七年级数学上册全册单元测试卷中考真题汇编[解析版]

合集下载

人教版数学七年级上册全册单元试卷中考真题汇编[解析版]

人教版数学七年级上册全册单元试卷中考真题汇编[解析版]

人教版数学七年级上册全册单元试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,数轴上线段AB=4(单位长度),CD=6(单位长度),点A在数轴上表示的数是-16,点C在数轴上表示的数是18.(1)点B在数轴上表示的数是________,点D在数轴上表示的数是________,线段AD=________;(2)若线段AB以4个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动,设运动时间为t秒,①若BC=6(单位长度),求t的值;②当0<t<5时,设M为AC中点,N为BD中点,求线段MN的长.【答案】(1)-12;24;40(2)解:①设运动t秒时,BC=6当点B在点C的左边时,由题意得:4t+6+2t=30,解之:t=4;当点B在点C的右边时,由题意得:4t−6+2t=30,解之:t=6.综上可知,若BC=6(单位长度),t的值为4或6秒;②当0<t<5时,A点表示的数为−16+4t,B点表示的数为−12+4t,C点表示的数为18−2t,D点表示的数为24−2t,∵M为AC中点,N为BD中点,∴点M表示的数为:=1+t,点N表示的数为:=6+t∴MN=6+t-(1+t)=5.【解析】【解答】解:(1)∵AB=4,A在数轴上表示的数是-16,∴点B在数轴上表示的数为:-16+4=-12∵点C在数轴上表示的数是18,CD=6,∴点D在数轴上表示的数为:18+6=24;∵点A在数轴上表示的数是-16,点D在数轴上表示的数为24,∴AD=|-16-24|=40故答案为:-12;24;40【分析】(1)由线段AB=4,点A在数轴上表示的数是-16,根据两点间的距离公式可得点B在数轴上表示的数;由CD=6,点C在数轴上表示的数是18,根据两点间的距离公式可得点D在数轴上表示的数;根据两点间的距离公式可得AD的长。

(2)①设运动t秒时,BC=6(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;②当0<t<5时,B与C没有相遇,分别求出此时A,B,C,D四点表示的数,再根据中点坐标公式求出M,N表示的数,然后利用两点间的距离公式即可求出线段MN的长。

七年级上册数学全册单元试卷中考真题汇编[解析版](1)

七年级上册数学全册单元试卷中考真题汇编[解析版](1)

七年级上册数学全册单元试卷中考真题汇编[解析版](1)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。

【答案】(1)解:如图:点C、D为线段AB的三等分点,可以组成的线段为:3+2+1=6(条),∵AB=6,点C、D为线段AB的三等分点,∴AC=CD=DB=2,AD=BC=4,∴这些线段长度的和为:2+2+2+4+4+6=20.(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;∴这些线段长度的和为:48+24+12+4=88.【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段的概念先找出所有线段,从而求得它们的和.(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.2.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.(1)如图(2),若α=90°,β=30°,求∠MON;(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示);(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.【答案】(1)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,α=90°,β=30°∴∠MOB=∠AOB=45°∠NOD=∠BOC=15°∴∠MON=∠MOB+∠NOD=45°+15°=60°.(2)解:设∠BOD=γ,∵∠MOD= = ,∠NOB= =∴∠MON=∠MOD+∠NOB-∠DOB= + -γ=(3)解:① 为定值,设运动时间为t秒,则∠DOB=3t-t=2t,∠DOE= ∠DOB=t,∴∠COE=β+t,∠AOD=α+2t,又∵α=2β,∴∠AOD=2β+2t=2(β+t).∴【解析】【分析】(1)根据角平分线的定义,分别求出∠MOB和∠NOD,再根据∠MON=∠MOB+∠NOD,可求出∠MON的度数。

人教版数学七年级上册全册单元试卷中考真题汇编[解析版]

人教版数学七年级上册全册单元试卷中考真题汇编[解析版]

人教版数学七年级上册全册单元试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。

人教版数学七年级上册全册单元试卷中考真题汇编[解析版]

人教版数学七年级上册全册单元试卷中考真题汇编[解析版]

人教版数学七年级上册全册单元试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.已知:O是直线AB上的一点,是直角,OE平分.(1)如图1.若.求的度数;(2)在图1中,,直接写出的度数(用含a的代数式表示);(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究和的度数之间的关系.写出你的结论,并说明理由.【答案】(1)解:∵是直角,,,,∵OE平分,,.(2)解:是直角,,,,∵OE平分,,(3)解:,理由是:,OE平分,,,,,即【解析】【分析】(1)根据平角的定义得出∠BOD,∠COB的度数,根据角平分线的定义得出∠BOE=∠BOC=75°,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(2)根据平角的定义得出∠BOD90°−a ,∠COB180°−a ,根据角平分线的定义得出∠BOE=∠BOC=90°−a,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(3)∠AOC=2∠DOE ,根据平角的定义得出∠BOC=180°−∠AOC,根据角平分线的定义得出∠BOE=∠BOC=90°−∠AOC ,根据角的和差得出∠BOD=90°−∠BOC=90°−(180°−∠AOC)=∠AOC−90° ,∠DOE=∠BOD+∠BOE,再整体替换即可得出答案。

人教版七年级上册数学全册单元试卷中考真题汇编[解析版]

人教版七年级上册数学全册单元试卷中考真题汇编[解析版]

人教版七年级上册数学全册单元试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.2.已知:线段AB=30cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,经过几秒,点P、Q两点能相遇?(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发3秒后,点Q沿线段BA自B点向A点以4厘米/秒运动,问再经过几秒后点P、Q两点相距6cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若P、Q两点能相遇,直接写出点Q运动的速度.【答案】(1)解:30÷(2+4)=5(秒),答:经过5秒,点P、Q两点能相遇.(2)解:设再经过x秒后点P、Q两点相距6cm.当点P在点Q左边时,2(x+3)+4x+6=30解得x=3;当点P在点Q右边时,2(x+3)+4x-6=30解得x=5,所以再经过3或5秒后点P、Q两点相距6cm;(3)解:设点Q运动的速度为每秒xcm.当P、Q两点在点O左边相遇时,120÷60x=30-2,解得x=14;当P、Q两点在点O右边相遇时,240÷60x=30-6,解得x=6,所以若P、Q两点能相遇点Q运动的速度为每秒14cm或6cm.【解析】【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分情况讨论,P、Q在点O左右两边相遇来解答.3.如图,两个形状、大小完全相同的含有30。

七年级数学上册全册单元试卷中考真题汇编[解析版]

七年级数学上册全册单元试卷中考真题汇编[解析版]

七年级数学上册全册单元试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.2.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系为:________(直接写出结果).(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP,CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系为:________(直接写出结果).(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP,CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.【答案】(1)∠FDC+∠ECD=∠A+180°(2)∠P=90°+ ∠A(3)解:∵DP、CP分别平分∠ADC和∠BCD,【解析】【解答】(1)探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,故答案为:( 2 )探究二:∵DP、CP分别平分∠ADC和∠ACD,故答案为:【分析】(1)由三角形的一个外角等于和它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再将两个等式两边分别相加并运用三角形的内角和定理即可求解;(2)由角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,再结合三角形的内角和定理即可求解;(3)由角平分线的定义可得∠PDC=∠ADC,∠PCD=∠BCD,再结合三角形的内角和定理和四边形的内角和定理即可求解。

人教版七年级数学上册全册单元试卷中考真题汇编[解析版]

人教版七年级数学上册全册单元试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。

人教版七年级上册数学全册单元试卷中考真题汇编[解析版]

人教版七年级上册数学全册单元试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.2.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC 和BC的中点.(1)若点C恰好是AB中点,则DE=________cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.【答案】(1)7(2)解:∵AC=4cm ∴BC=AB-AC=10cm 又∵D为AC中点,E为BC中点∴CD=2cm,CE=5cm ∴DE=CD+CE=7cm.(3)解:∵AC=acm ∴BC=AB-AC=(14-a)cm 又∵D为AC中点,E为BC中点∴CD=cm,CE= cm ∴DE=CD+CE= +∴无论a取何值(不超过14)DE的长不变。

七年级数学上册全册单元测试卷测试卷(解析版)

七年级数学上册全册单元测试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.3.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.(1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________;(2)如图2,若∠AOC=140°,则∠BOD=________;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.【答案】(1)145°;45°(2)40°(3)解:∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补(4)解:OD⊥AB 时,∠AOD=30°,CD⊥OB 时,∠AOD=45°,CD⊥AB 时,∠AOD=75°,OC⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;( 2 )如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;故答案为:(1)145°,45°;(2)40°.【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。

七年级上册数学全册单元试卷中考真题汇编[解析版]

七年级上册数学全册单元试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.2.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.3.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册全册单元测试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,数轴上线段AB=4(单位长度),CD=6(单位长度),点A在数轴上表示的数是-16,点C在数轴上表示的数是18.(1)点B在数轴上表示的数是________,点D在数轴上表示的数是________,线段AD=________;(2)若线段AB以4个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动,设运动时间为t秒,①若BC=6(单位长度),求t的值;②当0<t<5时,设M为AC中点,N为BD中点,求线段MN的长.【答案】(1)-12;24;40(2)解:①设运动t秒时,BC=6当点B在点C的左边时,由题意得:4t+6+2t=30,解之:t=4;当点B在点C的右边时,由题意得:4t−6+2t=30,解之:t=6.综上可知,若BC=6(单位长度),t的值为4或6秒;②当0<t<5时,A点表示的数为−16+4t,B点表示的数为−12+4t,C点表示的数为18−2t,D点表示的数为24−2t,∵M为AC中点,N为BD中点,∴点M表示的数为:=1+t,点N表示的数为:=6+t∴MN=6+t-(1+t)=5.【解析】【解答】解:(1)∵AB=4,A在数轴上表示的数是-16,∴点B在数轴上表示的数为:-16+4=-12∵点C在数轴上表示的数是18,CD=6,∴点D在数轴上表示的数为:18+6=24;∵点A在数轴上表示的数是-16,点D在数轴上表示的数为24,∴AD=|-16-24|=40故答案为:-12;24;40【分析】(1)由线段AB=4,点A在数轴上表示的数是-16,根据两点间的距离公式可得点B在数轴上表示的数;由CD=6,点C在数轴上表示的数是18,根据两点间的距离公式可得点D在数轴上表示的数;根据两点间的距离公式可得AD的长。

(2)①设运动t秒时,BC=6(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;②当0<t<5时,B与C没有相遇,分别求出此时A,B,C,D四点表示的数,再根据中点坐标公式求出M,N表示的数,然后利用两点间的距离公式即可求出线段MN的长。

2.已知,∠AOB=∠COD=90°,射线OE,FO分别平分∠AOC和∠BOD.(1)当OB和OC重合时,如图(1),求∠EOF的度数;(2)当∠AOB绕点O逆时针旋转至图(2)的位置(0°<∠BOC<90°)时,求∠EOF的度数.【答案】(1)解:当OB和OC重合时,∠AOD=∠AOC+∠BOD=180°,又∵射线OE,FO分别平分∠AOC和∠BOD,∴∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COF+∠BOF= (∠AOC+∠BOD)= ×180°=90°(2)解:∵∠AOB=∠COD=90°,∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COE+∠BOF﹣∠BOC= ∠AOC+ ∠BOD﹣∠BOC= (∠AOC+∠BOD)﹣∠BOC= (∠AOB+∠BOC+∠COD+∠BOC)﹣∠BOC= (180°+2∠BOC)﹣∠BOC=90°+∠BOC﹣∠BOC=90°【解析】【分析】(1)由角平分线的性质可得∠COE=∠AOC,∠BOF=∠BOD;由平角的定义可得∠AOC+∠BOD=180°,由角的构成可得∠EOF=∠COE+∠BOF,代入计算即可求解;(2)同理可求解。

3.将一副直角三角尺按如图所示的方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B =45°,直角顶点C保持重合).(1)①若∠DCE=45°,则∠ACB的度数为________.②若∠ACB=140°,则∠DCE的度数为________.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)将三角尺BCE绕着点C顺时针转动,当∠ACE<180°,且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(并写明此时哪两条边平行,但不必说明理由);若不存在,请说明理由.【答案】(1)135°;40°(2)∠ACB+∠DCE=180°.理由如下:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+∠ECB=90°+90°=180°.(3)(3)存在.当∠ACE=30°时,AD∥BC;当∠ACE=45°时,AC∥BE;当∠ACE=120°时,AD∥CE;当∠ACE=135°时,CD∥BE;当∠ACE=165°时,AD∥BE.【解析】【解答】(1)①∵∠ECB=90°,∠DCE=45°,∴∠DCB=90°-45°=45°,∴∠ACB=∠ACD+∠DCB=90°+45°=135°.②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°-90°=50°,∴∠DCE=90°-50°=40°.【分析】(1)①根据角的和差,由∠DCB=∠BCE-∠DCE,即可算出∠DCB的度数,进而根据∠ACB=∠ACD+∠DCB即可算出答案;②根据角的和差,由∠DCB=∠ACB-∠ACD算出∠DCB的度数,再根据∠DCE=∠ECB-∠DCB即可算出答案;(2)∠ACB+∠DCE=180°.理由如下:根据角的和差得出∠ACB=∠ACD+∠DCB=90°+∠DCB ,故由∠ACB+∠DCE=90°+∠DCB+∠DCE =90°+∠ECB 即可算出答案;(3)存在.当∠ACE=30°时,根据内错角相等二直线平行得出AD∥BC;当∠ACE=45°时,内错角相等二直线平行得出AC∥BE;当∠ACE=120°时,根据同旁内角互补,二直线平行得出AD∥CE;当∠ACE=135°时,根据内错角相等二直线平行得出CD∥BE;当∠ACE =165°时,根据同旁内角互补,二直线平行得出AD∥BE.4.如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c-b=b-a;点C对应的数是10.(1)若BC=15,求a、b的值;(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.①用含t代数式表示PQ、 MN;②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出他们之间的关系,并说明理由.【答案】(1)∵BC=15,点C对应的数是10,∴c-b=15,∴b=-5,∵c-b=b-a=15,∴a=-20;(2)①∵OQ=10+t,OP=20+2t,∴PQ=(10+t)+( 20+2t)=30+3t;∵OB=5, OQ=10+t,∴BQ=15+t,∵M为BQ的中点,∴BM=7.5+0.5t,∴OM=7.5+0.5t-5=2.5+0.5t.∵OP=20+2t, N为OP的中点,∴ON=10+t,∴MN=OM+ON=12.5+1.5t;②PQ-2MN=5.∵PQ=30+3t,MN= 12.5+1.5t,∴PQ-2MN=(30+3t)-2(12.5+1.5t)=5.【解析】【分析】(1)利用数轴上所表示的数,右边的总比左边的大及数轴上任意两点间的距离等于这两点所表示数的差的绝对值,由BC=15,点C对应的数是10,即可算出点B 所表示的数,即b的值,进而根据 c-b=b-a 即可算出点A所表示的数a的值;(2)① 根据路程等于速度乘以时间,得出PA=2t,CQ=t,所以OQ=OC+CQ=10+t,OP==OA+PA=20+2t, 进而根据PQ=OQ+OP,根据整式加减法法则算出PQ的长;根据BQ=OB+OQ得出 BQ=15+t, genuine线段中点的定义得出 BM=7.5+0.5t, ON=10+t, 根据MN=OM+ON ,由整式加减法法则即可算出答案;②PQ-2MN=5,理由如下:由PQ=30+3t,MN= 12.5+1.5t,故利用整式家家爱你法法则即可算出PQ-2MN=5。

5.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上.点P、点Q 是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.(1)当点P、Q分别在线段AC、BC的中点时,线段PQ=________厘米;(2)若AC=6厘米,点P、点Q分别从点C、点B同时出发沿射线BA方向运动,当运动时间为2秒时,求PQ的长;(3)若AC=4厘米,点P、Q分别从点C、点B同时出发在直线AB上运动,则经过多少时间后线段PQ的长为5厘米.【答案】(1)6(2)解:如图2,当t=2时,BQ=2×2=4,则CQ=6-4=2.因为CP=2×1=2,所以PQ=CP+CQ=2+2=4(厘米)(3)解:设运动时间为t秒.①如图3,当点P、Q沿射线BA方向运动,若点Q在点P的后面,得:t+8-2t=5,解得t=3,②如图4,当点P、Q沿射线BA方向运动,若点Q在点P前面,得:2t-8-t=5,解得t=13.③如图5,当点P、Q在直线上相向运动,点P、Q在相遇前,得:t+2t=3,解得t=1.④如图6,当点P、Q在直线上相向运动,点P、Q在相遇后,得:t+2t=13,解得t= .综合可得t=1,3,13, .所以经过1,3,13,秒后PQ的长为5厘米.【解析】【解答】(1)如图1,因为AB=12厘米,点C在线段AB上,所以,当点P、Q分别在线段AC、BC的中点时,线段PQ= AB=6.故答案为:6;【分析】(1)由线段中点的定义可得CP= AC,CQ= CB,所以PQ= AC+ CB= AB,把AB的值代入计算即可求解;(2)由路程=速度时间可求出BQ和CQ、CP的值,则PQ=CP+CQ可求解;(3)由题意可分4种情况求解:① 当点P、Q沿射线BA方向运动,若点Q在点P的后面,由图可列关于时间的方程求解;②当点P、Q沿射线BA方向运动,若点Q在点P前面,由图可列关于时间的方程求解;③当点P、Q在直线上相向运动,点P、Q在相遇前,由图可列关于时间的方程求解;④ 当点P、Q在直线上相向运动,点P、Q在相遇后,由图可列关于时间的方程求解。

相关文档
最新文档