( x1 ,L, xn )
T,Leabharlann 称为线性规划问题的可行解.全部可行解的集合称为可行域. 称为线性规划问题的可行解.全部可行解的集合称为可行域.

运筹学单纯形法

运筹学单纯形法

单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4

3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1

单纯形法原理 单纯形表

 单纯形法原理 单纯形表

单纯形法原理单纯形表单纯形法原理与单纯形表的详实解析在数学领域中,特别是在线性规划问题的研究中,单纯形法是一种十分重要的求解方法。

它是由美国数学家乔治·丹齐格在1947年提出的一种迭代算法,用于解决具有多个变量和约束条件的优化问题。

本文将围绕单纯形法的原理和单纯形表这两个核心概念进行详细的解析。

一、单纯形法原理单纯形法的基本思想是通过一系列可行解逐步逼近目标函数的最大值或最小值。

这些可行解形成一个点集,称为单纯形。

每次迭代过程中,算法都会选择一个新的顶点作为下一个单纯形的顶点,这个新的顶点应该使目标函数有所改进。

重复这一过程,直到达到最优解或者满足停止准则为止。

单纯形法的步骤如下:1. 构造初始单纯形:首先,需要找到一个包含至少两个可行解的多边形,这就是初始单纯形。

2. 判断是否达到最优解:如果当前顶点的目标函数值已经是全局最优解,那么算法结束。

3. 选择换入变量:如果当前顶点不是最优解,那么需要选择一个非基变量来替换基变量。

这个被选中的非基变量应该是能够使目标函数最大化的变量。

4. 计算换出变量:确定了换入变量后,需要计算相应的换出变量。

这可以通过解一个线性方程组来实现。

5. 更新单纯形:用新选出的变量替换旧的变量,得到新的单纯形。

6. 回到第二步,继续判断是否达到最优解。

二、单纯形表单纯形表是单纯形法的重要工具,它记录了单纯形法每一步的详细信息。

每个列代表一个基变量,而每个行则代表一个约束条件。

表中还包括目标函数的系数、常数项以及松弛变量和剩余变量的系数。

在单纯形表中,每一行代表一个约束条件,包括它的系数、常数项以及松弛变量和剩余变量的系数。

每一列则代表一个基变量,包括它的系数和该变量对应的值。

在每一步迭代过程中,单纯形表都会被更新以反映当前的解状态。

通过观察单纯形表的变化,我们可以清楚地看到迭代过程是如何进行的,以及如何通过调整基变量来改进目标函数的值。

总结来说,单纯形法是一种有效的解决线性规划问题的方法,其核心在于构造并不断更新单纯形表,通过迭代寻找最优解。

运筹学-单纯形法证明

运筹学-单纯形法证明
的方案,然后不断去尝试其他的定点,判断其是
否最优,直到找到最优的方案。
School of Information Management ,CCNU
2
《运筹学》
2.1 单纯形法的基本思路:
从可行域中某一个顶点开始,判断此顶点是否是 最优解,如不是,则再找另一个使得其目标函数值更 优的顶点,称之为迭代,再判断此点是否是最优解。
Nx N
11
《运筹学》
B -1 Bx B + B -1 Nx N = B -1b Þ x B + B -1 Nx N = B -1b
Þ x B = B -1b - B -1 Nx N
令xN = 0
x B1 x B2
Bb-11 b1 = Bb-21b2
x Bm
Bb-m1 b m
B -1 Bx B = Ex B = x B
定理1
D = { x Î R n | Ax = b , x ³ 0 } 是 凸 集 .
证 任 取 x , y Î D , w = l x + (1 - l ) y , 其 中
l Î [0 ,1]. 由于 x ³ 0, y ³ 0,故w ³ 0. 又 Ax = b , Ay = b , 故
Aw = l Ax + (1 - l ) Ay = b
顶 点
School of Information Management ,CCNU
8
《运筹学》
从图解法的几何直观容易得到下面两个重要结论:
⑴.线性规划的可行区域D是若干个半平面的 交集, 它形成了一个有界的或无界的凸 多边形.
⑵.对于给定的线性规划问题,如果它有最优 解,最优解总可以在D的某个顶点上达到.
B -1 Nx N

运筹学单纯形法

运筹学单纯形法
总结:①在迭代过程中要保持常数列向量非负,这能确保基 可行解旳非负性。最小比值能做到这一点。 ②主元素不能为0。因为行旳初等变换不能把0变成1。 ③主元素不能为负数。因为用行旳初等变换把负数变成1会 把常数列中相应旳常数变成负数。
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 单纯形法
对于只有两个决策变量的线性规划问 题,可以在平面直角坐标系上作图表 我们在第三章所介绍的线性规划问题的计 示线性规划问题的有关概念,并求解 .
算机解法就是基于单纯形法编程来解决可 以含有上千个决策变量的及上千个约束条 由美国数学家丹捷格 件的复杂的线性规划问题。 (G.B.Dantzig)提出的,得到最
们之间的主要区别在于其所有变量的解是否满足非负的条件。
§5.1 单纯形法的基本思路和原理
定理:
线性规划问题的基可行解 X 对应线性规划问题可行域
的顶点.
在这里,可行域的顶点已不再像图解法中那样直接可见
了。在单纯形法中的可行域的顶点叫做基可行解,第一 个找到的可行域的顶点叫做初始基可行解。
§5.1 单纯形法的基本思路和原理
令这个基的非基变量 x1, s2 为零, 这时约束方程就变为基变量 即: 0 s1 300 1 1 1 0 0 0 300 s 2 1 0 1 0 400 1 s2 400 0 1 0 0 1 s2 s 250 250 s 3 3 求解,即可得到基变量的唯一一组解: s1=300 , s2=-400 , s3=250 加上非基变量: x1= 0, x2 = 0, 得到此线性规划的一个基解.
令这个基的非基变量 x1, s2 为零, 这时约束方程就变为基变量 即: 0 x2 s1 300 1 1 1 0 0 x2 300 s 2 1 0 1 0 400 x1=0, 1 x2 400 0 1 0 0 1 0 x s 250 250 x2=400 s 2 3 3 求解,即可得到基变量的唯一一组解: x2= 400 , s1= -100 , s3= -150 s1=-100 加上非基变量: x1= 0, s2 = 0, 得到此线性规划的一个基解.
的约束方程:
x1=0, x2=0, s1=300
s2=400
s3=250
x1=0, x2=0, s1=300 s2=400 s3=250
x1= 0, x2= 400, s1= -100, s2= 0, s3= -150, 均为基解
基可行解
不是基可行解
1 0 0 B2 0 1 0 0 0 1
基变量取0的值有 X x ,, x ,0,,0T ,称X为线性规划问 b 1 m 题的基解。
§5.1 单纯形法的基本思路和原理
线性规划问题
m ax z
c
j 1
n
j
x j (i=1,…,m)
(E) (F) (G)
n a ij x j bi j 1 x 0 j
(j=1,…,n)
基可行解:
满足变量非负约束条件 ( G ) 的基解称为基可行解。
可行基: 对应于基可行解的基称为可行基。
矩阵方程 AX = b 1 1 1 0
2 1 0 1 0 1 0 0
1 B3 1 1
我们找到A 的一个基:
x1 0 x2 300 0 s1 400 1 s2 250 s 3 1 0 0 0 0 1
§5.1 单纯形法的基本思路和原理
基解: 在约束方程组(E)中,令所有的非基变量:
xm1 xm2 xn 0
又因为有
B 0 ,根据克莱姆法则,由m个约束方程可以解
出m个基变量的唯一解 X b x1 ,, xm T 。将这个解加上非
基变量取0的值有 X x ,, x ,0,,0T ,称X为线性规划问 b 1 m 题的基解。
a11 a1m B P , , P 1 m am1 amm
B中的每一个列向量Pj(j=1,…,m)称为基向量,与基向 量Pj对应的变量xj称为基变量。线性规划中除了基变量以外的变 量称为非基变量。
1 1 1 0 0 A ( p1 , p2 , p3 , p4 , p5 ) 2 1 0 1 0 . 0 1 0 0 1
最优解:
(j=1,…,n)
使目标函数(E)达到最大值的可行解称为最优解.
§5.1 单纯形法的基本思路和原理
基: 设A为约束方程组(F)的m×n阶系数矩阵,(设n>m), 其秩为m,B是矩阵A中的一个m×m的满秩子矩阵,称B 是线性规划问题的一个基.不失一般性,设
a11 a1m B P , , P 1 m am1 amm
矩阵方程 AX = b
1 1 1 0 2 1 0 1 0 1 0 0
1 B3 1 1
我们找到A 的一个基:
x1 0 x2 300 0 s1 400 1 s2 250 s 3 1 0 0 0 0 1
的约束方程:
s2=0
s3=-150
矩阵方程 AX = b
1 1 1 0 2 1 0 1 0 1 0 0
1 B2 0 0
我们找到A 的一个基:
x1 0 x2 300 0 s1 400 1 s2 250 s 3 0 0 1 0 0 1=1,…,n)
X x1 ,, xn
T

称为线性规划问题的可行解.全部可行解的集合称为可行域.
§5.1 单纯形法的基本思路和原理
线性规划问题
m ax z
c
j 1
n
j
x j (i=1,…,m)
(E) (F) (G)
n a ij x j bi j 1 x 0 j
B中的每一个列向量Pj(j=1,…,m)称为基向量,与基向 量Pj对应的变量xj称为基变量。线性规划中除了基变量以外的变 量称为非基变量。
§5.1 单纯形法的基本思路和原理
标准形式为: 目标函数:max z = 50x1+100x2+0s1+0s2+0s3 约束条件: x1 + x2 +s1 = 300 2x1 + x2 +s 2 = 400 x2 +s3 = 250 x1, x2, s1, s2, s3≥0。 这是由三个五元线性方程组成的方程组,它的系数矩阵为:
0 p5 0 . 1
是线性独立的,这些向量构成一个基
1 0 0 这是由三个五元线性方程组成的方程组,它的系数矩阵为 : B p3 , p4 , p5 0 1 0 1 1 1 0 0 0 0 1
应的变量s1, s2, s3是基变量。除了基变量以外的变量 x1, x2是非基变量。
可行基
1 1 0 B3 1 0 0 1 0 1
不是可行基
均为基
§5.1 单纯形法的基本思路和原理
由于在这个基解中s1=-100,s3=-150,不满足该线 性规划最后一个变量非负的约束条件,显然不是此线性规划
的可行解,一个基解可以是可行解,也可以是非可行解,它
广泛应用的线性规划的代数算法
--单纯形法,这恐怕是在运筹
学发展史上最辉煌的一笔。
第五章 单纯形法
5.1 单纯形法的基本思路和原理
§5.1 单纯形法的基本思路和原理
线性规划问题
m ax z
c
j 1
n
j
x j (i=1,…,m)
(E) (F) (G)
n a ij x j bi j 1 x 0 j
A ( p1 , p2 , p3 , p4 , p5 ) 2 1 0 1 0 . B中的每一个列向量p3, p4, p5 是基向量,与其对 0 1 0 0 1
§5.1 单纯形法的基本思路和原理
基: 设A为约束方程组(F)的m×n阶系数矩阵,(设n>m), 其秩为m,B是矩阵A中的一个m×m的满秩子矩阵,称B 是线性规划问题的一个基.不失一般性,设
令这个基的非基变量 x1, x2 为零, 这时约束方程就变为基变量 即: 0 x2 s1 300 1 1 1 0 0 x2 300 s 2 1 0 1 0 400 1 x2 400 0 1 0 0 1 0 x s 250 250 s 2 3 3 求解,即可得到基变量的唯一一组解: x2= 400 , s1= -100 , s3= -150 加上非基变量: x1= 0, s2 = 0, 得到此线性规划的一个基解.
的约束方程:
x1= 0, x2= 400, s1= -100, s2= 0, s3= -150,
矩阵方程 AX = b
1 1 1 0 2 1 0 1 0 1 0 0
1 B2 0 0
我们找到A 的一个基:
x1 0 x2 300 0 s1 400 1 s2 250 s 3 0 0 1 0 0 1
例:找出下述线性规划问题的全部基解,指出其中 的基可行解,并确定最优解:
max
z = 2 x1 + 3 x2 + x3 x1 + x3 = 5 x1 +2x2 +x4 =10 x2 +x5=4 x1-5 ≥ 0
1 1 1 0 0 A ( p1 , p2 , p3 , p4 , p5 ) 2 1 0 1 0 . 0 1 0 0 1
§5.1 单纯形法的基本思路和原理
可以看到 s1, s2, s3的系数列向量
1 p3 0 . 0
0 p4 1 . 0
相关文档
最新文档