初一数学填空题2

合集下载

【典型题】初一数学上期末试题(附答案) (2)

【典型题】初一数学上期末试题(附答案) (2)

【典型题】初一数学上期末试题(附答案) (2)一、选择题1.若x 是3-的相反数,5y =,则x y +的值为( )A .8-B .2C .8或2-D .8-或22.如图,将一副三角板的直角顶点重合,摆放在桌面上,∠AOD=125°,则∠BOC= ( )A .25︒B .65︒C .55︒D .35︒3.下列四个角中,最有可能与70°角互补的角是( )A .B .C .D .4.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3 5.整式23x x -的值是4,则2398x x -+的值是( )A .20B .4C .16D .-4 6.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )A .九折B .八五折C .八折D .七五折7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A .甲B .乙C .丙D .丁8.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元9.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ).A .32824x x =-B .32824x x =+C .2232626x x +-=+D .2232626x x +-=- 10.4h =2小时24分.答:停电的时间为2小时24分.故选:C .【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.11.下列比较两个有理数的大小正确的是( )A .﹣3>﹣1B .1143>C .510611-<-D .7697->- 12.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b二、填空题13.一个角的余角比这个角的12多30°,则这个角的补角度数是__________. 14.如图,两个正方形边长分别为a 、b ,且满足a+b =10,ab =12,图中阴影部分的面积为_____.15.若312x a +与2415x a +-的和是单项式,则x 的值为____________. 16.如图,将正整数按如图方式进行有规律的排列,第2行最后一个数是4,第3行最后个数是7,第4行最后一个数是10,…依此类推,第20行第2个数是_____,第_____行最后一个数是2020.17.若代数式45x -与36x -的值互为相反数,则x 的值为____________.18.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是_____度. 19.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.20.已知2a ﹣b =﹣2,则6+(4b ﹣8a )的值是_____.三、解答题21.已知直线AB 和CD 相交于O 点,CO ⊥OE ,OF 平分∠AOE ,∠COF=34°,求∠BOD 的度数.22.已知:点C 在直线AB 上,AC=8cm ,BC=6cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.23.如图,数轴的单位长度为1.(1)如果点A ,D 表示的数互为相反数,那么点B 表示的数是多少?(2)如果点B ,D 表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B 为原点时,若存在一点M 到A 的距离是点M 到D 的距离的2倍,则点M 所表示的数是____.24.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?25.已知∠AOB =90°,OC 是一条可以绕点O 转动的射线,ON 平分∠AOC ,OM 平分∠BOC .(1)当射线OC 转动到∠AOB 的内部时,如图(1),求∠MON 得度数.(2)当射线OC 转动到∠AOB 的外时(90°<∠BOC <∠180°),如图2,∠MON 的大小是否发生变化,变或者不变均说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据相反数的意义可求得x 的值,根据绝对值的意义可求得y 的值,然后再代入x+y 中进行计算即可得答案.【详解】∵x 是3-的相反数,y 5=,∴x=3,y=±5, 当x=3,y=5时,x+y=8,当x=3,y=-5时,x+y=-2,故选C.【点睛】本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.2.C解析:C【解析】【分析】由△AOB 与△COD 为直角三角形得到∠AOB=∠COD=90°,则∠BOD=∠AOD-∠AOB=125°-90°=35°,然后利用互余即可得到∠BOC=∠COD-∠BOD=90°-35°. 【详解】解:∵∠AOB=∠COD=90°,∠AOD=125°,∴∠BOD=∠AOD-∠AOB=125°-90°=35°,∴∠BOC=∠COD-∠BOD=90°-35°=55°. 故答案为C.【点睛】本题考查了角的计算,属于基础题,关键是正确利用各个角之间的关系.3.D解析:D【解析】【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个符合即可.【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角;∵答案A 、B 、C 都是锐角,答案D 是钝角;∴答案D 正确.故选D .4.A解析:A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.5.A解析:A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x 2-3x =4,所以3x 2-9x =12,所以3x 2-9x +8=12+8=20.故选A .【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.6.A解析:A【解析】【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x ⨯=+ 解得:x=9.答:该商品的打9折出售。

【典型题】初一数学上期中试卷及答案 (2)

【典型题】初一数学上期中试卷及答案 (2)

【典型题】初一数学上期中试卷及答案 (2)一、选择题1.下列各数中,比-4小的数是()-B.5-C.0D.2A. 2.52.生物学家发现一种病毒的长度约为0.000043mm,用科学记数法表示这个数的结果为(单位:mm)()A.4.3×10﹣5B.4.3×10﹣4C.4.3×10﹣6D.43×10﹣5 3.000043的小数点向右移动5位得到4.3,所以0.000043用科学记数法表示为4.3×10﹣5,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若一个角的两边与另一个角的两边分别平行,则这两个角()A.相等B.互补C.相等或互补D.不能确定5.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2C.2a2-a D.2a2+a6.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°7.如图,从左面看该几何体得到的形状是()A.B.C.D.8.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km,把 384000km用科学记数法可以表示为()A.38.4 ×10 4 km B.3.84×10 5 km C.0.384× 10 6 km D.3.84 ×10 6 km 9.下列数中,最小的负数是()A.-2 B.-1 C.0 D.110.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°11.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27B.51C.69D.7212.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.二、填空题13.若计算(x﹣2)(3x+m)的结果中不含关于字母x的一次项,则m的值为_____.14.一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了__________道题.15.如图,用代数式表示图中阴影部分的面积为___________________.16.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C 的位置是有理数______,-2017应排在A 、B 、C 、D 、E 中_______的位置.17.若有理数a 、b 、c 在数轴上的位置如图所示,则化简:| a |+| a -b |-| c +b |=________.18.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 19.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是_____.20.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.三、解答题21.5+(2.5−1)=4;故答案为:4.(3)依题意可得AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6;故答案为:3t +3;5t +9;2t +6.(4)不变.3BC−2AB =3(2t +6)−2(3t +3)=12.【点睛】本题主要考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.22.已知:223+2A B a ab -=,223A a ab =-+-.(1)求B ;(用含a 、b 的代数式表示)(2)比较A 与B 的大小.23.当多项式()()22521421x m x n x -+----不含二次项和一次项时. (1)求,m n 的值;(2)求代数式()()22213122m n n m-+--+-的值. 24.解下列方程.(1)2(35)26x x -=+;(2)2(1)132x x +=+. 25.如图,直线BC 与MN 相交于点O ,AO 丄OC ,OE 平分∠BON ,若∠EON=20°,求∠AOM 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.2.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】3.无4.C解析:C【解析】分两种情况,作出图形,然后解答即可.【详解】如图1,两个角相等,如图2,两个角互补,所以,一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

【易错题】初一数学下期末模拟试题(带答案)(2)

【易错题】初一数学下期末模拟试题(带答案)(2)

【易错题】初一数学下期末模拟试题(带答案)(2)一、选择题1.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,则∠AOM的度数为()A.40°B.50°C.60°D.70°2.不等式x+1≥2的解集在数轴上表示正确的是()A .B .C .D .3.计算2535-+-的值是()A.-1B.1C.525-D.255-4.下列方程中,是二元一次方程的是( )A.x﹣y2=1B.2x﹣y=1C.11yx+=D.xy﹣1=05.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.26.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)7.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣38.不等式组3(1)112123x xx x-->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是()A.B.C.D.9.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-110.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角 B .至少有两个内角是直角 C .至多有一个内角是直角D .至多有两个内角是直角11.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②二、填空题13.已知二元一次方程2x-3y=6,用关于x 的代数式表示y ,则y=______. 14.如果一个数的平方根为a+1和2a-7, 这个数为 ________ 15.不等式3x 134+>x3+2的解是__________. 16.二项方程32540x +=在实数范围内的解是_______________ 17.关于x 的不等式(3a-2)x<2的解为x >,则a 的取值范围是________18.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.19.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______.20.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =_____.三、解答题21.在综合与实践课上,老师请同学们以“两条平行线AB ,CD 和一块含60︒角的直角三角尺EFG (90EFG ∠=︒,60EGF ∠=︒)”为主题开展数学活动.(1)如图(1),把三角尺的60︒角的顶点G 放在CD 上,若221∠=∠,求1∠的度数; (2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠之间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若AEG α∠=,CFG β∠=,请用含α,β的式子直接表示AEG ∠与CFG ∠的数量关系.22.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图. 学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ; (2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?23.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只) 售价(元/只) 甲种节能灯 30 40 乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?24.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样)(1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案.25.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据∠AOM=90°﹣∠COM即可求解.【详解】∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO⊥BC,∴∠AOC=90°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.故选B.【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.2.A【解析】试题解析:∵x+1≥2, ∴x ≥1. 故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.3.B解析:B 【解析】 【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案. 【详解】解:23+-(23231-+=-+=, 故选B . 【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.4.B解析:B 【解析】 【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得. 【详解】解:A .x-y 2=1不是二元一次方程; B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程; 故选B . 【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.5.A解析:A 【解析】 【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m 的值【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.6.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 7.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.解析:B 【解析】 【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可. 【详解】解:3(1)112123x x x x -->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x <2, 解不等式②得:x≥-1, 在数轴上表示解集为:,故选:B. 【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.9.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=, 去分母得:2210x x --=,代入公式得:22212x ±== 解得:341212x x ==, 经检验12x = 综上,所求方程的解为12+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.10.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.11.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.【解析】【分析】把x 看做已知数求出y 即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x 看做已知数求出y解析:263x - 【解析】 【分析】把x 看做已知数求出y 即可. 【详解】解:方程2x-3y=6, 解得:y=263x -, 故答案为263x -. 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.9【解析】【分析】根据一个正数的平方根互为相反数可得出a 的值代入后即可得出这个正数【详解】由题意得:a+1=﹣(2a ﹣7)解得:a=2∴这个正数为:(2+1)2=32=9故答案为:9【点睛】本题考查解析:9 【解析】 【分析】根据一个正数的平方根互为相反数可得出a 的值,代入后即可得出这个正数. 【详解】由题意得:a +1=﹣(2a ﹣7),解得:a =2,∴这个正数为:(2+1)2=32=9. 故答案为:9. 【点睛】本题考查了平方根及解一元一次方程的知识,解答本题的关键是掌握正数的两个平方根互为相反数.15.x >-3【解析】>+2去分母得:去括号得:移项及合并得:系数化为1得:故答案为x >-3解析:x >-3【解析】3134x +>3x+2, 去分母得:3(313)424,x x +>+ 去括号得:939424,x x +>+ 移项及合并得:515,x >- 系数化为1得:3x >- .故答案为x>-3.16.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键解析:x=-3【解析】【分析】由2x3+54=0,得x3=-27,解出x值即可.【详解】由2x3+54=0,得x3=-27,∴x=-3,故答案为:x=-3.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.17.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a<,故答案为:a<【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.18.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)-解析:822<≤x【解析】【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190,解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190,解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190,解得:x>8;综上可得:8<x≤22.故答案为:8<x≤22.【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.19.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式,∴x2+(m-2)x+9=(x±3)2.而(x±3)2=x2±6x+9,∴m-2=±6,∴m=8或m=-4.故答案为8或-4.20.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x的值是40或80点睛:本题考查了两条解析:40或80【解析】当这两个角是对顶角时,(2x-10) =(110-x),解之得x=40;当这两个角是邻补角时,(2x-10) +(110-x) =180,解之得x=80;∴x的值是40或80.点睛:本题考查了两条直线相交所成的四个角之间的关系及分类讨论的数学思想,两条直线相交所成的四个角或者是对顶角的关系,或者是邻补角的关系,明确这两种关系是解答本题的关键.三、解答题21.(1)∠1=40°;(2)∠AEF+∠FGC=90°;(3)α+β=300°.【解析】【分析】(1)通过AB CD ∥,得出1EGD ∠∠=,再通过2180FGE EGD ∠+∠+∠︒= 求出∠1的度数;(2)如图,过点F 作FP AB ∥ ,通过FP AB CD ∥∥,解得AEF FGC EFG ∠+∠∠=,从而求出AEF FGC ∠+∠的度数;(3)根据AB CD ∥得出180AEF CFE ∠+∠=︒,代入求出αβ+的度数.【详解】解:(1)∵AB CD ∥ ,∴1EGD ∠∠= .∵2180221FGE EGD ∠+∠+∠︒∠∠=,= ,∴21601180∠+︒+∠︒= ,解得140∠︒= ;(2)如图,过点F 作FP AB ∥ ,∵CD AB P ,∴FP AB CD ∥∥ .∴AEF EFP FGC GFP ∠∠∠∠=,= .∴AEF FGC EFP GFP EFG ∠+∠∠+∠∠==∵90EFG ∠︒= ,∴90AEF FGC ∠+∠︒= ;(3)300αβ+︒= .∵AB CD ∥∴180AEF CFE ∠+∠=︒即30900αβ-︒+-︒︒=18∴0αβ+︒=30【点睛】本题考查了平行线的性质以及判定定理,掌握平行线的内错角、同位角或同旁内角之间的关系是解题的关键.22.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120+=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.23.(1)商场购进甲种节能灯40只,购进乙种节能灯60只(2)商场共计获利1300元【解析】分析:(1)仔细审题,找到等量关系:甲、乙两种节能灯共100只,购进两种节能灯共计3300元,设出未知数,列方程组求解,(2)然后根据利润=售价-进价,可求解.详解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:30x35y3300x y100+=⎧+=⎨⎩,解得:{x40y60==.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40-30)+60×(50-35)=1300(元).答:商场共计获利1300元.点睛:此题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组求解.24.(1)每本文学名著45元,每本自然科学书20元;(2)方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【解析】【分析】(1)设每本文学名著x 元,每本自然科学书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,列出不等式组,解答即可.【详解】解:(1)设每本文学名著x 元,每本自然科学书y 元,可得:305023502020500x y x y +=⎧⎨-=⎩, 解得:4520x y =⎧⎨=⎩. 答:每本文学名著45元,每本自然科学书20元;(2)设学校要求购买文学名著z 本,自然科学书为(z+30)本,根据题意可得:30804520(30)2400z z z z ++⎧⎨++⎩……, 解得:36025z 13≤≤, 因为x 取整数,所以x 取25,26,27;方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【点睛】此题主要考查了二元一次方程组的应用,一元一次不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.25.(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x 辆,则要购买面包车(10-x )辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x 的取值范围,最后根据x 的值列出不同方案.【详解】(1)设购买轿车x 辆,那么购买面包车(10-x )辆.由题意,得7x +4(10-x )≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金。

初一数学第二章练习题

初一数学第二章练习题

初一数学第二章练习题一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 3B. 5C. 2D. 72. 一个数的相反数是它本身的数是:A. 0B. 1C. -1D. 23. 若a > 0,则下列哪个选项是正确的?A. a + (-a) = 0B. a - (-a) = 2aC. a × (-a) = -a²D. a ÷ (-a) = -14. 计算下列哪个表达式的结果为正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) ÷ (-2)5. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或0D. 可以是负数或06. 一个数的绝对值是它相反数的2倍,这个数是:A. 1B. -2C. 2D. 07. 计算下列哪个表达式的结果为负数?A. (-3) + 4B. 3 + (-4)C. (-3) - 4D. 3 - (-4)8. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 不存在9. 计算下列哪个表达式的结果为0?A. 0 + 5B. 0 - 5C. 5 - 5D. 5 × 010. 一个数的平方是它本身,这个数是:A. 1B. -1C. 0D. 1或-1二、填空题(每题4分,共20分)1. 一个数的绝对值是5,这个数可以是______或______。

2. 一个数的相反数是-4,这个数是______。

3. 一个数的倒数是1/2,这个数是______。

4. 计算表达式(-2) × (-3)的结果是______。

5. 计算表达式(-5) + (-3)的结果是______。

三、解答题(每题10分,共50分)1. 计算并简化下列表达式:5 + (-3) + 2 + (-6)。

2. 计算并简化下列表达式:(-4) × 3 ÷ (-2)。

初一数学题库(含答案)

初一数学题库(含答案)

初一数学题库(含答案)一、选择题(每题2分,共20分)1、小明用24支铅笔平均分给他的3个同学,每人分到几支?A. 4支B. 6支C. 8支D. 12支答案:B解析:24÷3=8,所以每人分到8支铅笔。

2、如果正方形的边长是3cm,则它的面积是多少平方厘米?A. 3平方厘米B. 6平方厘米C. 9平方厘米D. 12平方厘米答案:C解析:正方形的面积等于边长的平方,即3×3=9(平方厘米)。

3、以下哪个数是正整数?A. -3B. 0C. 2/3D. π答案:C解析:正整数是指大于0的整数,选项C是分数,但是是正数,所以C是正整数。

4、小明有30个水果糖和一些棒棒糖,他把它们平均分给他的4个朋友,每个人分到几个糖果?A. 7个B. 8个C. 9个D. 10个答案:C解析:总共有30个水果糖和一些棒棒糖,平均分给4个朋友,可以先把它们加起来,得到总共有m个糖果,然后用m÷4=每个人分到的糖果数,求得每个人分到9个糖果。

5、64÷4+5-2×3=?A. 11B. 12C. 13D. 14答案:A解析:按照运算顺序进行计算,先乘法后加减法。

2×3=6,64÷4=16,16+5=21,21-6=15,15不是答案,所以选A,11。

6、以下哪个数是质数?A. 8B. 11C. 14D. 15答案:B解析:质数是只能被1和本身整除的正整数,选项B的11只能被1和11整除,所以它是质数。

7、一个木块的体积是250立方厘米,密度为1.2克/立方厘米,这个木块的质量是多少克?A. 300克B. 250克C. 200克D. 150克答案:A解析:质量等于体积×密度,250立方厘米×1.2克/立方厘米=300克。

8、一个菱形的长对角线长为10cm,它的面积是50平方厘米,它的短对角线长为多少厘米?A. 4cmB. 5cmC. 6cmD. 7cm答案:B解析:菱形的面积等于两条对角线的乘积除以2,所以短对角线的长等于面积乘以2再除以长对角线的长,即50×2÷10=10(厘米)。

【易错题】初一数学上期中试题含答案 (2)

【易错题】初一数学上期中试题含答案 (2)

【易错题】初一数学上期中试题含答案 (2)一、选择题1.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯ 2.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2 3.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a 4.解方程2153132x x +--=,去分母正确的是( ) A .2(21)3(53)1x x +--= B .21536x x +--=C .2(21)3(53)6x x +--=D .213(53)6x x +--= 5.23的相反数是 ( ) A .32 B .32- C .23 D .23- 6.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A .66.6×107B .0.666×108C .6.66×108D .6.66×107 7.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1 8.下列数中,最小的负数是( )A .-2B .-1C .0D .1 9.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a+b=0B .b <aC .ab >0D .|b|<|a|10.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我11.如图所示几何体的左视图是( )A.B.C.D.12.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得x y m m =D.如果2x=3y,那么2629 55x y --=二、填空题13.如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=_____,一般地,用含有m,n的代数式表示y,即y=_____.14.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.15.已知x=3是方程ax﹣6=a+10的解,则a= .16.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a b-”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y表示的数为______.17.小华在计算14a-时,误把“-”看成“+”,求得结果为5-,则14a-=____________.18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.19.正整数按如图的规律排列,请写出第10行,第10列的数字_____.20.点,A B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:①0b a -<;②0a b +>;③a b <;④0ab >.其中正确的是____________.(填序号)三、解答题21.春天到了,为了试验某种杀菌剂的效果,实验室进行了实验,研究发现房间空气中每立方米含6310⨯个病菌,已知1毫升杀菌剂可以杀死5210⨯个这种病菌,问要将长5米、宽4米、高3米的房间内的病菌全部杀死,需多少毫升杀菌剂?22.用简便方法计算下列各式的值:(1)()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭(2)12345678979899100--++--+++--+… 23.解下列方程:(1)x-7=10 - 4(x+0.5) ; (2)132123x x -+-=. 24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?25.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10na ,可知a=9.07,n=-5,即可求解.故选B【点睛】本题考查科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2.C解析:C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.3.C解析:C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.4.C解析:C【解析】试题分析:方程两边同乘以6得2(2x+1)-3(5x-3)=6,故答案选C.考点:去分母.5.D解析:D【解析】【分析】只有符号不同的两个数互为相反数.【详解】2 3的相反数是23故选:D【点睛】考核知识点:相反数.理解定义是关键.6.C解析:C【解析】665 575 306≈6.66×108.故选C.7.D解析:D【解析】【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可.【详解】解:∵5y3-4y-6-(3y2-2y-5)= 5y3-4y-6-3y2+2y+5= 5y3-3y2-2y-1.故答案为D.【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.8.A解析:A【解析】试题分析:根据数轴上的数,左边的地总比右边的小,两个负数相比较,绝对值大的反而小.解:∵最小的负数,∴ C、D不对,->-,∵21绝对值大的反而小,∴-2最小.故选A考点:正数和负数.9.D解析:D【解析】【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.∴选D.10.D解析:D【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.11.B解析:B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.12.D解析:D【解析】【分析】根据等式性质1对A进行判断;根据等式性质2对B、C进行判断;根据等式性质1、2对D进行判断.【详解】解:A、由a=b得a+5=b+5,所以A选项错误;B、如果3a=6b﹣1,那么a=2b﹣13,所以B选项错误;C、由x=y得xm=ym(m≠0),所以C选项错误;D、由2x=3y得﹣6x=﹣9y,则2﹣6x=2﹣9y,所以262955x y--=,所以D选项正确.故选:D.【点睛】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.二、填空题13.m(n+1)【解析】【分析】【详解】解:观察可得3=1×(2+1)15=3×(4+1)35=5×(6+1)所以x=7×(8+1)=63y=m(n+1)故答案为:63;y=m (n+1)【点睛】本题考查解析:m(n+1)【解析】【分析】【详解】解:观察可得,3=1×(2+1),15=3×(4+1),35=5×(6+1),所以x=7×(8+1)=63,y=m(n+1).故答案为:63;y=m (n+1).【点睛】本题考查规律探究题.14.【解析】寻找规律:上面是1234…;左下是14=229=3216=42…;右下是:从第二个图形开始左下数字减上面数字差的平方:(4-2)2(9-3)2(16-4)2…∴a=(36-6)2=900解析:【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=900.15.8【解析】【分析】将x=3代入方程ax ﹣6=a+10然后解关于a 的一元一次方程即可【详解】∵x=3是方程ax ﹣6=a+10的解∴x=3满足方程ax ﹣6=a+10∴3a ﹣6=a+10解得a=8故答案为解析:8【解析】【分析】将x=3代入方程ax ﹣6=a+10,然后解关于a 的一元一次方程即可.【详解】∵x=3是方程ax ﹣6=a+10的解,∴x=3满足方程ax ﹣6=a+10,∴3a ﹣6=a+10,解得a=8.故答案为8.16.-9【解析】【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为:-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键解析:-9.【解析】【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:2131x =?=-,2(1)79y =?-=-.故答案为:-9.【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键. 17.33【解析】【分析】先根据错解求出a 的值再进行计算即可得解【详解】解:根据题意得14+a=-5a=-14-5=-19∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法解析:33【解析】【分析】先根据错解求出a的值,再进行计算即可得解.【详解】解:根据题意得,14+a=-5,a=-14-5=-19, ∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法,正确理解题意是解题的关键.18.28【解析】设这种电子产品的标价为x元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.19.91【解析】【分析】观察如图的正整数排列可得到第一列的数分别是14916 25…可得出一个规律:第一列每行的数都等于行数的2次方且每行的数个数与对应列的数的个数相等【详解】解:由第一列数1491625解析:91【解析】【分析】观察如图的正整数排列可得到,第一列的数分别是1,4,9,16,25,…可得出一个规律:第一列每行的数都等于行数的2次方.且每行的数个数与对应列的数的个数相等.【详解】解:由第一列数1,4,9,16,25,…得到:1=124=229=3216=4225=52…所以第10行第1列的数为:102=100.又每行的数个数与对应列的数的个数相等.所以第10行第9列的数为100﹣9=91.故答案为:91.【点睛】此题考查规律型:数字的变化类的知识,解题关键是找出两个规律,即第一列每行的数都等于行数的2次方和每行的数个数与对应列的数的个数相等.20.①③【解析】【分析】根据有理数的加法法则判断两数的和差及积的符号用两个负数比较大小的方法判断【详解】①:由数轴有0<a <3b <﹣3∴b﹣a <0①正确②:∵0<a <3b <﹣3∴a+b<0②错误③:∵0解析:①③【解析】【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【详解】①:由数轴有,0<a <3,b <﹣3,∴b ﹣a <0,①正确,②:∵0<a <3,b <﹣3,∴a+b <0②错误,③:∵0<a <3,b <﹣3,∴|a|<|b|,③正确,④:∵0<a <3,b <﹣3,∴ab <0,④错误.故答案为:①③【点睛】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.三、解答题21.需900毫升杀菌剂【解析】【分析】根据题意首先求出该房间的体积,由此即可得出该房间内的细菌数,最后进一步计算出需要多少杀菌剂即可.【详解】由题意可知该房间体积为:354360m ⨯⨯=,∴该房间中所含细菌数为:6860310 1.810⨯⨯=⨯(个),∴所需杀菌剂为:()851.810210900⨯÷⨯=(毫升),答:需900毫升杀菌剂.【点睛】本题主要考查了有理数混合运算的实际应用,熟练掌握相关方法是解题关键.22.(1)-15;(2)0.【解析】【分析】(1)可把原式变形为()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯,再逆用乘法分配律计算; (2)可将原式变形为()()()12345678979899100--++--+++--+…,进一步即可求出结果.【详解】 解:()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭=()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯=()1.5 2.7 4.8 2.5-⨯++= 1.510-⨯=-15;(2)12345678979899100--++--+++--+…=()()()12345678979899100--++--+++--+…=000+++L=0.【点睛】本题考查了有理数的加法和乘法运算律,属于常见题型,熟练掌握有理数的运算律和混合运算法则是解题关键.23.(1)3;(2)15-【解析】【分析】(1)首先将原方程去掉括号,然后进一步移项化简,最后通过系数化1即可求出解; (2)首先将原方程去掉分母,再去掉括号,然后进一步移项化简,最后通过系数化1即可求出解.【详解】(1)去括号可得:71042x x -=--,移项可得:41072x x +=+-,化简可得:515x =,解得:3x =;(2)去分母可得:()()312326x x --+=,去括号可得:33646x x ---=,移项可得:34636x x -=++,化简可得:15x -=,解得:15x =-.【点睛】本题主要考查了解一元一次方程,熟练掌握相关方法是解题关键.24.①最高分:92分;最低分70分;②低于80分的学生有5人,所占百分比50%;③10名同学的平均成绩是80分.【解析】(1)根据题意分别让80分加上记录结果中最大的数就是最高分,加上最小数就是最低分;(2)共有5个负数,即不足80分的共5人,计算百分比即可;(3)直接让80加上记录结果的平均数即可求算平均成绩.25.35【解析】 解方程1322x x +=-,可得x=1,由于解互为倒数,把x=1代入23x m m x -=+可得23x m m x -=+,可得1123m m -=+,解得m=-35. 故答案为-35. 点睛:此题主要考查了一元一次方程的解,利用同解方程,可先求出一个方程的解,再代入第二个含有m 的方程,从而求出m 即可.。

初一数学《不等式与不等式组》填空题题型大全100题 (2)

初一数学《不等式与不等式组》填空题题型大全100题一、填空题1.如果不等式组有解,那么m的取值范围是_______.2.不等式x+3<﹣1的解集是3.某商品原价50元,如果降价x %后仍不低于40元,那么x的取值范围是______________4.x=–1_____不等式13x+≤122x++1的其中一个解.(填“是”或“不是”)5.利用不等式的性质解简单的不等式,就是将不等式逐步化为________或________的形式.6.解不等式,并把解集在数轴上表示()7.7.不等式5x>2x-6的解集是__________.8.若a为有理数,且2a-的值大于1,则a的取值范围为_____.9.不等式组10620xx->⎧⎨->⎩的解集是________.10.x的2倍与y的和大于5,用不等式表示为_____.11.如果x>y,用不等号连接:x5-______y5-.12.不等式92x1->,的最大整数解是__________。

13.不等式组{2x≥−44−x>2的解集是.14.若不等式组112xx a-≤≤⎧⎨<⎩有解,那么a必须满足______.15.如果三角形的三边长分别是3 cm、(1-2a) cm 、8 cm,那么a的取值范围是________.16.不等式的正整数解为________________;17.x的3倍与4的差是负数,用不等式表示为______.18.不等式组10840xx->⎧⎨-≤⎩的解集是________.19.不等式组-1 < x + 2 < 3的解集是.20.如图所示的不等式的解集是________.21.不等式组2153112x x x -<⎧⎪⎨-+≥⎪⎩的最大整数解是__________.22.不等式组:的解集在数轴上可表示为( )A .B .C .D .23.已知实数x ,y ,a 满足x +3y +a =4,x ﹣y ﹣3a =0.若﹣1≤a ≤1,则2x +y 的取值范围是_____.24.x 与7的差是正数,用不等式表示为_______. 25.不等式135122x x -≤-的正整数解是 . 26.已知a >b ,则12a +c _________12b +c .(填“>”、“<”或“=”) 27.x 的3倍与5的和不小于-3相反数,用不等式表示为________. 28.若32527m x-->是一元一次不等式,则m= 。

初一数学实数填空题题型大全100题 (2)

初一数学实数填空题题型大全100题一、填空题1x 的取值范围是_________.2.已知21a -的平方根是331a b ±+-,的算术平方根是4=_____.3 1.8308,==填空(1=_____(2)若0.18308,=则x=___4.如果一个数的平方根是1a +与213a -,那么这个数是_______________________________。

5≈__________.6.已知一个正数的两个平方根分别是2m-6和3+m,则(-m)2的值为____________.72(1)0y +=,则x y -=______.8.计算21-+= _________.9________________________.10.对于任意有理数a 、b ,规定:a ☆b=-b a 和a ★b=a b-1,那么[(-2)★3]☆1=______. 11.已知4a 1+的算术平方根是3,则a 10-的立方根是______ .12.已知:(x 2+y 2+1)2﹣4=0,则x 2+y 2= .13.如图,数轴上,AB =AC ,A ,B 和﹣1,则点C 所对应的实数是_____.14.若____.15.在求1+3+32+33+34+35+36+37+38的值时,李敏发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38①, 然后在①式的两边都乘3,得3S =3+32+33+34+35+36+37+38+39②②-①得,3S -S =39-1,即2S =39-1,所以S =9312-. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母a(a≠0且a≠1),能否求出1+a +a 2+a 3+a 4+…+a 2 017的值?如能求出,其正确答案是__________.16.对任意四个有理数a b c d ,,,定义新运算:ab ad bc c d =- ,已知241821x x -=+,则x = .173,求2x +5的平方根_____.18|8b ﹣3|﹣27的值为________.19.我们规定:若关于x 的一元一次方程ax b =的解为b a ,+则称该方程为“和解方程”,例如:方程24x =-的解为2x =-,而-2=-4+2,则方程24x =-为“和解方程”.(1)若关于x 的一元一次方程3x m =是“和解方程”,则m 的值为_______;(2)若关于x 的一元一次方程2x mn n -=+是“和解方程",则方程的解为______(解中不含有m n 、).20.已知﹣1<a ,则a 可取的整数值为_____.21.若│x 2-则x+ y= _______.22.满足不等式x x 共有_______个.23.(−4)2的平方根是_______,√81的算术平方根是______.24.为了求1+2+22+23+…+22016的值,可令S=1+2+22+…+22016,则2S=2+22+23+24+…+22017,因此2S –S=22017-1,所以1+2+22+23+…+22016=22017-1。

初一数学整式精选题

n-3一、填空题:(每题2分,共30分)1、多项式2332320.53x y x y y x ---+π-9是 次 项式,关于字母y 的最高次数项是 ,系数是 ,关于字母x 的最高次项的系数 ,把多项式按x 的降幂排列 。

常数项是 。

2、若a +b =0,则多项式a 3+a 2b -ab 2-b 3的值是 。

3、整式n m y x 12+-m+n (m 、n 为整数)是 次 项式。

4、如果A 是m 次多项式,B 是n 次多项式,则A+B 一定是次数 整式5、如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 。

6、若2a m b 2m+3n 与a 2n -3b 8的和仍是一个单项式,则m 与 n 的值分别是 。

7、整式8)1(32x -是 次 项式,其中x 2的系数是 。

8、如果2-(m +1)a +a 是关于a 的二次三项式,那么m ,n 应满足的条件是 。

9、当k=______时,多项式22x -7kxy+23y +7xy+5y 中不含xy 项。

10.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a 、n 和m 之间的关系为 。

11、若多项式3x ²-2(5+y-2x ²)+mx ²的值与x 的值无关,则m 等于 。

12、若单项式421m a b -+与272m m a b +-是同类项,则m 的值为 。

13、单项式233xy z π-的系数是 ,次数是 。

14、已知-x+3y =5,则5(x -3y )2-8(x -3y )-5的值是 。

15、观察下列等式9-1=816-4=1225-9=1636-16=20……这些等式反映自然数间的某种规律n (n ≥1)表示自然数,用关于n 的等式表示这个规律为: 。

二、判断题:(每题1分,共5分)1、-7πr ²h 的系数是-7。

初一数学竞赛(二)

初一数学思维拓展(三)----(有理数2)一、 填空题:1、任何整数的平方的个位数字都不可能是哪些数字___________。

2、如果一个数的平方等于它的绝对值,那么这个数是_____。

3、(1-2+3-4+5-6+7-8+9-10)÷(0.1+0.2+0.3+0.4+0.5+0.6+0.7+0.8+0.9)= 。

二、选择题:1、数轴上表示整数的点叫整点,某数轴单位长度为1cm ,若在数轴上随意画出一条长为2001cm 的线段AB ,则线段AB 盖住的整数点的个数为( )A. 2000个B. 2001个C. 2000或2001个D. 2001或2002个2、在绝对值小于100的整数中,可以写成整数平方的数及整数立方的数共有( )A. 16个B. 17个C. 18个D. 19个三、某国股民星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:已知买进股票时付了1.5%的手续费,卖出时还需付成交额1.5%的手续费和1%的交易税,如果周六收盘前将全部股票卖出,他的收益情况如何?四、已知: A=.90123456788901234567 B=90123456778901234566.试比较A 与B 的大小.五、在1998后面写一串数字.写下的每个数字都是它前面两个数字乘积的个位数.那么从这串数字的第一位数字1开始向右数.问一直数到1989个数字是多少?例1. 如图: 是一个五边形的点阵.它的中心是一个点.算做第一层,第二层是每边两个点,第三层是每边三个点. ……若这个五边形共有100层.试求点阵中点的总数.六、有一串真分数,,...54,53,52,51,43,42,41,32,31,21 那么第100个真分数是几分之几.七、 计算:1051011171311391951⨯+⋯+⨯+⨯+⨯八、 计算:2019181543143213211⨯⨯+⋯+⨯⨯+⨯⨯+⨯⨯九、 计算:(1)、23333 (2)、1111111111×9999999999十、 已知:1999减去它的21,再减去余下的31,再减去余下的41,……,依此类推,一直到减去余下的19991,那么最后剩下的数是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、细心填一填(每题3分,共30分)
11、计算:2-= 12、写一个..比-1小的有理数 (只需写出一个即可)。

13、绝对值最小的有理数是 。

14、猜一猜:七上八下= (打一分数)。

15、若一袋大米的标准质量为50千克,超过标准部分用正数表示,不是部分用负数表
示,现有一袋大米的质量记作+2千克,那么这袋大米的实际质量为 千克。

16、在空格内填上一个数,使等式成立:52- +10=24。

17、计算:=⨯-÷-3
1)3()1( 18、在数轴上,点A 表示的有理数是-2,点B 与点A 的距离为4个单位长度,且点
B 在点A 的右边,则点B 表示的有理数是 。

19、有一种“24点”游戏,其游戏规则是:任取1~13之间的4个自然数,将这4个数
(每个数且只能用一次)进行加减乘除四则运算,使运算结果为24,例如,对1,
2,3,4可作运算:(1+2+3)×4=24[注意上述运算与4×(2+3+1)应视作相
同方法的运算]。

现有数3,4,-6,10,请运用上述规则,写出一种运算式子,
使其结果等于24。

运算式子如下: 。

(只需写出算式)
20、在奥运五环图案内,分别填写五个数a ,b ,c ,d ,e ,如其中a 、b 、
c 是三个连续偶数(a <b ),
d ,
e 是两个连续..
奇数(d <e ),且满足a +b +c =d +e ,例如
请你在0~20之间选择另一组符合条件的数填入在
三、细心分一分(本题6分)
21、把下列各数填入相应的横线上:
15,6
5,0,-21,-0.6,2007 正整数:
负分数:
有理数:
二、填空题(本题共有8题,每空3分,满分30分)
13、单项式-a3的次数是;单项式
2
3
8
x y
的系数是。

14、据有关资料显示,长江三峡工程电站的总装机容量是18200000千瓦,请你用科学记数
法表示电站的总装机容量,应记为________ 千瓦。

15、规定了___________________________________ 的直线叫数轴。

16、抽查四个零件的长度,超过为正,不足为负:(1)-0.3;(2)-0.2;
(3)0.4;(4)0.05.则其中误差最大的是。

(填序号)
17、如果x2=64= 。

18、一个点从数轴上的原点出发,先向右移动3个单位长度,再向左移动8个单位长度到达P点,那么P点所表示的数是_________。

19、小明和小张在玩“24点”游戏时,小明抽到了以下4个数:12,-12,3,-1。

请写出
运算结果为24的一个算式(可用乘方):。

20、用火柴棒按下图的方式搭三角形。

(1)(2)
(3)(4)
照这样搭下去,搭5个这样的三角形要用根火柴棒;搭n个这样的三角形要用根火柴棒(用含有n的代数式表示)。

二、填空题(本题共6小题,每小题3分,共18分)
11、当 时,分式21
x -没有意义. 12、写出一个解为23
x y =⎧⎨=⎩的二元一次方程组: .
13、光的速度约为5310/⨯千米秒,太阳光照射到地球上大约需要2510⨯秒,则地球与太
阳之间的距离为 千米(用科学记数法表示).
14、计算:y x x y x y
---= . 15、已知()2220a b a -++=,则32a b -的值是_____________.
16、如果不论R 是何值,1x =-总是关于x 的方程2123
Rx a x bR +--=的解,则a = ,b = .。

相关文档
最新文档