(完整版)算法设计与分析期末考试卷及答案a

合集下载

《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。

A.B.C.D. void backtrack (int t){if (t>n) output(x);elsefor (int i=t;i<=n;i++) {swap(x[t], x[i]);if (legal(t)) backtrack(t+1); swap(x[t], x[i]);}}void backtrack (int t){if (t>n) output(x);elsefor (int i=0;i<=1;i++) {x[t]=i;if (legal(t)) backtrack(t+1); }}10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。

F.计算约束函数constraint的时间;11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。

B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。

C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。

算法设计与分析 期末试卷 A卷(完整含答案)

算法设计与分析 期末试卷 A卷(完整含答案)
参考解答:若字符 a~h 出现的频率恰好是前 8 个 Fibonacci 数,它们的 Haffman 编码树如下图所示。
4
0 0 0 0 0 0 0 a 1 b 1 c 1 d 1 e 1 f 1
装 订 线
考试科目: 考试时间: 年级专业 三(16) 四(24)
算法设计与分析 120 分钟
姓名 一(20) 二(25)
五(15)
总分
得分 评阅人
说明: (1)请勿漏填学号姓名等信息。本试卷仅一份,请将答案直接填于试卷上,莫将试卷当草稿,想好了再 写,若空白的位置不够,标注清楚后可以写反面; (2)答题时,对算法的描述可以采用文字、公式、图、伪代码、实例说明等混合形式。请注意表达应条 理清晰,思想简洁,勿长篇累述不得要领。
后续n-i个元素比较并判定是否逐个插入堆, 最坏情况为 O(( n i ) log i ) , 最后对i个堆中元素逐个输出堆顶 元素需要 O(i log i ) ,合计后略去低阶项为 O(n log i ) 。
得分 二、简答题(共5小题,每题5分,共25分) 1、请将下列函数的阶按上升顺序排列。 (5分)
算法 1 Loop1(n) s=0; for(i=1;i<=n;i++) for(j=1;j<=i;j++) s=s+i*j;
算法1:O(
);
算法 2 Loop2(n) s=0; for(i=1;i<=n2;i++) for(j=1;j<=n;j++) s=s+i*j;
算法2:O(
);
1
算法 3 Loop3(n) s=0; for(i=1;i<=n2;i++) for(j=1;j<=i;j++) s=s+i*j;

算法设计与分析期末试卷A卷

算法设计与分析期末试卷A卷

算法设计与分析期末试卷A卷一、选择题1.二分搜索算法是利用(A)实现的算法。

A、分治策略B、动态规划法C、贪心法D、回溯法解析:二分搜索是一种基于分治策略的算法。

2.回溯法解旅行售货员问题时的解空间树是(A)。

A、子集树B、排列树C、深度优先生成树D、广度优先生成树解析:旅行售货员问题的解空间树是子集树,因为每个结点代表一个城市的集合。

3.下列算法中通常以自底向上的方式求解最优解的是(B)。

A、备忘录法B、动态规划法C、贪心法D、回溯法解析:动态规划法通常以自底向上的方式求解最优解。

4.下面不是分支界限法搜索方式的是(D)。

A、广度优先B、最小耗费优先C、最大效益优先D、深度优先解析:分支界限法搜索方式包括广度优先、最小耗费优先和最大效益优先,但不包括深度优先。

5.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为(B)。

A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)解析:最优装载问题采用贪心算法的主要计算量在于将集装箱依其重量从小到大排序,因此时间复杂度为O(nlogn)。

6.分支限界法解最大团问题时,活结点表的组织形式是(B)。

A、最小堆B、最大堆C、栈D、数组解析:分支限界法解最大团问题时,活结点表的组织形式是最大堆。

7、下面问题(B)不能使用贪心法解决。

A 单源最短路径问题C 最小花费生成树问题B N皇后问题D 背包问题解析:N皇后问题不能使用贪心法解决。

8.下列算法中不能解决0/1背包问题的是(A)A 贪心法B 动态规划C 回溯法D 分支限界法解析:贪心法不能解决0/1背包问题。

9.背包问题的贪心算法所需的计算时间为(B)A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)解析:背包问题的贪心算法所需的计算时间为O (nlogn)。

二、填空题1.算法的复杂性有时间复杂性和空间复杂性之分。

2.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有穷性四条性质。

(完整word版)计算机算法设计与分析期末试题4套(含答案)

(完整word版)计算机算法设计与分析期末试题4套(含答案)

(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

确定性:算法中每一条指令必须有确切的含义。

不存在二义性。

只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。

输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。

输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。

算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。

效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。

一般这两者与问题的规模有关。

经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。

利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

算法设计与分析 期末试卷 A卷 完整含答案

算法设计与分析 期末试卷 A卷 完整含答案

装订线华南农业大学期末考试试卷(A卷) 2012学年第1学期 考试科目:算法设计与分析考试类型:(闭卷)考试 考试时间:120 分钟学号姓名年级专业题号一(20) 二(25) 三(16) 四(24) 五(15) 总分得分评阅人说明:(1)请勿漏填学号姓名等信息。

本试卷仅一份,请将答案直接填于试卷上,莫将试卷当草稿,想好了再写,若空白的位置不够,标注清楚后可以写反面;(2)答题时,对算法的描述可以采用文字、公式、图、伪代码、实例说明等混合形式。

请注意表达应条理清晰,思想简洁,勿长篇累述不得要领。

得分一、填空题(1~3题每空1分,第4题每空2分,共20分,结果直接填于划线处)1、化简下面f(n)函数的渐进上界表达式。

(5分)nnnf32/)(21,则____)(_________))((1OnfO322)(nnf,则____)(_________))((2OnfO33log)(nnf ,则____)(_________))((3OnfO2log42)(nnf ,则____)(_________))((4OnfOnnf3log)(5,则____)(_________))((5OnfO参考解答:)3())((1nOnfO ;)2())((2nOnfO ;)(log))((3nOnfO ;)())((24nOnfO ;)())((5nOnfO 。

2、用大O符号和关于n的渐进函数来表征如下算法Loop1至Loop3的运行时间。

(3分)算法1:O( );算法2:O( );12算法3:O( )参考解答:算法1:)(2n O ;算法2:)(3n O ;算法3:)(4n O 。

3、假设算法A 的计算时间为n n T 2)( ,现在一慢一快的两台计算机上测试算法A ,为解决规模n 的问题慢机运行算法A 花费t 秒,而另一台快机速度是慢机的256倍,则在快机上算法A 同样运行t 秒能解决n1规模,则n1和n 的关系为:n1= ;若算法B 的计算时间为2)(n n T ,其余条件不变,则n1= 。

算法设计与分析a卷及答案

算法设计与分析a卷及答案

算法设计与分析试题A及答案一.填空题:(每题4分,共20分)1.算法是指(解决问题的)一种方法或一个过程,是(若干指令的)有穷序列。

2质。

3. 贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择来达到。

4.递归函数的两大基本要素是_递归方程和边界条件_ .5.在回溯法中,一个问题的解空间是指一个大的解决方案可以看作是由若干个小的决策组成。

很多时候它们构成一个决策序列。

解决一个问题的所有可能的决策序列构成该问题的解空间.二.简答题:(每题5分,共20分)1.简述分治法所能解决的问题一般应具有的特征。

1.)该问题的规模缩小到一定的程度就可以容易地解决;2.)该问题具有最优子结构性质;3.)利用该问题分解出的子问题的解可以合并为该问题的解;4.)该问题所分解出的各个子问题是相互独立的。

2.设有待安排的8个活动的开始时间和结束时间如下表。

请采用贪心算法给出活动安排序解:将待安排的8个活动的开始时间和结束时间按结束时间的非减序排列如下:用贪心算法给出活动安排序列:1,3,6,8。

贪心选择的意义是使剩余的可安排时间段极大化,以便安排尽可能多的相容活动。

3.请描述分治法的具体过程。

将原问题划分成k 个子问题。

对这k 个子问题分别求解。

如果子问题的规模仍然不够小,则再划分为k 个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。

将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。

4. Fibonacci 数列如下定义:10()11(1)(2)1n F n n F n F n n =⎧⎪==⎨⎪-+->⎩1、 请设计一个递归算法,计算F(n)。

2、 分析算法的时间复杂性。

解 1、int fibonacci(int n) { if (n <= 1) return 1;return fibonacci(n-1)+fibonacci(n-2); }2、T(n)=T(n-1)+T(n-2)。

《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)
B. f (n) O(g(n)), g(n) O(h(n)) h(n) O(f (n)) C. O(f(n))+O(g(n)) = O(min{f(n),g(n)}) D. f (n) O(g(n)) g(n) O(f (n))
6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A) A. 最优子结构性质与贪心选择性质 B.重叠子问题性质与贪心选择性质
3. 所谓贪心选择性质是指(所求问题的整体最优解可以通过一系列局部最 优的选择,即贪心选择来达到)。
4. 所谓最优子结构性质是指(问题的最优解包含了其子问题的最优解)。 5. 回溯法是指(具有限界函数的深度优先生成法)。 6. 用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间。在任 何时刻,算法只保存从根结点到当前扩展结点的路径。如果解空间树 中 从根结点到叶结点的最长路径的长度为 h(n),则回溯法所需的计算空间通 常为(O(h(n)))。 7. 回溯法的算法框架按照问题的解空间一般分为(子集树)算法框架与
12. 用回溯法解图} 的 m 着色问题时,使用下面的函数 OK 检查当前扩展结点的
每一个儿子所相应的颜色的可用性,则需耗时(渐进时间上限)(O(mn))。
Bool Color::OK(int k) {//
for(int j=1;j<=n;j++) if((a[k][j]= =1)&&(x[j]= =x[k])) return false;
f(n)个单位时间。用 T(n)表示该分治法解规模为|P|=n 的问题所需的计算时
间,则有:T (n)

kT (n
O(1) / m)
f
(n)
n 1 n 1

算法分析与设计试卷及参考答案

算法分析与设计试卷及参考答案

算法分析与设计试卷及参考答案济南⼤学继续教育学院算法分析与设计试卷(A)学年:学期:年级:专业:学习形式:层次:(本试题满分100分,时间90分钟)⼀、单选题(每⼩题2分,共计20分。

)1. 下列情况不适合使⽤计数排序的是()。

A 要排序的数据表的数量很⼤B 要排序的数据表中有相同的关键字C 要排序的数据表基本有序D 要排序的数据表元素各不相同2. 集合{A,B}的幂集合为()。

A.{A},{B}B.{A},{B},ΦC. { {A},{B}} D {{A,B},{A},{B},Φ}3.下列字符串序列不符合字典排序的是()。

A. abc acb bca B. abc acb cbaC. bac bca abc D abc bac bca4.对于根树,出度为零的节点为()。

A0节点B根节点C叶节点D分⽀节点5.对完全⼆叉树⾃顶向下,从左向右给节点编号,节点编号为10的⽗节点编号为()。

A0B2C4D66.下列程序段的算法时间的复杂度为()。

for i ←0 to n dofor j ←0 to m do s //某种基本操作A O(n2)B O(m2)C (m+n)D O(m*n)7.三个盘⼦的汉诺塔,⾄少要执⾏移动操作的次数为 ( )。

A 1次B 3次C 6次D 7次8.与算法英⽂单词algorithm具有相同来源的单词是()。

A logarithmB algirosC arithmosD algebra9.从排序过程是否完全在内存中显⽰,排序问题可以分为()。

A稳定排序与不稳定排序B内排序与外排序C直接排序与间接排序D主排序与辅助排序10.下列()不是衡量算法的标准。

A时间效率B空间效率C问题难度D适应能⼒⼆、简答题(每题8分,共计24分。

)1.贪婪技术的基本思想是什么?它有哪些应⽤(给出2种)?2. 拓扑排序的基本思想是什么?它可⽤于哪些实际问题中(给出2种)?3.是么是算法,算法与程序有什么区别?三、算法设计题(每题14分,共计56分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法EX1
输入:正整数n,n=2k。输出:⋯
ex1(n)
end EX1过程ex1(n) if n=1 then pro1(n)
else

名姓
级年
_
_系
_院学
pro2(n)
ex1(n/2) end if
return
end ex1
3.用Floyd算法求下图每一对顶点之间的最短路径长度, 计算矩阵D0,D1,D2和D3,其中Dk[i, j]表示从顶点i到顶点j的不经过编号大于
else
mid=(low high ) / 2
if (3) then return mid
else
if A[mid]<mid then
return find((4) )
else
return (5)
end if
end if
end if
end find
2.(10分)下面是求解矩阵链乘问题的动态规划算法。
算法QUICKSORT
输入:n个元素的数组A[1..n]。
输出:按非降序排列的数组A中的元素
1. quicksort(1, n)
end QUICKSORT
_
_
过程quicksort(A, low, high)
_
_
_
//对A[low..high]中的元素按非降序排序。
_号学
2. if low<high then
k的顶点的最短路径长度。
三.算法填空题(共
1.(10分)设n个不同的整数按升序存于数组A[1..n]中,求使得A[i]=i的下标i。下面是求解该问题的分治算法。
算法SEARCH
输入:正整数n,存储n个按升序排列的不同整数的数组A[1..n]。输出:A[1..n]中使得A[i]=i的一个下标i,若不存在,则输出no solution。
(3)f(n)= n/logn-1g(n)=2 n
(4)f(n)=2nn2g(n)=3n
(5)f(n)=log3ng(n)=log2n
2.下面是一个递归算法,其中,过程pro1和pro2的运算时间分别是1和log2n。给 出该算法的时间复杂性T(n)满足的递归方程,并求解该递归方程,估计T(n)的阶(用表示)。
_
_
end if
_
__
end for
A[i] A[1]
w =i
return w, A end SPLIT
二.计算题和简Байду номын сангаас题(每小题
1.用O、、 表示函数f与g之间阶的关系,并分别指出下列函数中阶最低和最高 的函数:
(1)f (n)=100g(n)=100n
(2)f(n)=6n+nlog ng(n)=3n
矩阵链乘问题:给出n个矩阵M1, M2,⋯, Mn, Mi为riri+1阶矩阵,i=1, 2,⋯n,求计算M1M2⋯Mn所需的最少数量乘法次数。
记Mi, j=MiMi+1⋯Mj, i<=j。设C[i, j], 1<=i<=j<=n,表示计算Mi, j的所需的最少数量乘法次数,则
0 ,i j
C[i, j]mi kinj{C[i,k-1] C[k, j] rirkrj1},i jikj
i=find ( (1) )
if i>0 then output i
else output“no solution”
end SEARCH
过程find (low, high)
//求A[low..high]中使得A[i]=i的一个下标并返回,若不存在,
//则返回0。
if (2) then return 0

__
13.下面算法的基本运算是运算,
该算法的时间复杂性阶
_
_
_
为()。

算法SPLIT

_

输入:正整数n,数组A[1..n]。

__
输出:⋯。
_
_
i=1

_系_
_

x=A[1]
_
_
_
for j=2 to n
__
if A[j]<=x then
_院
i=i+1

_
_
if i j then A[i] A[j]
f (n) d , n n0
f(n) af(n/c) g(n) , n n0
其中,g(n)表示。
5.分治算法的基本步骤包括。6.回溯算法的基本思想是。
7.动态规划和分治法在分解子问题方面的不同点是。
8.贪心算法中每次做出的贪心选择都是最优选择。
9.PQ式的分支限界法中,对于活结点表中的结点,其下界函数值越小,优先级
10.选择排序、插入排序和归并排序算法中,算法是分治算法。
11.随机算法的一个基本特征是对于同一组输入, 不同的运行可能得到 的 结果。
12.对 于 下 面的 确 定 性 快 速 排 序 算 法 , 只 要 在 步 骤3前 加 入 随 机 化 步 骤 ,就可得到一个随机化快速排序算法,该随机化 步骤的功能是 。
3.w=SPLIT(A, low, high)

_
//算法SPLIT以A[low]为主元将
A[low..high]划分成两部
_
_
//分,返回主元的新位置。


4. quicksort (A, low, w-1)

5.quicksort (A, w+1, high)
级 年_
6.end if
线
end quicksort
一.填空题(每空
1.算法的时间复杂性指算法中的执行次数。
2.在忽略常数因子的情况下,O、和 三个符号中, 提供了算法运行时间 的一个上界。
3.设Dn表示大小为n的输入集合,t(I)表示输入为I时算法的运算时间, p(I)表示输入
I出现的概率,则算法的平均情况下时间复杂性A(n)=。
4.分治算法的时间复杂性常常满足如下形式的递归方程:
__
_
_
C[i, j]=∞
号 学
for k=i+1 to j
_
栏__
_
x= (3)
__
if x<C[i, j] then
_
(4) =x
_



end if
息姓
end for
end for


线
end for
_信_
_
return (5)
_
_
end MATCHAIN

3.(14分)下面是用回溯法求解马的周游问题的算法。
生专
_

马的周游问题:给出一个nxn棋盘,已知一个中国象棋马在
_
_
棋盘上的某个起点位置(x0, y0),求一条访问每个棋盘格点恰好
_
_
一次,最后回到起点的周游路线。 (设马走日字。)
算法MATCHAIN
输入:矩阵链长度n, n个矩阵的阶r[1..n+1],其中r[1..n]为n个矩阵的行数,r[n+1]为第n个矩阵的列数。
输出:n个矩阵链乘所需的数量乘法的最少次数。
for i=1 to n C[i, i]=(1)
for d=1 to n-1
for i=1 to n-d
_
j= (2)
相关文档
最新文档