简述专家系统的开发过程
农业专家系统—农业专家系统的功能开发

(Advanced Sever)/ Windows 2003 Sever、SQL Server 2000、IIS 5.0信息服务器/安 装.NET框架/中文浏览器IE5.5以上版本。 • 平台应用于农业科研教学单位、政府农业管理、技术推广、服务部门或者大型农业企业。
农业专家系统的功能开发
三、农业专家系统开发工具
• 平台有高度可扩展性、可靠性、可互操作性、可重用性,便于不同客户端使用。 • 用户可方便定制开发环境,快速开发出适合本地区的农业专家系统,从容实现专家知识更新和系统
升级。 • 开发的网络版农业专家系统,能在Internet/Intranet网络环境下运行,支持分布式计算和远程多
近年来,利用“雄风”和“PAID”开发平 台开发的专家系统已形成系列。譬如, 利用中科院合肥智能研究所研制的“雄 风”系列平台,已开发出了施肥、栽培 管理、园艺生产管理、畜禽水产管理饲 养、水利灌溉的等专家系统,在全国20 个省200多个县推广应用。
我国20个智能农业示范区利用国家农业 信息化工程技术研究中心的开发平台PAID 开发出了一系列农业专家系统。
我国20个智能农业示范区利用国家农业信息化工程技术研究中心的开发平台PAID开发出了一系列农业专家系统。
4. 推理机功能和解释机功能,根据知识规则对事实数据进行正向推理,并对每一步推理过程通过解释机解 释,推理结果表现形式为文字、图片、音像文件,并提供推理过程。
5. 事实录入功能,用户通过输入界面进行原始数据编辑,所有数据项的属性均由系统管理员或知识工程师 定义,在录入过程中系统为用户提供动态提示、上下限限制,缺省值等功能。用户可以对事实数据进行 添加、修改、删除。
简述专家系统的开发过程

简述专家系统的开发过程
专家系统是一种基于人工智能、知识表示和推理等技术的计算机
程序,可以模拟人类专家分析和解决实际问题。
专家系统的开发过程
一般包括以下几个阶段:
一、需求分析和知识获取阶段:确定问题领域和专家系统的功能
需求,采集领域知识并将其转化为计算机能够理解和处理的形式。
主
要的方法包括面谈、问卷、实地观察、文献研究等。
二、知识表示和建模阶段:将获取到的领域知识进行逻辑分类和
表达,并转化为适合计算机处理的形式,使用知识表示语言和工具进
行表达和管理。
主要的知识表示方法包括规则表示法、框架表示法、
本体论等。
三、推理机设计和实现阶段:基于知识表示和推理算法,设计和
实现专家系统的推理机。
主要的推理算法包括前向推理、后向推理、
混合推理等。
推理机的实现可以使用专门的工具,如CLIPS、PROLOG、JESS等。
四、用户接口设计和实现阶段:专家系统的用户接口应该清晰友好,方便用户操作和查询,包括命令行界面、图形界面、语音界面等。
这个过程也会根据需求来设计相应的接口。
五、测试、优化和维护阶段:对专家系统进行功能测试和性能优化,发现并修复问题,确定是否可以投入使用。
同时,也需要模糊测试进行。
以上是专家系统开发的主要过程,建议在开发过程中,注重知识的获取和表示,遵循面向对象的设计原则,采用现代软件工程方法和工具,同时充分考虑专家系统的实用性、可靠性和可维护性等方面,以便为企业和个人提供高效的知识服务。
专家系统建立过程

▪ (1)系统设计的正确性: 系统设计思想的正确性。 系统设计方法的正确性。 设计开发工具的正确性。
▪ (2)系统测试的正确性: 测试目的、方法、条件的正确性。 测试结果、数据、记录的正确性。
2021/2/4
3939
10.5.3 专家系统的评价
1. 正确性
▪ (3)系统运行的正确性: 推理结论、求解结果、咨询建议的正确性。 推理解释及可信度估算的正确性。 知识库知识的正确性。
2021/2/4
55
10.1 专家系统的产生和发展
第二阶段: 成熟期(20世纪70年代中期- 20世纪80年代初)
▪ 特点: (1)单学科专业型专家系统。 (2)系统结构完整,功能较全面,移植性好。 (3)具有推理解释功能,透明性好。 (4)采用启发式推理、不精确推理。 (5)用产生式规则、框架、语义网络表达知识。 (6)用限定性英语进行人-机交互。
专家系统建立过程
第10章 专家系统
10.1 专家系统的产生和发展 10.2 专家系统的概念 10.3 专家系统的工作原理 10.4 知识获取的主要过程与模式 10.5 专家系统的建立 10.6 专家系统实例 10.7 专家系统的开发工具
2021/2/4
22
第10章 专家系统
✓ 10.1 专家系统的产生和发展
归纳 理解 翻译
知识库
自动知识获取
2021/2/4
2727
第10章 专家系统
10.1 专家系统的产生和发展 10.2 专家系统的概念 10.3 专家系统的工作原理 10.4 知识获取的主要过程与模式
10.5 专家系统的建立
10.6 专家系统实例 10.7 专家系统的开发工具
2021/2/4
专家系统开发技术手册

专家系统开发技术手册1. 简介专家系统是一种使用人工智能技术来模拟人类专家决策过程的计算机程序。
它能够根据特定领域的知识和规则,模拟出专家在该领域中做出决策的过程,并通过推理和逻辑推断来解决复杂的问题。
本技术手册将介绍专家系统的开发过程和相关技术。
2. 专家系统的开发流程2.1 知识获取在开发专家系统之前,首先需要获取特定领域的专家知识。
这可以通过面对面的专家访谈、文档资料的收集、领域中已有的知识库等方式进行。
知识获取的关键是准确、全面地收集到领域专家的知识和规则。
2.2 知识建模知识建模是将领域专家所提供的知识和规则表示为计算机可以理解和推理的形式。
常用的知识建模方法包括产生式规则、框架结构、语义网络和决策树等。
根据实际情况选择适合的知识建模方法,并将专家知识转化为相应的数据结构和规则。
2.3 知识表达知识表达是将知识和规则以计算机可识别的形式进行表示和存储。
在专家系统中,常用的知识表达方法包括规则库、知识库和本体库等。
通过采用合适的知识表达方法,可以方便地进行知识的检索和推理。
2.4 推理机制推理机制是专家系统的核心部分,它能够基于已有的知识和规则,通过逻辑推断和推理,解决实际问题。
常用的推理机制包括前向推理、后向推理、混合推理和基于案例推理等。
在开发专家系统时,应根据具体需求选择适合的推理机制。
2.5 用户界面设计用户界面设计是专家系统开发中不可忽视的一环。
合理的用户界面设计能够提高用户的使用体验和工作效率。
在设计用户界面时,应考虑用户的背景和技术水平,简化操作过程,提供清晰的提示和反馈。
3. 专家系统开发技术3.1 编程语言专家系统的开发可以使用多种编程语言,如Java、Python、Prolog 等。
选择合适的编程语言可以更好地满足开发需求,并提高系统的性能和可维护性。
3.2 开发工具为了提高开发效率,可以使用一些专门的开发工具来辅助专家系统的开发。
例如,利用Protege可以方便地创建本体库,使用Clips可以快速构建专家系统的推理引擎。
人工智能的专家系统技术

人工智能的专家系统技术导言:人工智能(Artificial Intelligence,AI)是一门研究如何使计算机可以像人一样智能地执行任务的学科。
专家系统是其中一种应用广泛的人工智能技术,它模仿人类专家的知识和推理能力,通过计算机实现对复杂问题的解决和决策。
一、专家系统的概述专家系统是一种基于知识的计算机系统,能够模拟人类专家的决策过程,对特定领域的问题进行分析和解决。
它主要由知识库、推理机和用户界面组成。
专家系统的知识库是存储各种领域专家知识的地方,包括事实、规则、经验、案例等。
知识库使用特定的语言表示和存储知识,使得专家系统能够在特定领域中模拟专家的决策过程。
推理机是专家系统的核心,它通过使用专家系统的知识库和推理规则对问题进行推理和决策。
推理机根据用户输入的问题和已有的知识,进行搜索和匹配,产生一系列推理结果。
推理机还可以根据问题的特点,使用不同的推理方式,如正向推理、反向推理、混合推理等。
用户界面是专家系统与用户之间的桥梁,用户通过界面与专家系统交互,输入问题和获取答案。
用户界面可以是命令行界面、图形界面或自然语言界面等,使得用户能够方便地使用专家系统。
二、专家系统的组成1. 知识获取知识获取是专家系统开发的第一步,它通过采访领域专家、查阅文献、观察现场等方式,收集专家知识并转化为计算机可识别的形式。
知识获取的关键是提取和表示知识,需要选择适当的表示方法和知识表示语言。
2. 知识表示知识表示是将采集到的知识以适当的形式表示和存储,使得计算机可以理解和使用这些知识。
常用的知识表示方法有规则表示、语义网络表示、框架表示等。
规则表示是最常用的方法,将知识表示为一系列条件-动作规则,通过匹配规则,实现对问题的推理和决策。
3. 知识推理知识推理是专家系统的核心功能,它利用知识库和推理规则对问题进行推理和决策。
专家系统的推理机通常采用基于规则的推理方法,通过匹配规则和问题,产生推理结果。
推理过程可以是正向推理、反向推理或混合推理,根据问题的特点,选择合适的推理方式。
专家系统知识题解答

第七章专家系统7.1.答:(1)专家系统的定义费根鲍姆(E.A.Feigenbaum):“专家系统是一种智能的计算机程序,它运用知识和推理步骤来解决只有专家才能解决的复杂问题”专家系统是基于知识的系统,用于在某种特定的领域中运用领域专家多年积累的经验和专门知识,求解需要专家才能解决的困难问题保存和大面积推广各种专家的宝贵知识博采众长比人类专家更可靠,更灵活(2)专家系统的特点①具有专家水平的专门知识专家系统中的知识按其在问题求解中的作用可分为三个层次:数据级、知识库级和控制级数据级知识(动态数据):具体问题所提供的初始事实及在问题求解过程中所产生的中间结论、最终结论数据级知识通常存放于数据库中知识库级知识:专家的知识,这一类知识是构成专家系统的基础一个系统性能高低取决于这种知识质量和数量控制级知识(元知识):关于如何运用前两种知识的知识在问题求解中的搜索策略、推理方法②能进行有效的推理推理机构——能根据用户提供的已知事实,通过运用知识库中的知识,进行有效的推理,以实现问题的求解.专家系统的核心是知识库和推理机③具有启发性除能利用大量专业知识外,还必须利用经验判断知识来对求解问题作出多个假设(依据某些条件选定一个假设,使推理继续进行)④ 能根据不确定(不精确)的知识进行推理综合利用模糊的信息和知识进行推理,得出结论⑤具有灵活性知识库与推理机相互独立,使系统易于扩充,具有较大的灵活性⑥具有透明性一般有解释机构,所以具有较好的透明性解释机构向用户解释推理过程,回答“Why ?”、“How ?”等问题⑦具有交互性一般都为交互式系统,具有较好的人机界面一方面它需要与领域专家或知识工程师进行对话以获取知识;另一方面它也需要不断地从用户处获得所需的已知事实并回答询问.7.2.答:专家系统的一般结构人机接口、推理机、知识库、动态数据库、知识获取机构、解释机构专人机接口解释机构知识获取机构知识库推理机数据库用户领域专家知识工程师家系统核心知识库:主要用来存放领域专家提供的专门知识(1) 知识表达方法的选择(最多的三种表示方法是产生式规则、框架和语义网络)①充分表示领域知识②能充分、有效地进行推理③便于对知识的组织、维护与管理④便于理解与实现(2) 知识库管理冗余和矛盾一致性和完整性安全性推理机模拟领域专家的思维过程,控制并执行对问题的求解能根据当前已知的事实,利用知识库中的知识,按一定的推理方法和控制策略进行推理,直到得出相应的结论为止推理机包括推理方法和控制策略两部分推理方法有精确推理和不精确推理(已在推理章节介绍)控制策略主要指推理方向控制及推理规则选择策略推理有正向推理、反向推理和正反向混合推理推理策略一般还与搜索策略有关(已在推理章节介绍)推理机性能/构造与知识的表示方法有关,但与知识的内容无关à保证推理机与知识库的独立性,提高灵活性知识获取机构“瓶颈”,是建造和设计专家系统的关键基本任务是为专家系统获取知识,建立起健全、完善、有效的知识库,以满足求解领域问题的需要要对知识进行一致性、完整性检测人机接口专家系统与领域专家、知识工程师、一般用户间进行交互的界面,由一组程序及相应的硬件组成,用于完成输入输出工作更新、完善、扩充知识库;推理过程中人机交互;结束时显示结果内部表示形式与外部表示形式的转换数据库又称“黑板”、“综合数据库”或“动态数据库”,主要用于存放用户提供的初始事实、问题描述及系统运行过程中得到的中间结果、最终结果等信息数据库是推理机不可缺少的工作场地,同时由于它可记录推理过程中的各种有关信息,又为解释机构提供了回答用户咨询的依据(需相应的数据库管理程序)解释机构:回答用户提出的问题,解释系统的推理过程,使系统对用户透明7.3答:(1) 传统程序是依据某一确定的算法和数据结构来求解某一确定的问题,而专家系统是依据知识和推理来求解问题,这是专家系统与传统程序的最大区别.传统程序= 数据结构+ 算法专家系统= 知识+ 推理(2) 传统程序把关于问题求解的知识隐含于程序中,而专家系统则将知识与运用知识的过程即推理机分离.(使专家系统具有更大的灵活性,使系统易于修改)(3) 从处理对象来看,传统程序主要是面向数值计算和数据处理,而专家系统则面向符号处理.传统程序处理的数据多是精确的,对数据的检索是基于模式的布尔匹配,而专家系统处理的数据和知识大多是不精确的、模糊的,知识的模式匹配也多是不精确的.(4) 传统程序一般不具有解释功能,而专家系统一般具有解释机构,可对自己的行为作出解释.(5) 传统程序因为是根据算法来求解问题,所以每次都能产生正确的答案,而专家系统则像人类专家那样工作,通常产生正确的答案,但有时也会产生错误的答案(这也是专家系统存在的问题之一).专家系统有能力从错误中吸取教训,改进对某一工作的问题求解能力.(6) 从系统的体系结构来看,传统程序与专家系统具有不同的结构.7.4答:可行性分析:威特曼(Watermam)从三方面研究如何选择适合专家系统开发的问题(1)什么情况下开发专家系统是可能的? (满足!)①问题的求解主要依靠经验性知识,而不需要大量运用常识性知识②存在真正的领域专家,这也是开发专家系统最重要的要求之一专家必须能够描述和解释他们用于解决领域问题的方法③一般某领域中有多个专家,他们应该对领域答案的选择和精确度有基本一致的看法④任务易,有明确的开发目标,且任务能被很好地理解(2)什么情况下开发专家系统是合理的?(之一!)①问题的求解能带来较高的经济效益②人类专家奇缺,但又十分需要,且十分昂贵③人类专家经验不断丢失④危险场合需要专门知识(3)什么情况下开发专家系统是合适的?(特征!)①本质——问题本质上必须能很自然地通过符号操作和符号结构来进行求解,且问题求解时需要使用启发式知识,需要使用经验规则才能得到答案②复杂性——问题不是太容易且较为重要③范围——问题需要有适当的范围.选择适当的范围是专家系统的关键,一般有两个原则:一是所选任务的大小可驾驭;二是任务要有实用价值.7.5答:专家系统的设计原则(1)专门任务领域大小(2)专家合作反复磋商,团结协作(3)原型设计从“最小系统”到“扩充式”开发(4)用户参与充实、完善知识库(5)辅助工具提高设计效率(6)知识库与推理机分离体现特征,灵活专家系统的开发步骤知识工程比软件工程更强调渐进性、扩充性重新描述(1) 问题识别阶段——知识工程师和专家确定问题的重要特点,抓住问题各主要方面的特征①确定人员和任务②问题识别:描述问题的特征及相应的知识结构,明确问题的类型和范围③确定资源:确定知识源、时间、计算设备以及经费等资源④确定目标:确定问题求解的目标(2) 概念化阶段——主要任务是揭示描述问题所需的关键概念、关系和控制机制,子任务、策略和有关问题求解的约束①什么类型的数据有用,数据之间的关系如何?②问题求解时包括哪些过程,这些过程中有哪些约束?③问题是如何划分成子问题的?④信息流是什么?哪些信息是由用户提供的,哪些信息是应当导出的?⑤问题求解的策略是什么?(3)形式化阶段——把概念化阶段概括出来的关键概念、子问题和信息流特征形式化地表示出来(究竟采用什么形式,要根据问题的性质选择适当的专家系统构造工具或适当的系统框架)三个主要的因素是:假设空间基本的过程模型数据形式化阶段假设空间①把概念描述成结构化的对象,还是处理成基本的实体?②概念之间的因果关系或时空关系是否重要,是否应当显式地表示出来?③假设空间是否有限?④假设空间是由预先确定的类型组成的,还是由某种过程生成的?⑤是否应考虑假设的层次性?⑥是否有与最终假设和中间假设相关的不确定性或其它的判定性因素?⑦是否考虑不同的抽象级别?形式化阶段基本的过程模型找到可以用于产生解答的基本过程模型是形式化知识的重要一步过程模型包括行为的和数学的模型(如果专家使用一个简单的行为模型,对它进行分析,就能产生很多重要的概念和关系)(数学模型可以提供附加的问题求解信息,或用于检查知识库中因果关系的一致性)形式化阶段数据的性质①数据是不足的、充足的还是冗余的?②数据是否有不确定性?③对数据的解释是否依赖于出现的次序?④获取数据的代价是多少?⑤数据是如何得到的?⑥数据的可靠性和精确性如何?⑦数据是一致的和完整的吗?(4)实现阶段把形式化知识变成计算机的软体,即要实现知识库、推理机、人机接口和解释系统(知识的一致性和相容性)推理机应能模拟领域专家求解问题的思维过程和控制策略必须很快地实现(实现原型系统的目的之一是检查开发早期阶段的设计是否有效)(5)测试阶段通过运行实例评价原型系统以及用于实现它的表达形式,从而发现知识库和推理机制的缺陷性能不佳的因素:①输入输出特性,即数据获取与结论表示方面存在缺陷例如,提问难于理解、含义模糊,使得存在错误或不充分的数据进入系统;结论过多或者太少,没有适当地组织和排序,或者详细的程度不适当②推理规则有错误、不一致或不完备③控制策略问题,不是按专家采用的“自然顺序”解决问题测试的主要内容:①可靠性——通过实例的求解,检查系统所得出的结论是否与已知结论一致②知识的一致性——向知识库输入一些不一致、冗余等有缺陷的知识,检查是否可检测出来检查是否会给出不应给出的答案检测获取知识的正确性(如有某些自动获取知识功能)③运行效率——知识查询及推理方面的运行效率,找出薄弱环节及求解方法与策略方面的问题④解释能力——一是检测能回答哪些问题,是否达到了要求;二是检测回答问题的质量(说服力)⑤人机交互的便利性7.6答:专家系统种类解决的问题解释根据感知数据推理情况描述诊断根据观察结果推断系统是否有故障预测推导给定情况可能产生的后果设计根据给定要求进行相应的设计规划设计动作控制控制整个系统的行为监督比较观察结果和期望结果修理执行计划来实现规定的补救措施教学诊断、调整、修改学生行为调试建议故障的补救措施(1) 解释型专家系统能根据感知数据,经过分析、推理,从而给出相应解释.(必须能处理不完全、甚至受到干扰的信息,给出一致且正确的解释)代表性:DENDRAL(化学结构说明)、PROSPECTOR(地质解释)等(2) 诊断型专家系统能根据取得的现象、数据或事实推断出系统是否有故障,并能找出产生故障的原因,给出排除故障的方案(目前开发、应用得最多的一类)代表性:PUFF(肺功能诊断系统)、PIP(肾脏病诊断系统)、DART(计算机硬件故障诊断系统)等(3) 预测型专家系统能根据过去和现在信息(数据和经验)来推断可能发生和出现的情况(天气预报、市场预测、人口预测等)(4) 设计型专家系统能根据给定要求进行相应的设计(工程设计、电路设计、服装设计)代表性:XCON(计算机系统配置系统)、KBVLSI(VLSI电路设计专家系统)等(5) 规划型专家系统能按给定目标拟定总体规划、行动计划、运筹优化等(机器人动作控制、军事规划、城市规划等)代表性:NOAH(机器人规划系统)、SECS(帮助化学家制定有机合成规划的专家系统)、TATR (帮助空军制订攻击敌方机场计划的专家系统)等(6) 控制型专家系统能根据具体情况,控制整个系统的行为代表性:YES/MVS(帮助监控和控制MVS操作系统)(7) 监督型专家系统能完成实时的监测任务,并根据监测到的现象作出相应的分析和处理代表性:REACTOR(帮助操作人员检测和处理核反应堆事故)(8) 修理型专家系统能根据故障的特点制订纠错方案,并能实施该方案排除故障,当制订的方案失效或部分失效时,能及时采取相应的补救措施(9) 教学型专家系统能根据学生学习过程中所产生的问题进行分析、评价、找出错误原因,有针对性地确定教学内容或采取其它有效的教学手段代表性:GUIDON(讲授有关细菌感染性疾病方面的医学知识)(10) 调试型专家系统能根据相应的标准检测被测试对象存在的错误,并能从多种纠错方案中选出适用于当前情况的最佳方案,排除错误专家系统的应用领域已扩展到数学、物理、化学、医学、地质、气象、农业、法律、教育、交通运输、机械、艺术以及计算机科学本身,甚至渗透到政治、经济、军事等重大决策部门,产生了巨大的社会效益和经济效益,同时也促进了人工智能基本理论和基本技术的发展.7.7答:(1)正向推理:见教材P206图7.7(2)反向推理:见教材P212图7.127.8答:(1)知识获取的任务基本任务:为专家系统获取知识,建立起健全、完善、有效的知识库,以满足求解领域问题需要①抽取知识识别、理解、筛选、归纳等,及自学习②知识的转换第一步:从专家及文献资料处抽取的知识转换为某种知识表示模式,如产生式规则、框架等(知识工程师完成)第二步:该模式表示的知识转换为系统可直接利用的内部形式.(输入及编译实现)③知识的输入知识编辑器④知识的检测不一致、不完整等⑵知识获取的模式①非自动知识获取(人工移植)知识工程师知识编辑器②自动知识获取系统具有获取知识的能力,它不仅可以直接与领域专家对话,从专家提供的原始信息中学习到专家系统所需的知识,而且还能从系统自身的运行实践中总结、归纳出新的知识,发现知识中可能存在的错误,不断自我完善,建立起性能优良、知识完善的知识库➢具有识别语音、文字、图像的能力➢具有理解、分析、归纳的能力➢具有从运行实践中学习的能力③半自动知识获取7.9答:正确性(1)系统设计的正确性①系统设计思想的正确性如目标、原则等②系统设计方法的正确性如知识表达方法、知识推理方法、控制策略、解释方法等③设计开发工具的正确性如正确使用和正确维护(2)系统测试的正确性①测试目的、方法、条件的正确性②测试结果、数据、记录的正确性(3)系统运行的正确性①推理结论、求解结果、咨询建议的正确性②推理解释及可信度估算的正确性③知识库知识的正确性语法、语义和语用及专业内容有用性(1)推理结论、求解结果、咨询建议的有用性(2)系统的知识水平、可用范围、易扩充性、易更新性等(3)问题的求解能力(解题速度、推理效率),可能场合和环境(4)人机交互的友好性(5)运行可靠性、易维护性、可移植性(6)系统的经济性(软硬件投资、运行维护费用、设计开发费用和系统运行取得的直接或间接经济效益)7.10答:(1)四种主要的类型:①用于开发专家系统的程序设计语言②骨架系统③通用型知识表达语言④专家系统开发环境(2)专家系统开发环境(工具包)AGE是斯坦福大学研制的一个专家系统开发环境.AGE是典型的模块组合式开发工具,为用户提供了一个通用的专家系统结构框架,并将该框架分解为许多在功能和结构上较为独立的的组件部件,这些组件已预先编制成标准模块存在系统中.AGE采用了黑板模型来构造专家系统结构框架.可通过两条途径构造自己的专家系统:①用户使用AGE现有的各种组件作为构造材料,很方便地来组合设计自己所需的系统.②用户通过AGE的工具界面,定义和设计各种所需的组成部件,以构造自己的专家系统.应用AGE已经开发了一些专家系统,主要用于医疗诊断、密码翻译、军事科学等方面.7.11答:EMYCIN是由MYCIN系统抽去原有的医学领域知识,保留骨架而形成的系统(产生式规则表达知识、目标驱动的反向推理控制策略).EMYCIN具有MYCIN的全部功能:①解释程序——可以向用户解释推理过程.②知识编辑程序及类英语的简化会话语言——提供一开发知识库的环境,使得开发者可以使用比LISP更接近自然语言的规则语言来表示知识.③知识库管理和维护手段——所提供的开发知识库的环境还可以在进行知识编辑及输入时进行语法、一致性、是否矛盾和包含等检查.④跟踪和调试功能EMYCIN开发的一些专家系统(适合开发各种领域咨询、诊断型专家系统).EMYCIN帮通过解释呼吸分析并确定病通过解释油井预测麦田是否助决定解决结构分析问题的策略测试数据来诊断肺病人血液凝固机制中有无问题SACON钻探数据来鉴定地下岩层将受黑鳞翅目幼虫之害LIGHOPIANT/CDP。
专家系统原理与设计

1.4 专家系统的类型
关于专家系统的分类,目前还无定论。仅从几个不 同的侧面对此进行讨论。 1.按用途分类 按用途分类,专家系统可分为:诊断型、解释型、
预测种类型。 2.按输出结果分类 按输出结果分类,专家系统可分为分析型和设计型。
3.按知识表示分类 目前所用的知识表示形式有:产生式规则、一阶谓 词逻辑、框架、语义网等。 4.按知识分类 知识可分为确定性知识和不确定性知识,所以,按
1.知识库设计
知识库设计主要是设计知识库的结构,即知识的 组织形式。专家系统(或知识工程)中所涉及的知识 库,一般取层次结构或网状结构模式。这种结构模式 是把知识按某种原则进行分类,然后分块分层组织存 放,如按元知识、专家知识、领域知识等分层组织; 而每一块和每一层还可以再分块分层。这样,整个知 识库就呈树型或网状结构。例如,下图所示的就是一
题求解系统。
(3) 从系统的结构来看,专家系统则强调知识与推
理的分离,因而系统具有很好的灵活性和可扩充性。 (4) 专家系统一般还具有解释功能,即在运行过程 中一方面能回答用户提出的问题,另一方面还能对最后 的输出(结论)或处理问题的过程作出解释。 (5) 有些专家系统还具有“自学习”能力,即不断 对自己的知识进行扩充、完善和提炼。这一点是传统系 统所无法比拟的。
专家系统原理与设计
专家系统原理与设计
1.专家系统的概念
2.专家系统的结构
3.专家系统设计与实现
4.专家系统开发工具与环境
1、 专家系统的概念
1 .1什么是专家系统 亦称专家咨询系统,它是一种具有大量专门知识 与经验的智能计算机系统,通常,主要指软件系统。 它把专门领域中人类专家的知识和思考解决问题的方 法、经验和诀窍组织整理且存储在计算机中,不但能 模拟领域专家的思维过程,而且能让计算机宛如人类 专家那样智能地解决实际问题。 狭义地讲,专家系统就是人类专家智慧的拷贝,是人类 专家的某种化身。 广义地讲,专家系统也泛指那些具有“专家级”水平的 知识系统,从总体上达到专家级水平。
医学专家系统设计

医学专家系统设计1医学专家系统的发展历程早在1954年,美国的钱家其已将计算机应用于放射治疗,计算剂量分布和制定治疗计划;1959年,美国的Ledley等首次将数学模型引入临床医学,提出了可将布尔代数和Bayes定理作为计算机诊断的数学模型,并以此诊断了一组肺癌病例,开创了计算机辅助诊断的先例;1966年,Ledley首次提出“计算机辅助诊断”,形成了计量医学;1976年,美国斯坦福大学的Short-liffe 等研制成功了著名的用于鉴别细菌感染及治疗的医学专家系统MYCIN,建立了一整套专家系统的开发理论;1982年,美国匹兹堡大学的Miller等发表了著名的Internist-I 内科计算机辅助诊断系统,其知识库中包含了572种疾病,约4500种症状;1991年美国哈佛医学院Barnett等开发的“解释”软件,包含有2200种疾病和5000种症状。
2医学专家系统的组成专家系统是基于知识的系统。
一个完整的医学专家系统应由知识库、数据库、推理机、知识获取模块和解释接口组成。
知识库中存放系统求解问题所需求的知识,数据库用来存储初始证据和推理过程中得到的各种中间信息,推理机是一组程序,用来控制和协调整个系统,它通过输入的数据,利用知识库的原有知识按一定的推理策略解决所提出的问题。
知识获取模块就是学习模块,它为修改和扩充知识库存的原有知识提供相应的手段。
解释接口是用户与专家系统交互的环节,负责对推理给出必要的解释,便于用户了解推理过程,为用户向系统学习和所作所为系统提供方便,具有解释功能是专家系统区别于其它计算机程序的标志。
目前,已有一些知识表示型的医疗诊断专家系统。
3医学专家系统的设计建立医学专家系统要求将专家的知识转换为机器处理。
在系统分析工作中,要求完全崭新的基于知识的设计方法,使得计算机从数据处理过渡到知识处理,从计算和存储数据转为推理和提供知识。
原型系统方法是医学专家系统实现的重要开发方法,其早期阶段的目标是迅速发展最终系统的模型,获得所有任务的初步方案,后继阶段进行测试和扩充,增加更多细节,如此逐步发展和求精,直到逼近最终系统,满足用户要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专家系统的开发过程
简介
专家系统是一种模仿人类专家决策过程的人工智能系统,通过收集领域知识和规则,以及运用推理和推断技术,来解决特定领域的问题。
它主要由知识库、推理机和用户界面三个组成部分构成。
专家系统的开发过程可以分为知识获取、知识表示、知识推理以及系统评估和维护等步骤。
知识获取
知识获取是专家系统开发的第一步,它是开发中最为困难和复杂的部分。
知识获取可以通过以下方法进行: 1. 领域专家访谈:与领域专家进行面对面的访谈,直接获取专家的知识和经验。
2. 文献调研:查阅相关的书籍、论文和文章,获取领域内的知识和规则。
3. 数据挖掘:通过分析大量的数据,找到其中的规律和知识。
4. 规则抽取:从现有的系统中抽取规则和知识。
知识表示
知识表示是将获取到的知识进行组织和表示的过程。
常用的知识表示方法有: 1. 规则表示:基于规则的专家系统将知识表示为一系列的“如果-那么”规则,规则
由前件和后件组成,前件是条件,后件是结论。
2. 框架表示:框架表示根据领域知识的特点和结构,将知识以框架的形式进行表示和存储。
3. 语义网络表示:语义网络表示将知识表示为节点和关系的网络结构,每个节点代表一个概念,关系表示概念之间的关联。
知识推理
知识推理是专家系统的核心部分,通过对知识的推理和推断,来解决问题和作出决策。
常用的推理方法有: 1. 前向推理:从已知事实出发,通过匹配规则的前件条件,逐步推导出结论。
2. 后向推理:从目标结论出发,根据规则的后件条件,逆向推导出满足条件的前提。
3. 反向推理:根据用户提供的问题或目标,向后推导出满足目标的推理链。
4. 混合推理:结合前向、后向和反向推理的特点和方法,进行综合推理。
知识系统评估和维护
系统评估和维护是专家系统开发过程的最后一步,它的目的是验证专家系统的有效性和可靠性,并对系统进行修正和改进。
常用的评估和维护方法有: 1. 测试和验证:对专家系统进行测试和验证,评估系统的正确性和性能。
2. 性能调优:根据测试结果,对系统性能进行调优和优化,提高系统的运行效率。
3. 知识更新:根据用户的反馈和系统使用情况,对知识库进行更新和维护,确保系统的时效性和准确性。
4. 用户培训:对系统的用户进行培训和指导,使其能够正确地使用和理解专家系统。
结论
专家系统的开发过程是一个复杂而又繁琐的过程,但它能够极大地提高问题解决的效率和准确性。
知识获取、知识表示、知识推理和系统评估与维护是专家系统开发的关键步骤,只有在这个过程中严格把控每个环节,才能开发出功能强大、可靠性高的专家系统。
未来,随着人工智能技术的不断发展和创新,专家系统在各个领域的应用将越来越广泛,为人们的工作和生活带来更多的便利和效益。