光电检测电路的设计

合集下载

微弱光信号的光电探测放大电路的设计

微弱光信号的光电探测放大电路的设计

微弱光信号的光电探测放大电路的设计对于各种微弱的被测量,例如弱光、弱磁、弱声、小位移、小电容、微流量、微压力、微振动和微温差等,一般都是通过相应的传感器将其转换为微电流或低电压,再经放大器放大其幅值以反映被测量的大小。

但是,由于被测量的信号很微弱,传感器的本底噪声、放大电路及测量仪器的固有噪声以及外界的干扰往往比有用信号的幅值大的多,同时,放大被测信号的过程也放大了噪声,而且必然还会附加一些额外的噪声,例如放大器的内部固有噪声和外部干扰的影响,因此,只有在有效地抑制噪声的条件下增大微弱信号的幅值,才能提取出有用信号。

本文针对检测微弱光信号的光电二极管放大电路,综合分析了其电路噪声、信号带宽及电路稳定性,在此基础上设计了一种低噪声光电信号放大电路,并给出电路参数选择方法。

1 基本电路光电二极管作为光探测器有两种应用模式如图1所示。

(1)光伏模式,如图1 (a)。

此时,光电二极管处于零偏置状态,不存在暗电流,低噪声,线性度好,因而适于精密领域。

本文就是以这种模式为例进行分析,实际应用中,这个电路一般还需在Rf上并联一个小电容Cs,从而使电路稳定。

(2)光导模式,如图1(b)。

这种模式需要给光电二极管加反向偏置电压,因而存在暗电流,产生噪声电流,同时因为非线性,一般应用在高速场合。

当光照射到光电二极管时,光电二极管产生一个与照明度成比例的微弱电流Ip,该电流流过跨接在放大器负输入端和输出端的反馈电阻Rf,将运算放大器视为理想放大器,根据理想运算放大器输入端的“虚断”特性,从而有E0=IpRf。

可以看出,光电二极管放大电路实际上是一个I/V转换电路。

这个电路看起来非常简单,只需一个反馈电阻,一个光电二极管和一个放大器便可实现。

从输出电压的线性表达式很容易推出,使反馈电阻Rf增大,将使得输出电压也成比例的增大。

经之前分析时,一般给出其典型值为100MΩ。

在下面的分析我们将看到,反馈电阻不但影响信号的带宽,而且影响整个电路噪声。

第4章光电信号检测电路1

第4章光电信号检测电路1

o
U b1
Ub2
Ub3 Uo 大的偏置电压会引起光电
二极管的反向击穿。
利用图解法确定输入电路的负载电阻和反向偏 置电压大小时,应根据输入光通量的变化范围和输 出信号的幅度要求使负载线稍高于转折点M,以便 得到不失真的最大电压输出,同时保证反向偏压不 大于器件的最大工作电压Umax。
2、解析计算法:对光电器件的非线性伏安特性进 行分段折线化,称为折线化伏安特性。
在线段MN有关系:
arctan G0
G0U0 GU0 Smax
O
U0
由此可得:
U0

S max G0 G

arctan G
N
Ub U0
arctan GL
0 Ub U
G0

G
S max U0
2、计算负载电阻和偏置电压:
i
为保证最大线性输出 条件,负载线和对应的伏
M I max
图解法的应用:
1、负载电阻的影响分析:
图中给出了Ub不变时, RL的大小对输出信号的影响:
io
RL1 RL2 RL3
RL 2
RL1
RL3 M Q
输入光通量不变时,负
0 载电阻的减小会增大输出信

0 0


号电流,而减小输出电压。
同时负载电阻的减小会受到
最大工作电流和功耗的限制。
5 10
U /V
15
光电倍增管
光电二极管
光电三极管
1、图解计算法:利用包含非线性元件的串联电路 的图解法对恒流源器件的输入电路进行计算。

U
I Ub
Ub
io
RL
I

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案目录一、内容描述 (2)二、光电二极管基本知识 (3)1. 光电二极管的工作原理 (4)2. 光电二极管的特性与参数 (4)三、光电二极管检测电路的工作原理 (6)1. 光电检测电路的基本概念 (7)2. 光电检测电路的工作原理详解 (7)四、设计方案 (9)1. 设计目标及要求 (10)2. 电路设计 (11)(1)电路拓扑结构 (12)(2)元器件选择与参数设计 (13)3. 信号处理与放大电路 (15)(1)信号输入与处理电路 (16)(2)信号放大电路 (17)4. 电源及辅助电路设计 (18)(1)电源电路设计 (20)(2)保护及指示电路设计 (21)五、实验验证与优化 (22)1. 实验设备与工具准备 (23)2. 实验操作流程及步骤说明 (24)3. 数据记录与分析处理 (25)4. 电路性能评估与优化建议 (26)六、实际应用场景及推广价值 (27)1. 实际应用场景分析 (28)2. 推广价值及市场前景展望 (29)七、总结与展望 (30)一、内容描述光电二极管检测电路是一种基于光电效应工作的电子检测电路,主要用于检测光信号的强度或光照度。

该电路通过光电二极管将光信号转换为电信号,进而实现对光信号的测量、监控和控制。

本文将详细介绍光电二极管检测电路的工作原理及设计方案。

在光电二极管检测电路中,光电二极管作为核心元件,其工作原理主要基于光电效应。

当光线照射到光电二极管时,光子能量被材料中的电子吸收,从而使电子从价带跃迁到导带,形成电子空穴对,产生光生电流。

通过测量光生电流的大小,可以反映光照度的强弱。

根据不同的应用场景和需求,光电二极管检测电路的设计方案也有所不同。

常见的设计方案包括:直接测量法:通过测量光电二极管产生的光生电流来直接反映光照度。

这种方法简单直观,但受限于光电二极管的响应速度和灵敏度,适用于低光照度测量。

信号放大法:通过对光电二极管产生的光生电流进行放大处理,可以提高测量灵敏度和精度。

一种实用的光电检测电路设计与实现

一种实用的光电检测电路设计与实现

e ,tas a u h s ot o n sa e k r s n , n a t— itr a a i . T i p p rp o o e o lt to n t e r i l h s s c h r mi g s w a e i a a d b d a i su b c p ct o c gl n d y hs a e rp s d a c mp ee meh d o h d s ig a d r aii go h te e t c d tc in c ru t b s d o er s a c n t e o t a b rg ss n o y t m.Ha i g s c e i n n e lz f oo lc r e e t i i, a e n t e e r h o h p il f e a e s rs se n g n p i o c h c i v n u h a v n a e ssmpi i f i u t t c u e sr n r ci ai n to gp r bl y t e d sg p l d w d l h ld o p d a t g s a i l t o r i sr t r , t g p a t l y a d s n o a i t ,h e i n i a p i i ey i t e f e f — cy c c u o c t r t i s e n i o t a f e a e sr il i rg s s n o .Th x e me t e f s te c re t e s a c r c p a t ai d rl i t fte d sg . c b e e p r n r e h o r cn s , c u a y, r c i l y a ei l y o e in i vi i c t n b a i h K e r s: a e e t n;o t a b r s n o ;a s r t n s e tu o t a f e a e s r h t ee t c d tcin cr u t y wo d g s d tc i o p i l e e s r b o i p c r m p i l i rg s s n o ;p o o lcr ee t i i c f i p o c b i o c

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案光电二极管检测电路是一种将光信号转换为电信号的装置,它广泛应用于各种光学测量和控制领域。

其工作原理是基于光电二极管的光电效应,通过将光信号照射到光电二极管上,使其产生电流输出,从而实现对光信号的检测。

设计一种光电二极管检测电路需要考虑以下几个方面:1.光电二极管的选择:要根据具体的应用需求选择合适的光电二极管。

通常,选择感光面积大、光谱响应范围广、响应速度快、噪声低的光电二极管。

2.光电二极管的放大电路:由于光电二极管输出的光电流较小,需要经过放大电路放大后才能得到可用的电信号。

常见的放大电路有共射放大电路和差动放大电路。

共射放大电路适用于单端输入,输出电压幅度大,但可能存在信号漂移和温漂的问题;差动放大电路适用于双端输入,具有较高的共模抑制比,但需要两个光电二极管。

3.滤波电路和信号处理:为了滤除噪声和杂散信号,可以在输出端串联一个滤波电路,如低通滤波器或带通滤波器。

如果需要对光信号进行进一步的处理,如放大、转换、逻辑判决等,可以根据具体需求添加相应的电路模块。

4.驱动电路:光电二极管通常需要外部电路来提供正向电流,以确保其正常工作。

驱动电路可以采用简单的电流源电路,或使用恒流源,以保持光电二极管工作在恒定的工作点。

5.反馈电路:为了提高光电二极管的线性度和动态范围,可以添加反馈电路。

常见的反馈电路有负反馈和光电二极管自反馈两种。

负反馈电路可以减小非线性失真,提高稳定性和抗干扰能力;光电二极管自反馈电路可以提高光电二极管的速度和线性度。

6.实际布局和封装:在设计光电二极管检测电路时,需要考虑电路的实际布局和封装,以保证信号的完整性和稳定性。

同时,要保持电路的抗干扰能力和可靠性。

总之,光电二极管检测电路的设计需要综合考虑光电二极管的特性、放大电路、滤波电路、信号处理电路、驱动电路、反馈电路等多个方面的因素。

根据具体应用需求和预算,选择合适的器件和电路方案,并进行合理的布局和封装,可以实现高性能、低噪声和稳定可靠的光电二极管检测电路。

高速差分光电检测电路的设计

高速差分光电检测电路的设计
析 , 给 出 电路 的测试 方法及 测试 结果 . 最后
光信息或借助于光提取其他信息的重要手段【 卜引.
光 电检测就 是把调 制 到光载波 上 的有用 信号解 调 出 来, 实现光 信号 到电信 号的转 换 . 光 电检 测 的一 个应 用就是 作为 连续变 量量 子密 钥分 发系统 的信 号 接 收 器 l5. 续 变 量 量 子 密 钥 4 j连 ' 分配 实验 中采用微 弱光 脉冲代 替单光 子 脉 冲作 为信
高 速 差 分 光 电 检 测 电 路 的 设 计
陈 楚, 张雅 虹 , 黄春 晖
福州 300 ) 5 0 2
( 福州大学物理与信息工程学院 , 福建

要: 为配合连续变量量子密钥 分配实验 , 本实验设计了一个光信号检测电路 , 在参考相关设计 资料 的基础 上 , 采用新 型器
件, 实现 了光信号的高速差分检测 . 从光检测器件基本原理 人手 , 讨论实 验方案 , 再对设计 电路 的各个模块 进行分析 , 最后 给
vcs h ih s e d df r n il p ia sg a ee t n i a he e .S atn t h a i p i c l o p i l ie ,t ehg —p e i e e t tcl in l tci c i d f ao d o s v trigwi t eb s r i e fo t a h c n p c
光 电检 测技 术是 一 种 非 接触 测 量 的 高新 技 术 ,
将传统 的光 学技术 与现 代 电子 技 术 相 结合 , 获取 是
计 思想 优化 电路结 构 , 用新 型器件 , 采 设计 出一个 适 用于连续 变 量量子 密钥 分配 实验 的高速差 分光 电检 测电路 . 中从 基 本 原 理 出发 , 电路 设 计 进 行 分 文 对

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案•导读: 本文论述了光电二极管检测电路的组成及工作原理,给出了光电二极管、前置运放、反馈网络的SPICE子模型及系统模型;着重分析了系统稳定性、噪声特性以及提高稳定性和减小噪声的方法。

提供了采用通用电路摹拟软件SPICE进行相关性能摹拟的实例。

o光检测电路SPICE摹拟稳定性噪声特性•光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。

许多精密应用领域需要检测光亮度并将之转换为实用的数字信号。

光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。

在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。

而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。

看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。

为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。

本文将分析并通过摹拟验证这种典型应用电路的稳定性及噪声性能。

首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SP IC E摹拟程序,它会很形象地说明电路原理。

以上两步是完成设计过程的开始。

第三步也是最重要的一步(本文未作讨论)是制作实验摹拟板。

1 光检测电路的基本组成和工作原理设计一个精密的光检测电路最常用的方法是将一个光电二极管跨接在一个CMOS 输入放大器的输入端和反馈环路的电阻之间。

这种方式的单电源电路示于图1中。

在该电路中,光电二极管工作于光致电压(零偏置)方式。

光电二极管上的入射光使之产生的电流ISC从负极流至正极,如图中所示。

由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻RF。

输出电压会随着电阻RF两端的压降而变化。

图中的放大系统将电流转换为电压,即VOUT = ISC ×RF (1)图1 单电源光电二极管检测电路式(1)中,VOUT是运算放大器输出端的电压,单位为V;ISC是光电二极管产生的电流,单位为A;RF是放大器电路中的反馈电阻,单位为W 。

光电探测_电路实验报告

光电探测_电路实验报告

一、实验目的1. 了解光电探测的基本原理和电路组成。

2. 掌握光电探测器电路的设计方法和实验技能。

3. 熟悉光电探测器的性能测试方法,并分析实验结果。

二、实验原理光电探测器是将光信号转换为电信号的器件,其基本原理是光电效应。

当光照射到光电探测器上时,会产生光生电子,从而在探测器两端产生电信号。

本实验主要研究光电二极管和光敏电阻两种光电探测器。

三、实验仪器与设备1. 光源:LED灯、激光器等。

2. 光电探测器:光电二极管、光敏电阻等。

3. 放大器:低频放大器、高频放大器等。

4. 测量仪器:示波器、万用表、信号发生器等。

5. 实验电路板:包含光电探测器、放大器、电源等组件。

四、实验内容及步骤1. 光电二极管特性测试(1)搭建实验电路,将光电二极管与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光电二极管上。

(3)使用示波器观察光电二极管输出信号的波形和幅度。

(4)改变光源强度,观察光电二极管输出信号的变化,分析光电二极管的响应特性。

2. 光敏电阻特性测试(1)搭建实验电路,将光敏电阻与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光敏电阻上。

(3)使用示波器观察光敏电阻输出信号的波形和幅度。

(4)改变光源强度,观察光敏电阻输出信号的变化,分析光敏电阻的响应特性。

3. 光电探测器电路设计(1)根据实验要求,设计光电探测器电路,包括光电探测器、放大器、滤波器等组件。

(2)搭建实验电路,并接入电源。

(3)调整电路参数,使光电探测器电路满足实验要求。

4. 光电探测器电路性能测试(1)使用示波器观察光电探测器电路输出信号的波形和幅度。

(2)调整光源强度,观察光电探测器电路输出信号的变化,分析电路性能。

五、实验结果与分析1. 光电二极管特性测试结果(1)光电二极管输出信号随光源强度增加而增强,符合光电效应原理。

(2)光电二极管输出信号具有较好的线性关系,适合用于光电检测。

2. 光敏电阻特性测试结果(1)光敏电阻输出信号随光源强度增加而减小,符合光敏电阻特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
布。 因此,只有这些衰减环节的光谱分布尽可能地相互覆盖才
可能最充分地利用入射通量。
下页中列出了典型光源和探测器光谱的对应曲线
典型光源和探测器光谱的对应曲线
a) 相对光谱辐射亮度曲线 1-太阳光 2-日光灯 3-GaP型LED 4-GaAsP型LED 5-双波段LED 6-钨丝灯(2854K) 7-GaAs型LED
前置放大器
输入电路的设计应根据电信号的性质、大小,光学的和器 件的噪声电平等初始条件以及输出电平和通频带等技术要求来 确定电路的连接形式和工作参数,保证光电器件和后级电路最 佳的工作状态,并最终使整个检测电路满足下列技术要求:
1)灵敏的光电转换能力:使给定的输入光信号在允许的非 线性失真条件下有最佳的信号传输系数,得到最大的功率、电 压或电流输出。
I()SI ()()d
0
SI () ——探测器对波长λ的电流灵敏度
在辐射源和探测器之间存在选择性衰减环节(如介质传输、 光学系统和滤光器)时探测器的有效输出为
I()SI()a()O()f() O()d
0
式中,Φo(λ)是由辐射源发出的复合光通量, a ()、 O () f ( ) 分别是传输介质、光学系统和滤光器的透过率光谱分
为了提高传输效率,无畸变地变换光电信号,光电检测器 件不仅要和被测辐射源及光学系统,而且要和后续的电子系统 在特性和工作参数上相匹配,使每个相互连接的器件都处于最 佳的工作状态。光电检测器件和光路的匹配是在对辐射源和光 路进行光谱分析和能量计算的基础上,通过合理选择光路和器 件的光学参数来实现的,这要涉及到工程光学的内容。而光电 检测器件和电路的匹配则应根据选定的光电检测器件的参数, 通过正确选择和设计电路来完成。
检测器件是沟通光学和电子系统的接口环节,它既是光路 元件又是电路元件,有着光学和电子学的双重属性。作为光路 元件,它是光信号接收器,是前级光学系统的输出端口;作为 电路元件,它是信号发生器,是后续电子系统的输入端口。正 是由于利用了光电检测器件的双重属性,才建立了光路和电路 的联系,使彼此间得以连通。因此,光电检测器件类型的选择 和工作状态的确定对光电系统的工作品质至关重要,是系统设 计的一个重要问题。
2)快速的动态响应能力:满足信号通道所要求的频率选择 性或对瞬变信号的快速响应。
3)最佳的信号检测能力:具有为可靠检测所必需的信噪比 或最小可检测信号功率。
4)长期工作的稳定性和可靠性。
根据这些要求,检测电路的设计通常包括的步骤为:电路 静态计算、电路动态计算和噪声估算。
一、光电检测电路的静态设计
①使探测器有足够高的探测率 D*,以确保获得一定裕度
的信噪比。
②探测器有合适的灵敏度S,以保证对应于入射辐射通量 的微小变化,有足够幅度的电信号输出。
③使入射通量的变化中心处于探测器光电特性的线性范围 内,以确保获得良好的线性检测。
典型光电检测器件的探测率比较曲线
3)使检测器件和光信号的调制形式、信号频率及波形相匹 配,以保证得到良好的时间响应和没有频率失真的输出波形。
光电检测器件的选择要点:
1)检测器件和辐射源及光学系统在光谱特性上匹配
光电系统中光载波信号的能量来源是辐射源或光源。它 们可分作两类,即自然光源和人造光源。辐射能量由光源经 测试目标、传输介质、接收光学系统被光电检测器接收。为 了提高有用光信号的能量利用,要求检测器的光谱灵敏度分 布和辐射源的光谱辐射度分布以及各传输环节的光谱透过率 分布相覆盖。实际上,在含有许多光谱分量的复合光通量 Φ(λ)作用下、探测器的复合输出I(λ)是由单色辐射通量 作用下的输出值在整个光谱分布范围内的积分值确定的,即
为作到这一点,首先要选择有良好的时间特性或频率特 性的光电器件,此外也取决于电路动态参数的选择。
4)使检测器件和输入电路在电特性上匹配以得到良好的电 信号输出。
这包括:足够的转换系数和线性范围、快速的动态响应、 良好的信噪比。
5)使检测器件具有长期工作的可靠性和对工作环境的适应 能力。
为使器件工作可靠,需要使器件在额定条件下使用。这 些条件包括额定功耗、工作电压以及工作环境温度等。器件 的装置空间、受光面积、电源设备、价格等在某些情况下甚 至是选择器件的主要考虑因素,需要根据待设计系统的要求 和条件优先选定。
几种典型光电检测器件特性参数的定性比较
2、恒流源型光电器件输射光信号的性质和大小 来选择输入电路形式,并估算电路工作状态和器件参数,在保 证信号不失真的情况下获得最大的光电转换能力,同时要使之 和后级放大电路相匹配以利于信号的进一步传输。
检测电路的静态设计包括光电器件的选择和输入电路的 静态计算。 本节内容包括:
光电检测器件的选择要点;
恒流源型光电器件输入电路的静态计算;
光伏型光电器件输入电路的静态计算;
可变电阻型光电器件输入电路的静态计算;
检测器件和放大电路的连接。
1、光电检测器件的选择要点
在以信息检测和信号传送为目的的光电系统中,光电检测 器件的作用是将载有被测信息的光辐射能量变换为电能,并在 实现这种变换的过程中完成信息的传递。
第七章 光电检测电路的设计
对于大多数的光电装置,光电器件需要通过检测电路才能 实现光电信号的变换作用。通常,光电检测电路是由光电检 测器件、输入电路和前置放大器组成。
光电检测器件 输入电路
输入电路是连接光电器件和电信 号放大器的中间环节,它的基本作用 是为光电器件提供正常的电路工作条 件,进行电参量的变换(例如将电流 和电阻转换为电压),同时完成和前 置放大器的电路匹配。
b) 相对探测灵敏度曲线 1-检测型Si光电二极管
2-照相用Si光电二极管 3-平面型Si光电池 4-光电三极管
5-台面型光电二极管 6-视见函数
7-CdS光敏电阻
2)探测器的光电转换特性和入射辐射能量的大小相匹配
根据光电系统辐射源的发光强度、传输介质和目标的传输 及调制损耗、接收光学系统接收孔径的限制及反射吸收等损失 的影响,可以计算出入射到探测器光敏面上的实际辐射能量, 通常它们是很微弱的,探测器的选择应充分利用这些有用的信 号能量,为此要考虑:
相关文档
最新文档