三角函数基础练习题
初三数学三角函数基础试卷

一、选择题(每题5分,共50分)1. 在直角坐标系中,点A(3,4)关于原点的对称点为()。
A.(-3,-4)B.(-3,4)C.(3,-4)D.(3,4)2. 在锐角三角形ABC中,若∠A=30°,∠B=45°,则∠C的度数为()。
A. 60°B. 75°C. 90°D. 105°3. 在直角坐标系中,点P(2,-3)到原点的距离为()。
A. 5B. 2√5C. √5D. 34. 若sinα=1/2,则α的取值范围是()。
A. (0,π/2)B. (π/2,π)C. (π,3π/2)D. (3π/2,2π)5. 已知sinα=√3/2,cosα=-1/2,则tanα的值为()。
A. 1B. -1C. √3D. -√36. 在直角三角形ABC中,若∠C=90°,AC=3,BC=4,则AB的长度为()。
A. 5B. 7C. 8D. 107. 若sinα=1/2,cosα=√3/2,则sin(α+π/3)的值为()。
A. 1/2B. √3/2C. -1/2D. -√3/28. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为()。
A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)9. 若sinα=√2/2,cosα=√2/2,则tanα的值为()。
A. 1B. -1C. √2D. -√210. 在直角三角形ABC中,若∠A=60°,∠B=30°,则∠C的度数为()。
A. 60°B. 90°C. 120°D. 150°二、填空题(每题5分,共50分)1. 若sinα=1/2,则α的取值范围是________。
2. 在直角坐标系中,点P(-3,2)到原点的距离为________。
3. 若cosα=√3/2,则sinα的值为________。
4. 在直角三角形ABC中,若∠A=90°,AC=5,BC=12,则AB的长度为________。
三角函数的基础练习题

三角函数的基础练习题在学习三角函数时,为了加深对其概念和性质的理解,我们经常进行许多练习题。
以下是一些基础的三角函数练习题,供大家参考。
1. 计算以下三角函数的值:(a) sin(0°)(b) cos(30°)(c) tan(45°)(d) cot(60°)(e) sec(90°)(f) csc(120°)2. 计算以下三角函数的值:(a) sin(π/4)(b) cos(π/3)(c) tan(π/6)(d) cot(π/2)(e) sec(5π/4)(f) csc(7π/6)3. 根据已知条件,求解下列三角方程的解集:(a) sin(x) = 0(b) cos(2x) = 1(c) tan(x) = 1(d) cot(2x) = -1(e) sec(x) = -1(f) csc(x) = 24. 利用三角函数的和差公式,化简以下表达式:(a) sin(α + β)(b) cos(2α - β)(c) tan(π/6 + π/4)(d) cot(3π/4 - π/3)(e) sec(2x + π/3)(f) csc(5x - π/6)5. 求解下列三角方程的解集:(a) sin^2(x) - 1 = 0(b) 4cos^2(2x) = 1(c) tan^2(x) + tan(x) = 0(d) 1 + cot^2(2x) = 0(e) 2 + sec^2(x) = 0(f) csc^2(x) - 4csc(x) + 3 = 06. 使用三角函数的复合函数添加条件,求解下列三角方程的解集:(a) sin(2x) = 1/2, 0 ≤ x ≤ 2π(b) cos(3x) = -1/2, -π/2 ≤ x ≤ π/2(c) tan^2(x) = 3, -π/2 < x < π/2(d) cot(2x) = -√3, π/3 < x < π/2(e) sec^2(x) = 2, 0 < x < 3π/2(f) csc(2x) = -2, -π < x < 0通过完成这些基础的三角函数练习题,可以帮助我们巩固对三角函数的掌握程度,提高解题的能力。
高一年级数学第四章《三角函数》基础测试题

学习攻关基础测试(一)选择题(每题3分:共30分)1.在下列各角中:第三象限角是( ).(A )-540° (B )-150°(C )-225° (D )510°【提示】第三象限角α 满足180°+k ·360°<α <270°+k ·360°:k ∈Z .【答案】(B ).【点评】本题考查终边相同的角的概念.与-540°终边相同的角为180°:为轴线角:故排除(A ):与-225°终边相同的角为135°:为第二象限角:故排除(C ):与510°终边相同的角为150°:也是第二象限角:排除(D ).2.若α 是第四象限角:则π -α 是 ( ).(A )第一象限角 (B )第二象限角(C )第三象限角 (D )第四象限角【提示】由α 是第四象限角:得-α 为第一象限角:π+(-α)为第三象限角.【答案】(C ).【点评】本题考查象限角之间的关系.3.Sin 600°的值是( ).(A )21 (B )21- (C )23 (D )23- 【提示】sin 600°=sin 240°=-sin 60°=-23. 【答案】(D ). 【点评】本题是1998年高考题:主要考查诱导公式及特殊角的三角函数值.利用诱导公式可以把求任意角的三角函数值的问题转化为求某锐角的三角函数值.4.若b >a >0:且tan α =ab b a 222-:sin α =2222b a a b +-:则α 的集合是( ).(A ){α | 0<α <2π} (B ){α |2π+2k π≤α≤π+2k π:k ∈Z } (C ){α |2k π≤α≤π+2k π:k ∈Z } (D ){α |2π+2k π<α<π+2k π:k ∈Z } 【提示】由已知:tan α <0:sin α >0 :且a ≠b :即22b a -≠0:故α 是第二象限角.【答案】(D ).【点评】本题考查由三角函数值的符号确定角所在的象限.5.函数y =tan (x +3π)的定义域是( ).(A ){x ∈R | x ≠k π+6π:k ∈Z }(B ){ x ∈R | x ≠k π-6π:k ∈Z }(C ){ x ∈R | x ≠2k π+6π:k ∈Z }(D ){ x ∈R | x ≠2k π-6π:k ∈Z }【答案】(A ).【点评】本题考查正切函数定义域.6.在下列函数中:以2π为周期的函数是( ).(A )y =sin 2x +cos 4x(B )y =sin 2x cos 4x(C )y =sin 2x +cos 2x(D )y =sin 2x cos 2x【提示】可以根据周期函数的定义对四个选项逐个进行验证.【答案】(D ).【点评】本小题考查三角函数的周期性.由于sin 2(x +2π)+cos 4(x +2π)=sin (2x +π)+cos (4x +2π)=-sin 2x +cos 4x ≠sin 2x +cos 4x :排除(A ):由于sin 2(x +2π)cos 4(x +2π) =-sin 2x cos 4x ≠sin 2x cos 4x :排除(B ): 由于sin 2(x +2π)+cos 2(x +2π) =-sin 2x -cos 2x ≠sin 2x +cos 2x :排除(C ):而sin 2(x +2π)cos 2(x +2π) =sin 2x cos 2x :故选(D ).实际上y =sin 2x cos 2x =21 sin 4x :其周期为2π. 7.已知θ 是第三象限角:且sin 4 θ+cos 4 θ =95:那么sin 2θ 等于( ). (A )322 (B )-322 (C )32 (D )-32 【提示】 sin 4 θ+cos 4 θ =(sin 2 θ +cos 2 θ)2-2 sin 2 θ cos 2 θ =1-21 sin 2 2θ :得sin 2 2θ =98:再由θ 是第 三象限角:判断sin 2θ 大于0.【答案】(A ).【点评】本题考查同角三角函数公式、二倍角公式及三角恒等变形的能力.8.函数y =-3 cos (-2 x +3π)的图象可由y =-3 cos (-2x )的图象( ). (A )向左平行移动3π个单位长度得到 (B )向右平行移动3π个单位长度得到 (C )向左平行移动6π个单位长度得到 (D )向右平行移动6π个单位长度得到 【提示】y =-3 cos[-2(x -6π)] =-3 cos (-2x +3π). 【答案】(D ).【点评】本题考查三角函数的图象和性质.9.)3arctan()21arccos(23arcsin---的值等于( ). (A )2 (B )-2 (C )1 (D )-1【提示】arcsin23=3π:arcos(21-)=3π2:arctan (-3)=-3π. 【答案】(C).【点评】本题考查反正弦.、反余弦、反正切的定义及特殊角的三角函数值.10.若θ 三角形的一个内角:且函数y =x 2 cos θ -4x sin θ +6对于任意实数x 均取正值:那么cos θ 所在区间是( ).(A )(21:1) (B )(0:21) (C )(-2:21) (D )(-1:21) 【提示】对于任意实数x :函数y 均取正值必满足a >b :且判别式∆<0<π:有-1<cos θ <1.由不等式组 ⎪⎩⎪⎨⎧<⨯--><<-0cos 64)sin 4(0cos 1cos 12θθθθ解得 21<cos θ <1. 【答案】(A ).【点评】本题结合二次函数的性质考查三角函数的有关知识.(二)填空题(每题4分:共20分)1.终边在坐标轴上的角的集合是_________.【答案】{α | α =2πk :k ∈Z } 【点评】本题考查轴线角的概念.2.求8π5cos 8πcos⋅的值等于___________. 【提示】8π5cos =cos (2π+8π)=-sin 8π. 【答案】-42. 【点评】本题考查诱导公式:二倍角公式以及特殊角的三角函数值.3.tan 20°+tan 40°+3 tan 20°tan 40°的值是___________.【提示】利用公式tan(α+β ) =βαβtan tan 1tan tan -+a 的变形 tan α+tan β=tan(α+β )(1-tan α tan β):得tan 20°+tan 40°+3(tan 20°tan 40°)=tan (20°+40°)(1-tan 20°tan 40°)+3 tan 20°tan 40°=3. 【答案】3.【点评】本题通过两角和的正切公式的逆向使用考查三角恒等式的变形及计算推理能力.4.若sin (2π+α)=53:则cos 2α =__________. 【提示】依题意:cos α =53:则cos 2 α=2 cos 2 α -1=-257. 【答案】-257. 【点评】本题考查诱导公式与二倍角余弦公式.5.函数y =2 sin x cos x -2 sin 2 x +1的最小正周期T =__________.【提示】y =sin 2x +cos 2 x =2 sin (2 x +4π). 【答案】π.【点评】本题考查二倍角正弦余弦:两角和的三角函数及三角函数y =A sin (ω x +ϕ)的周期性. (三)解答题(每题10分:共50分)1.化简(θθsin 1sin 1+--θθsin 1sin 1-+)(θθcos 1cos 1+--θθcos 1cos 1-+). 【提示】解求题的关键是设法去掉根号:将无理式化为有理式:如θθsin 1sin 1+-=)sin 1)(sin 1()sin 1(2θθθ-+-=θθ22cos )sin 1(-=|cos |sin 1θθ-.其它三个根式类似. 【答案】 原式=(|cos |sin 1θθ--|cos |sin 1θθ+)(|sin |cos 1θθ--|sin |cos 1θθ+)=|cos sin |cos sin 4θθθθ. 由题设:sin θ cos θ ≠0:当sin θ 与cos θ 同号:即k π<θ<k π+2π(k ∈Z )时:原式=4: 当sin θ 与cos θ 异号:即k π<θ<k π+2π(k ∈Z )时:原式=-4. 【点评】本题考查三角函数值的符号、同角三角函数公式以及三角函数的恒等变形的能力.本题也可将结果进一步化为|2sin |2sin 4θθ直接讨论sin 2θ 符号. 2.设α 是第二象限角:sin α =53:求sin (6π37-2α)的值. 【提示】因为sin (6π37-2α )=sin (6π+6π-2α )=sin (6π-2α):只要利用已知条件:算出sin 2α:cos 2α 就可以了.【答案】∵ α 是第二象限角:sin α =53: ∴ cos α =-54: ∴ sin 2α =2 sin α cos α =-2524: cos 2α =1-2 sin 2 α =257. sin (6π37-2α )=sin (6π-2α )= sin 6π cos 2α -cos 6π sin 2α =503247+. 【点评】本题考查诱导公式:同角三角函数关系式:二倍角公式:两角和与差的正弦余弦:及计算能力.3.已知αααtan 12sin sin 22++=k (4π<α <2π):试用k 表示sin α -cos α 的值. 【提示】 先化简αααtan 12sin sin 22++=2 sin α cos α :再利用(sin α -cos α)2=1-2 sin α cos α 即可. 【答案】∵ αααtan 12sin sin 22++ =αααααcos sin 1)cos (sin sin 2++=ααααααcos sin )cos (sin cos sin 2++ =2 sin α cos α=sin 2α =k ≤1.而(sin α-cos α)2=1-sin 2α =1-k : 又4π<α <2π:于是sin α -cos α >0: ∴ sin α -cos α =k 1-.【点评】本题考查二倍角公式:同角三角函数关系及运算能力.5.求证ααα244cos cos sin 3--=1+tan 2 α +sin 2 α. 【提示一】通过将右边的式子作“切化弦”的变换.【提示二】通过化“1”进行变换:可以将sin 2 α +cos 2 α 化成1:也可以根据需要将1化成sin 2 α+cos 2 α .【答案一】右边=1+αα22cos sin +sin 2 α =ααααα22222cos cos sin sin cos ++ =ααα222cos cos sin 1+ =ααα222cos 2cos sin 22+ =ααα244cos 2)cos sin 1(2--+ =ααα244cos 2cos sin 3--=左边 【答案二】 左边=ααα244cos 2cos sin 12--+=ααααα244222cos 2cos sin )cos (sin 2--++ =ααα222cos 2cos sin 22+ =ααα222cos cos sin 1+ =ααααα22222cos cos sin cos sin ++ =αα22cos sin +1+sin 2 α =1+tan 2 α+sin 2 α=右边.【点评】本题考查三角恒等式的证明.【答案一】和【答案二】均采用了综合法:即从已知条件出发:将左边(或右边)进行恒等交换:逐步化成右边(或左边).本题也可以采用分析法:即从求证的等式出发:递推到已知.5.若函数f (x )=a +b cos x +c sin x 的图象过(0:1)与(2π:1)两点:且x ∈[0:2π]时:| f (x )|≤2:求a 的取值范围.【提示】根据函数f (x )的图象经过两个已知点:可得到b 、c 关于a 的表达式:代入f (x )的解析式中:得f (x )=a +2(1-a )sin (x +4π):再利用| f (x )|≤2:可得a 的取值范围. 【答案】∵ 函数f (x )的图象经过点(0:1)及(2π:1): ∴ ⎪⎩⎪⎨⎧==1)2π(1(0)f f 即⎩⎨⎧=+=+11c a b a . 从而b =c =1-a .∴ f (x )=a +(1-a )cos x +(1-a )sin x =a +2(1-a )sin(x +4π).由于x ∈[0:2π]:得x +4π∈[4π:43π]: ∴ sin(x +4π)∈[22:1]. ①当a ≤1时:1-a ≥0:f (x )∈[1:a +2(1-a )]:而| f (x )|≤2:有1≤f (x )≤2. ∴ a +2(1-a )≤2:即a ∈[-2:1].②当a >1时:1-a <0:f (x )∈[a +2(1-a ):1]:因f (x )≤2:得-2≤f (x )≤1.∴ -2≤ a +2(1-a ):即a ∈]2341(+, . 综上:-2≤a ≤4+23即为所求.【点评】本题考查两角和的正弦公式:三角函数的值域以及综合运用函数、不等式等有关知识解决问题的能力.。
初中数学三角函数基础练习含答案

三角函数基础练习一.选择题(共40小题)1.如图,△ABC中,∠C=90o,tan A=2,则cos A的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,sin A=,则sin B的值为()A.B.C.D.3.如图,已知点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将()A.增大B.减小C.先增大后减小D.先减小后增大4.在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.5.一艘轮船在A处测得灯塔S在船的南偏东60°方向,轮船继续向正东航行30海里后到达B处,这时测得灯塔S在船的南偏西75°方向,则灯塔S离观测点A、B的距离分别是()A.(15﹣15)海里、15海里B.(15﹣15)海里、5海里C.(15﹣15)海里、15海里D.(15﹣15)海里、15海里6.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.7.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AC的长为()A.B.m•cosαC.m•sinαD.m•tanα8.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tan A等于()A.B.2C.D.9.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.10.如图,在Rt△ABC中,直角边BC的长为m,∠A=40°,则斜边AB的长是()A.m sin40°B.m cos40°C.D.11.如图,在△ABC中,∠ACB=90°,AB=5,AC=3,则tan∠B的值为()A.B.C.D.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.13.如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,BD=2,tan∠C=,则线段AC的长为()A.10B.8C.D.14.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米15.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.116.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.17.在△ABC中,∠ACB=90°,AC=1,BC=2,则cos B的值为()A.B.C.D.18.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°19.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣520.在直角三角形中sin A的值为,则cos A的值等于()A.B.C.D.21.在Rt△ABC中,∠C=90°,AB=4,BC=3,则sin∠B的值为()A.B.C.D.22.已知在Rt△ABC中,∠C=90°,sin A=,则∠A的正切值为()A.B.C.D.23.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB长是()A.4B.6C.8D.1024.已知∠A与∠B互余,若tan∠A=,则cos∠B的值为()A.B.C.D.25.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.26.Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.27.如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,AC=5,则下列三角函数表示正确的是()A.sin A=B.cos A=C.tan A=D.tan B=28.如图,△ABC中,∠B=90°,BC=2AB,则sin C=()A.B.C.D.29.已知在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值为()A.B.C.D.30.锐角α满足,且,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°31.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.32.已知cosα=,且α是锐角,则α=()A.75°B.60°C.45°D.30°33.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=34.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3C.D.1:235.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10sin36°B.10cos36°C.10tan36°D.36.某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,则这个斜坡坡角为()A.30°B.45°C.60°D.90°37.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tan A=()A.B.C.D.38.在Rt△ABC中,AB=4,AC=2,∠C=90°,则∠A的度数为()A.30°B.40°C.45°D.60°39.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A.B.C.D.40.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠B的正切值为()A.3B.C.D.三角函数基础练习参考答案与试题解析一.选择题(共40小题)1.解:∵△ABC中,∠C=90o,∴tan A==2,∴设CB=2k,AC=k,∴AB==k,∴cos A===,故选:B.2.解:∵Rt△ABC中,∠C=90°,sin A=,∴cos A===,∠A+∠B=90°,∴sin B=cos A=.故选:A.3.解:点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将增大,故选:A.4.解:如图,∵在Rt△ABC中,∠C=90°,tan A=,∴设AC=2k,BC=k,则AB==k,∴sin B===.故选:D.5.解:过S作SC⊥AB于C,在AB上截取CD=AC,∴AS=DS,∴∠CDS=∠CAS=30°,∵∠ABS=15°,∴∠DSB=15°,∴SD=BD,设CS=x,在Rt△ASC中,∵∠CAS=30°,∴AC=x,AS=DS=BD=2x,∵AB=30海里,∴x+x+2x=30,解得:x=,∴AS=(15﹣15)(海里);∴BS==15(海里),∴灯塔S离观测点A、B的距离分别是(15﹣15)海里、15海里,故选:D.6.解:由图可知:BC=4,AB=3,∠ABC=90°,在Rt△ABC中,tan A==.故选:A.7.解:在Rt△ABC中,∠C=90°,tan B=,∴AC=BC•tan B=m•tanα,故选:D.8.解:在Rt△ABC中,∠C=90°,∴tan A=═2,故选:B.9.解:∵sinθ=,∴h=l•sinθ,故选:A.10.解:∵sin A=,∴AB=,故选:C.11.解:由勾股定理得,BC==4,∴tan∠B==,故选:D.12.解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==,故选:A.13.解:∵∠CAB=90°,AD⊥BC于点D,∴∠B+∠C=90°,∠B+∠BAD=90°,∴∠BAD=∠C.在Rt△ABD中,∠ADB=90°,BD=2,∵tan∠BAD==,∴AD=2BD=4,∴AB==2.在Rt△ABC中,∠CAB=90°,AB=2,∵tan∠C==,∴AC=2AB=4.故选:D.14.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.15.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.16.解:由勾股定理得,AC===则sin B==,故选:C.17.解:由勾股定理得,AB===,则cos B===,故选:B.18.解:∵cos A=,∴∠A=30°.故选:A.19.解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.20.解:∵在直角三角形中sin A的值为,∴∠A=30°.∴cos A=cos30°=.故选:C.21.解:如图:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin∠B=,故选:A.22.解:∵在Rt△ABC中,∠C=90°,sin A==,∴设BC=3x,AB=5x,由勾股定理得:AC==4x,∴tan A===,即∠A的正切值为,故选:D.23.解:∵∠C=90°,sin A==,BC=6,∴AB=BC=×6=10;故选:D.24.解:∵∠A与∠B互余,∴∠A、∠B可看作Rt△ABC的两锐角,∵tan∠A==,∴设BC=4x,AC=3x,∴AB=5x,∴cos∠B===.故选:B.25.解:如图所示,在Rt△ABD中,tan B==.故选:A.26.解:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:D.27.解:A、sin A==,故原题说法正确;B、cos A==,故原题说法错误;C、tan A==,故原题说法错误;D、tan B==,故原题说法错误;故选:A.28.解:∵BC=2AB,∴设AB=a,BC=2a,∴AC==a,∴sin C===,故选:D.29.解:∵∠C=90°,AB=5,AC=4,∴BC==3,∴cos B==.故选:B.30.解:∵,且,∴45°<α<60°.故选:B.31.解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.32.解:∵cosα=,且α是锐角,∴α=30°.故选:D.33.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.34.解:由题意得:某人在斜坡上走了50米,上升的高度为25米,则某人走的水平距离s==25,∴坡度i=25:25=1:.故选:A.35.解:由题意可得:sin B=,即sin36°=,故AC=10sin36°.故选:A.36.解:∵某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,∴设这个斜坡的坡角为α,故tanα==,故α=30°.故选:A.37.解:在Rt△ABC中,∠C=90°,tan A==,故选:B.38.解:在Rt△ABC中,AB=4,AC=2,∴cos A===,则∠A=45°.故选:C.39.解:过点C作CD⊥AB于点D,∵AD=3,CD=4,∴由勾股定理可知:AC=5,∴cos∠BAC==,故选:C.40.解:在Rt△ABC中,tan B==,故选:B.。
专题五 三角函数的图像与性质(基础题型)含详解

专题五三角函数的图像与性质(基础题型)一.选择题(共14小题)1.若关于x的方程2sin(2x+)=m在[0,]上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]2.三角函数y=sin 是()A.周期为4π的奇函数B.周期为的奇函数C.周期为π的偶函数D.周期为2π的偶函数3.函数y=sin(﹣2x)的单调递减区间是()A.[﹣kπ+,﹣kπ+],k∈Z B.[2kπ﹣,2kπ+],k∈ZC.[kπ﹣,kπ+],k∈Z D.[kπ﹣,kπ+],k∈Z4.已知函数f(x)=sin(2x﹣)(x∈R)下列结论错误的是()A.函数f(x)的最小正周期为πB.函数f(x)是偶函数C.函数f(x)的图象关于直线x=对称D.函数f(x)在区间上是增函数5.已知函数f(x)=|sinx|,下列结论中错误的是()A.f(x)既偶函数,又是周期函数.B.f(x)的最大值为C.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于直线x=π对称6.函数的图象的对称轴方程为()A.B.C.D.7.y=cos(x+1)图象上相邻的最高点和最低点之间的距离是()A.B.πC.2D.8.方程cosx=lgx的实根的个数是()A.1B.2C.3D.无数9.函数y=sin(2x+)是()A.周期为π的奇函数B.周期为π的偶函数C.周期为的奇函数D.周期为的偶函数10.函数y=2tan(3x﹣)的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(﹣,0)11.函数f(x)=tan(2x﹣)的单调递增区间是()A.[﹣,+](k∈Z)B.(﹣,+)(k∈Z)C.(kπ+,kπ+)(k∈Z)D.[kπ﹣,kπ+](k∈Z)12.为了得到函数y=2sin(2x+)的图象,可以将函数y=2sin2x图象()A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位D.向左平移个长度单位13.将函数y=sin2x的图象向左平移个单位长度,所得图象的函数解析式为()A.y=sin(2x+)B.y=sin(2x﹣)C.y=sin(2x+)D.y=sin(2x﹣)14.为了得到函数的图象,只需把函数y=sin3x的图象()A.向左平移B.向左平移C.向右平移D.向右平移二.填空题(共6小题)15.函数y=3cos(2x+)的最小正周期为.16.在,则函数y=tanx的值域为.17.函数的最小正周期是.18.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示,则函数的解析式为f(x)=.19.函数f(x)=Asin(ω+φ)(A>0,ω>0)的图象如图所示,则f(1)+f(2)+…+f(2016)=.20.如图是的图象,则其解析式为.三.解答题(共4小题)21.求函数y=tan(x+)的定义域、周期和单调区间.22.已知函数f(x)=tan(x﹣).(1)求函数f(x)的定义域;(2)求函数f(x)的单调区间;(3)求函数f(x)的对称中心.23.已知函数f(x)=2sin(2x﹣)(x∈R).(1)求函数f(x)的最小正周期及单调递增区间;(2)当x∈[,]时,求f(x)的最大值和最小值.24.求下列函数的单调区间:(1)f(x)=sin(x+),x∈[0,π];(2)f(x)=|tanx|;(3)f(x)=cos(2x﹣),x∈[﹣,].专题五三角函数的图像与性质(基础题型)参考答案与试题解析一.选择题(共14小题)1.若关于x的方程2sin(2x+)=m在[0,]上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]【分析】把方程2sin(2x+)=m化为sin(2x+)=,画出函数f(x)=sin (2x+)在x∈[0,]上的图象,结合图象求出方程有两个不等实根时m 的取值范围.【解答】解:方程2sin(2x+)=m可化为sin(2x+)=,当x∈[0,]时,2x+∈[,],画出函数y=f(x)=sin(2x+)在x∈[0,]上的图象如图所示;根据方程2sin(2x+)=m在[0,]上有两个不等实根,得≤<11≤m<2∴m的取值范围是[1,2).故选:C.【点评】本题主要考查方程根的存在性以及个数判断以及正弦函数的图象应用问题,体现了转化、数形结合的数学思想.2.三角函数y=sin是( )A .周期为4π的奇函数B .周期为的奇函数C .周期为π的偶函数D .周期为2π的偶函数【分析】由条件利用正弦函数的奇偶性和周期性,可得结论.【解答】解:三角函数y=sin是奇函数,它的周期为=4π,故选:A .【点评】本题主要考查正弦函数的奇偶性和周期性,属于基础题.3.函数y=sin (﹣2x )的单调递减区间是( )A .[﹣kπ+,﹣kπ+],k ∈ZB .[2kπ﹣,2kπ+],k ∈ZC .[kπ﹣,kπ+],k ∈ZD .[kπ﹣,kπ+],k ∈Z【分析】利用诱导公式可得本题即求函数y=sin (2x ﹣)的单调递增区间.令 2kπ﹣≤2x ﹣≤2kπ+,求得x 的范围,可得函数y=sin (﹣2x )的单调递减区间.【解答】解:函数y=sin (﹣2x )=﹣sin (2x ﹣)的单调递减区间,即函数y=sin (2x ﹣)的单调递增区间.令 2kπ﹣≤2x ﹣≤2kπ+,求得 kπ﹣≤x ≤kπ+,k ∈z ,故函数y=sin (2x ﹣)的单调递增区间,即函数y=sin (﹣2x )的单调递减区间为[kπ﹣,kπ+],k ∈Z ,故选:D.【点评】本题主要考查诱导公式、正弦函数的增区间,体现了转化的数学思想,属于基础题.4.已知函数f(x)=sin(2x﹣)(x∈R)下列结论错误的是()A.函数f(x)的最小正周期为πB.函数f(x)是偶函数C.函数f(x)的图象关于直线x=对称D.函数f(x)在区间上是增函数【分析】由条件利用诱导公式,余弦函数的周期性、奇偶性、单调性以及图象的对称性,判断各个选项是否正确,从而得出结论.【解答】解:函数f(x)=sin(2x﹣)=﹣cos2x,故它的最小正周期为π,故A满足条件;显然,它是偶函数,故B正确;当x=时,求得函数值y=0,不是最值,故f(x)的图象不关于直线x=对称,故C错误;在区间上,f(x)=﹣cos2x是增函数,故D正确,故选:C.【点评】本题主要考查诱导公式,余弦函数的图象和性质,属于基础题.5.已知函数f(x)=|sinx|,下列结论中错误的是()A.f(x)既偶函数,又是周期函数.B.f(x)的最大值为C.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于直线x=π对称【分析】由条件利用正弦函数的值域,可得结论.【解答】解:根据函数f (x )=|sinx |的最大值为1,可得B 不正确, 故选:B .【点评】本题主要考查正弦函数的值域,属于基础题. 6.函数的图象的对称轴方程为( )A .B .C .D .【分析】根据余弦函数的性质即可求解对称轴方程 【解答】解:函数,令,k ∈Z可得:πx=,即,k ∈Z .故选:C .【点评】本题考查了余弦函数的图象及性质,对称轴方程的求法.属于基础题.7.y=cos (x +1)图象上相邻的最高点和最低点之间的距离是( ) A .B .πC .2D .【分析】y=cos (x +1)的周期是2π,最大值为1,最小值为﹣1,即可求出y=cos (x +1)图象上相邻的最高点和最低点之间的距离.【解答】解:y=cos (x +1)的周期是2π,最大值为1,最小值为﹣1,∴y=cos (x +1)图象上相邻的最高点和最低点之间的距离是=,故选:A .【点评】本题考查了函数y=Acos (ωx +φ)的图象与性质的应用问题,是基础题.8.方程cosx=lgx的实根的个数是()A.1B.2C.3D.无数【分析】本题即求函数y=cosx的图象和y=lgx的图象的交点个数,数形结合可得结论.【解答】解:方程cosx=lgx的实根的个数,即函数y=cosx的图象和y=lgx的图象的交点个数,数形结合可得函数y=cosx的图象和y=lgx的图象的交点个数为3,故选:C.【点评】本题主要考查方程根的存在性以及个数判断,余弦函数、对数函数的图象特征,体现了转化、数形结合的数学思想,属于基础题.9.函数y=sin(2x+)是()A.周期为π的奇函数B.周期为π的偶函数C.周期为的奇函数D.周期为的偶函数【分析】由条件利用诱导公式以及余弦函数的周期性和奇偶性,可得结论.【解答】解:由于函数y=sin(2x+)=sin(2x+)=cos2x,故此函数是周期为=π的偶函数,故选:B.【点评】本题主要考查诱导公式以及余弦函数的周期性和奇偶性,属于基础题.10.函数y=2tan(3x﹣)的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(﹣,0)【分析】对称中心就是函数图象与x轴的交点或函数图象的渐近线和x轴的交点,令3x﹣=,k∈z,解得x=+,k∈z,故对称中心为(+,0 ),从而得到答案.【解答】解:∵函数y=2tan(3x﹣),令3x﹣=,k∈z,可得x=+,k∈z,故对称中心为(+,0 ),令k=﹣2,可得一个对称中心是(﹣,0),故选:C.【点评】本题考查正切函数的对称中心的求法,得到3x﹣=,k∈z 是解题的关键,属于基础题.11.函数f(x)=tan(2x﹣)的单调递增区间是()A.[﹣,+](k∈Z)B.(﹣,+)(k∈Z)C.(kπ+,kπ+)(k∈Z)D.[kπ﹣,kπ+](k∈Z)【分析】由正切函数的单调性的性质即可得到结论.【解答】解:由<2x﹣,即﹣<x<+,(k∈Z),故函数的单调性增区间为(﹣,+)(k∈Z),故选:B.【点评】本题主要考查正切函数的单调性的求解,利用正切函数的图象和性质是解决本题的关键.12.为了得到函数y=2sin(2x+)的图象,可以将函数y=2sin2x图象()A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位D.向左平移个长度单位【分析】根据三角函数的图象平移关系进行判断即可.【解答】解:由y=2sin(2x+)=2sin2(x+),可以将函数y=2sin2x图象向左平移个长度单位即可,故选:D.【点评】本题主要考查三角函数图象关系的判断,结合平移关系是解决本题的关键.13.将函数y=sin2x的图象向左平移个单位长度,所得图象的函数解析式为()A.y=sin(2x+)B.y=sin(2x﹣)C.y=sin(2x+)D.y=sin(2x﹣)【分析】直接利用函数图象的平移变换得答案.【解答】解:将函数y=sin2x的图象向左平移个单位长度,所得图象的函数解析式为y=sin2(x+)=sin(2x+).故选:A.【点评】本题考查y=Asin(ωx+φ)型函数图象的平移,是基础题.14.为了得到函数的图象,只需把函数y=sin3x的图象()A.向左平移B.向左平移C.向右平移D.向右平移【分析】由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:把函数y=sin3x的图象向右平移个单位,可得函数的图象,故选:D.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.二.填空题(共6小题)15.函数y=3cos(2x+)的最小正周期为π.【分析】根据余弦函数y=Acos(ωx+φ)的最小正周期为T=,求出即可.【解答】解:函数y=3cos(2x+)的最小正周期为T===π.故答案为:π.【点评】本题考查了余弦函数y=Acos(ωx+φ)的图象与性质的应用问题,是基础题目.16.在,则函数y=tanx的值域为[﹣1,1] .【分析】根据正切函数的图象与性质,求出x∈[﹣,]时函数y=tanx的值域即可.【解答】解:∵,∴﹣1≤tanx≤1,∴函数y=tanx的值域为[﹣1,1].故答案为:[﹣1,1].【点评】本题考查了正切函数的图象与性质的应用问题,是基础题目.17.函数的最小正周期是2.【分析】由已知中函数的解析为,我们可以求出对应ω值,代入T=,即可得到函数的最小正周期.【解答】解:∵函数∴ω=∴T==2故答案为:2【点评】本题考查的知识点是正切函数的周期性,其中根据函数的解析式求出ω值,是解答本题的关键,在解答过程中易将正切型函数的周期误认为而产生错解.18.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示,则函数的解析式为f(x)=.【分析】由题意求出A,T,利用周期公式求出ω,利用当x=时取得最大值3,求出φ,得到函数的解析式,即可.【解答】解:由题意可知A=3,T=2()=4π,ω==,当x=时取得最大值3,所以3=3sin(+φ),sin()=1,,∵,所以φ=,函数f(x)的解析式:f(x)=.故答案为:.【点评】本题是基础题,考查由y=Asin(ωx+φ)的部分图象确定其解析式,注意函数的周期的求法,考查计算能力,常考题型.19.函数f(x)=Asin(ω+φ)(A>0,ω>0)的图象如图所示,则f(1)+f(2)+…+f(2016)=0.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,可得函数的解析式,再利用利用正弦函数的周期性求得要求式子的值.【解答】解:由题意和图象可得A=2,T=6,则T=8,则ω=,∴f(0)+f(1)+f(2)+f(3)+…+f(8)=0,∴f(0)+f(1)+f(2)+f(3)+…+f(2016)=252×0=0,故答案为:0.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,利用正弦函数的周期性求函数的值,属于基础题.20.如图是的图象,则其解析式为.【分析】由图象可得A值,结合周期公式可得ω,代点可得φ值,可得解析式.【解答】解:由图象可得A=2,周期T=﹣(﹣)=2π,由周期公式可得ω=1,∴y=2sin(x+φ),代点(﹣,0)可得0=2sin(﹣+φ),结合0<φ<可得φ=故答案为:【点评】本题考查正弦函数的图象和性质,属基础题.三.解答题(共4小题)21.求函数y=tan(x+)的定义域、周期和单调区间.【分析】利用正切函数的定义域,求出函数的定义域,通过正切函数的周期公式求出周期,结合正切函数的单调增区间求出函数的单调增区间.【解答】解:由,解得.∴定义域.周期函数,周期.由,解得∴函数的单调递增区间为.【点评】本题是基础题,考查正切函数的基本知识,单调性、周期性、定义域,考查计算能力.22.已知函数f(x)=tan(x﹣).(1)求函数f(x)的定义域;(2)求函数f(x)的单调区间;(3)求函数f(x)的对称中心.【分析】(1)由题意利用正切函数的定义域可得x﹣≠kπ+,求得x的范围,可得函数的定义域.(2)根据题意利用正切函数的单调则区间可得kπ﹣<x﹣<kπ+,由此求得x的范围,得到f(x)的增区间.(3)利用正切函数的图象的对称性,求得函数f(x)的对称中心.【解答】解:(1)对于函数f(x)=tan(x﹣),令x﹣≠kπ+,求得x≠kπ+,k∈Z,故函数的定义域为{x|x≠kπ+,k∈Z}.(2)令kπ﹣<x﹣<kπ+,求得π﹣<x<kπ+,可得函数的增区间为(π﹣,kπ+),k∈Z.(3)令x﹣≠,求得x≠+,k∈Z,故函数的对称中心为(+,0),k∈Z.【点评】本题主要考查正切函数的定义域、单调区间、以及图象的对称性,属于基础题.23.已知函数f(x)=2sin(2x﹣)(x∈R).(1)求函数f(x)的最小正周期及单调递增区间;(2)当x∈[,]时,求f(x)的最大值和最小值.【分析】(1)根据正弦型函数求出f(x)的最小正周期和单调递增区间;(2)求出x∈[,]时2sin(2x﹣)的取值范围,即得f(x)的最大、最小值.【解答】解:(1)函数f(x)=2sin(2x﹣),∴函数f(x)的最小正周期为T==π;令2kπ﹣≤2x﹣≤2kπ+,k∈Z;解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)单调递增区间是[kπ﹣,kπ+],k∈Z;(2)当x∈[,]时,2x﹣∈[,],∴sin(2x﹣)∈[﹣,1],∴2sin(2x﹣)∈[﹣,2],∴f(x)的最大值是2,最小值是﹣.【点评】本题考查了正弦型函数的图象与性质的应用问题,是基础题.24.求下列函数的单调区间:(1)f(x)=sin(x+),x∈[0,π];(2)f(x)=|tanx|;(3)f(x)=cos(2x﹣),x∈[﹣,].【分析】(1)直接利用整体思想求出正弦型函数的单调区间.(2)直接利用整体思想求出正切型函数的单调区间.(3)直接利用整体思想求出余弦型函数的单调区间.【解答】解:(1)f(x)=sin(x+),x∈[0,π];令:(k∈Z),解得:(k∈Z),由于:x∈[0,π];则:函数的递增区间为:[0,]令:(k∈Z),解得:(k∈Z),由于:x∈[0,π];则:函数的递减区间为:[](2)f(x)=|tanx|;由于y=tanx的单调增区间为:(k∈Z),所以:函数的单调增区间为:(k)(k∈Z),函数的单调减区间为:(k∈Z),(3)f(x)=cos(2x﹣),x∈[﹣,].令:,(k∈Z),解得:,(k∈Z),当k=0时,函数的单调增区间为:[].令:,(k∈Z),解得:,(k∈Z),故函数的单调减区间为:[﹣,﹣]和[].【点评】本题考查的知识要点:三角函数的性质单调性的应用.。
(完整版)三角函数基础练习题答案

三角函数基础练习题1.如果,那么与终边相同的角可以表示为21α=-αA . B .{}36021,k k ββ=⋅+∈Z {}36021,k k ββ=⋅-∈Z C .D .{}18021,k k ββ=⋅+∈Z {}18021,k k ββ=⋅-∈Z 参考答案:B考查内容:任意角的概念,集合语言(列举法或描述法)认知层次:b 难易程度:易2.一个角的度数是,化为弧度数是405A .B .C .D .π3683π47π613π49解:由,得,所以180π=1180π=94054051804ππ=⨯=参考答案:D考查内容:弧度制的概念,弧度与角度的互化认知层次:b 难易程度:易3.下列各数中,与cos1030°相等的是A .cos50°B .-cos50°C .sin50°D .- sin50°解:,1030336050=⨯- cos1030cos(336050)cos(50)cos50=⨯-=-=参考答案:A考查内容:任意角的概念,的正弦、余弦、正切的诱导公式(借助单位圆)πα±认知层次:c 难易程度:易4.已知x ∈[0,2π],如果y = cos x 是增函数,且y = sin x 是减函数,那么A .B .02x π≤≤xππ≤≤2C .D .32x ππ≤≤23x ππ≤≤2解:画出与的图象sin y x =cos y x =参考答案:C考查内容:的图象,的图象,正弦函数在区间上的性质,余弦sin y x =cos y x =[0,2π]函数在区间上的性质[0,2π]认知层次:b难易程度:易5.cos1,cos2,cos3的大小关系是( ).A .cos1>cos2>cos3B .cos1>cos3>cos2C .cos3>cos2>cos1D .cos2>cos1>cos3解:,而在上递减,01232ππ<<<<<cos y x =[0,]π参考答案:A考查内容:弧度制的概念,的图象,余弦函数在区间上的性质cos y x =[0,2π]认知层次:b 难易程度:易6.下列函数中,最小正周期为的是().πA . B .cos 4y x =sin 2y x =C . D . sin2xy =cos4xy =解:与的周期为sin y x ω=cos y x ω=2T πω=参考答案:B考查内容:三角函数的周期性认知层次:a 难易程度:易7.,,的大小关系是( ).)( 40tan -38tan56tan A . B .>-)( 40tan > 38tan56tan >38tan >-)(40tan56tan C . D .>56tan >38tan )(40tan ->56tan >-)(40tan38tan 解:在上递增,而tan y x =(,22ππ-9040<38<56<90-<-参考答案:C考查内容:的图象,正切函数在区间上的性质tan y x =ππ,22⎛⎫-⎪⎝⎭认知层次:b 难易程度:易8.如果,,那么等于( ).135sin =α),2(ππα∈tan αrA .B .C .D .125-125512-512解:由,得,135sin =α),2(ππα∈12cos 13α==-sin 5tan cos 12ααα==-参考答案:A考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=sin tan cos xx x=认知层次:b 难易程度:中9.函数图象的一条对称轴方程是)62sin(5π+=x y A . B . C . D .12x π=-0x =6x π=3x π=解:函数图象的对称轴方程是,即(),)62sin(5π+=x y 262x k πππ+=+26k x ππ=+Z k ∈令得0k =6x π=参考答案:C考查内容:正弦函数在区间上的性质[0,2π]认知层次:b 难易程度:易10.函数y = sin 的图象是中心对称图形,它的一个对称中心是34x π⎛⎫-⎪⎝⎭A .B ., 012π⎛⎫-⎪⎝⎭7, 012π⎛⎫- ⎪⎝⎭C .D . 7, 012π⎛⎫⎪⎝⎭11, 012π⎛⎫⎪⎝⎭解:设得函数图象的对称中心是(),34x k ππ-=sin(3)4y x π=-(,0)312k ππ+Z k ∈ 令得,2k =-7, 012π⎛⎫- ⎪⎝⎭参考答案:B考查内容:正弦函数在区间上的性质[0,2π]难易程度:中11.要得到函数y = sin 的图象,只要将函数y = sin2x 的图象( ).23x π⎛⎫+⎪⎝⎭A .向左平移个单位 B .向右平移个单位3π3πC .向左平移个单位 D .向右平移个单位6π6π解:,sin 2sin 236y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭6x x π→+参考答案:C考查内容:参数,,对函数图象变化的影响A ωϕsin()y A x ωϕ=+认知层次:a 难易程度:易12.已知tan ( 0 << 2),那么角等于( ).ααπαA .B .或C .或D .6π6π76π3π43π3π解:,,令或可得tan α=6k παπ⇒=+Z k ∈0k =1k =参考答案:B考查内容:任意角的正切的定义(借助单位圆)认知层次:b 难易程度:易13.已知圆的半径为100cm ,是圆周上的两点,且弧的长为112cm ,那么O ,A B AB 的度数约是( ).(精确到1)AOB ∠︒A . B .C .D .646886110解:11211218064100100απ==⨯≈参考答案:A考查内容:弧度与角度的互化认知层次:b14.如图,一个半径为10米的水轮按逆时针方向每分钟转4圈.记水轮上的点P 到水面的距离为米(P 在水面下则为负数)d d ,如果(米)与时间(秒)之间满足关系式:d t ,且当P 点()sin 0,0,22d A t k A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭从水面上浮现时开始计算时间,那么以下结论中错误的是A .B .C .D .10=A 152πω=6πϕ=5=k 解:周期(秒),角速度,振幅,上移60154T ==215πω=10A =5k =参考答案:C考查内容:用三角函数解决一些简单实际问题,函数的实际意义,三角sin()y A x ωϕ=+函数是描绘周期变化现象的重要函数模型认知层次:b 难易程度:难15.sin(-)的值等于__________.196π解:,19534666πππππ-=--=-+1951sin(sin(4)662πππ-=-+=参考答案:12考查内容:的正弦、余弦、正切的诱导公式πα±认知层次:c 难易程度:易16.如果< θ < π,且cos θ = -,那么sin 等于__________.2π353πθ⎛⎫+ ⎪⎝⎭不做考查内容:同角三角函数的基本关系式:,两角和的正弦公式22sin cos 1x x +=认知层次:c 难易程度:中17.已知角的终边过点,那么的值为__________.α(4, 3)P -2sin cos αα+10m d5mP解: , 5r OP ===3422sin cos 2()555αα+=⨯-+=-参考答案:52-考查内容:任意角的正弦的定义(借助单位圆),任意角的余弦的定义(借助单位圆)认知层次:b 难易程度:中18.的值等于__________.75tan 175tan 1-+不做参考答案:3-考查内容:两角和的正切公式认知层次:c 难易程度:易19.函数y = sin(x +)在[-2π,2π]内的单调递增区间是__________.124π解:令,解得,令得1222242k x+k πππππ-≤≤+34422k x k ππππ-≤≤+0k =参考答案:[-,]32π2π考查内容:正弦函数在区间上的性质,不等关系,子集[0,2π]认知层次:b 难易程度:中20.已知sin +cos =,那么sin 的值是__________.αα532α参考答案:-1625考查内容:同角三角函数的基本关系式:22sin cos 1x x +=认知层次:b 难易程度:易21.函数y = sin x cos x 的最小正周期是__________.参考答案:2π考查内容:两角和的正弦公式,三角函数的周期性认知层次:c 难易程度:易22.已知,,那么tan2x 等于__________.(, 0)2x π∈-4cos 5x =参考答案:247-考查内容:同角三角函数的基本关系式:,二倍角的正切公式22sin cos 1x x +=认知层次:c 难易程度:易23.已知 ,.π02α<<4sin 5α=(1)求的值;tan α(2)求的值.(不做)πcos 2sin 2αα⎛⎫++⎪⎝⎭参考答案:(1)因为,, 故,所以.π02α<<4sin 5α=3cos 5α=34tan =α(2).πcos 2sin 2αα⎛⎫+-=⎪⎝⎭212sin cos αα-+=3231255-+=825考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=,的正弦的诱导公式,二倍角的余弦公式sin tan cos x x x =π2α+认知层次:c难易程度:中24.某港口海水的深度(米)是时间(时)()的函数,记为:.y t 024t ≤≤)(t f y =已知某日海水深度的数据如下:(时)t 03691215182124(米)y 10.013.09.97.010.013.010.17.010.0经长期观察,的曲线可近似地看成函数的图象.)(t f y =sin y A t b ω=+(1)试根据以上数据,求出函数的振幅、最小正周期和表达式;()sin y f t A t b ω==+(2)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的55(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为米,5.6如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?参考答案:(1)依题意,最小正周期为:,振幅:,,12=T 3A =10=b .2ππ6T ω==所以.π()3sin 106y f t t ⎛⎫==⋅+⎪⎝⎭(2)该船安全进出港,需满足:.即:.6.55y ≥+π3sin 1011.56t ⎛⎫⋅+≥⎪⎝⎭所以.π1sin 62t ⎛⎫⋅≥⎪⎝⎭所以.ππ5π2π2π()666k t k k +≤⋅≤+∈Z 所以.121125()k t k k +≤≤+∈Z 又 ,024t ≤≤所以或.15t ≤≤1317t ≤≤所以,该船至多能在港内停留:(小时).16117=-考查内容:三角函数是描绘周期变化现象的重要函数模型,正弦函数在区间上的性[0,2π]质,用三角函数解决一些简单实际问题认知层次:b 难易程度:难。
三角函数高考真题二(基础题二)

三角函数高考真题二(基础题二)一.选择题(共30小题)1.4cos50°﹣tan40°=()A.B.C.D.2﹣12.函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,23.若cos(﹣α)=,则sin2α=()A.B.C.﹣D.﹣4.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.5.sin20°cos10°﹣cos160°sin10°=()A.B.C.D.6.若tanα=,tan(α+β)=,则tanβ=()A.B.C.D.7.下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx8.若tanα=2tan,则=()A.1 B.2 C.3 D.49.设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=10.将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.11.已知sin2α=,则cos2(α+)=()A.B.C.D.12.若sin=,则cosα=()A.﹣B.﹣C.D.13.已知,则tan2α=()A.B.C.D.14.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.不确定15.函数f(x)=sinx﹣cos(x+)的值域为()A.[﹣2,2]B.[﹣,]C.[﹣1,1]D.[﹣,]16.=()A.﹣B.﹣C.D.17.设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为()A.﹣3 B.﹣1 C.1 D.318.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED则sin∠CED=()A.B. C.D.19.已知α为第二象限角,,则sin2α=()A. B. C.D.20.若,,则sinθ=()A.B.C.D.21.若tanθ+=4,则sin2θ=()A.B.C.D.22.已知,α∈(0,π),则sin2α=()A.﹣1 B.C.D.123.已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.24.设向量=(1,cosθ)与=(﹣1,2cosθ)垂直,则cos2θ等于()A.B.C.0 D.﹣125.若=,则tan2α=()A.﹣B.C.﹣D.26.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定27.若△ABC的内角A,B,C满足6sinA=4sinB=3sinC,则cosB=()A. B.C.D.28.若tanα=3,则的值等于()A.2 B.3 C.4 D.629.设sin(+θ)=,则sin2θ=()A.﹣B.﹣C.D.30.sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣三角函数高考真题二(基础题二)参考答案一.选择题(共30小题)1.C;2.A;3.D;4.A;5.D;6.A;7.A;8.C;9.C;10.B;11.A;12.C;13.C;14.A;15.B;16.C;17.A;18.B;19.A;20.D;21.D;22.A;23.A;24.C;25.B;26.A;27.D;28.D;29.A;30.A;。
三角函数基础题39题

三角函数练习题一、单选题(共0分)1.已知角=563°,那么的终边在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知角的终边经过点(8,6),则cos的值为()A.34B.43C.45D.−35 3.已知扇形的周长为12,半径为4,则该扇形的面积是()A.8πB.16πC.8D.16 4.已知扇形的面积为1,扇形的圆心角的弧度数为2,则扇形的周长为()A.1B.2C.3D.4 5.已知角在第二象限,则()A.sin>0,cos>0B.sin>0,cos<0C.sin<0,cos>0D.sin<0,cos<06.下列四个命题中,可能成立的是()A.sin=12,且cos=12;B.sin=0,且cos=−1;C.tan=1,且cos=−1;D.tan=−1,且sin=12.7.若sin=−为第四象限角,则cos的值为()A B.−12C.−D.12 8.已知cos=−513,且为第二象限角,则tan=()A.−125B.−512C.−1213D.−1312 9.已知cos=35,∈0,π,则tan=()A.34B.−34C.43D.−43 10.已知tan=−2,则sinrcos sin=()A.-1B.-3C.−12D.1211.已知tan=2,则cosKsinsinrcos的值为()A.−13B.13C.−3D.3 12.若tan (π+p=3,则cos2+sin vos =()A.−25B.−35C.35D.2513).A.−cos B.−cotC.−tan D.−sin 14.若sinπ−=−45,cos>0,则tan=()A.34B.−34C.43D.−43 15.cos198°cos132°+cos42°sin18°=()A.−B.−12C D.1 16.cos15∘cos45∘−sin15∘等于()A.−B C.12D.−12 17.sin10°cos50°+cos40°cos10°=()A.12B C D.18.若0<I2,0<I2,cosJ13,sin r=()A B C D19.若sinvos+cosLin=cos+的值等于()A.−B C.±D.±1220.已知∈0,,∈,π,sin=+=79,则sin的值为()A.2327B.−2327C.13D.−1321.已知2,p则tan(4+p=()A.13B.3C.−3D.−1322.若3sinr2cos2sinKcos=83,则tan+=()A.3B.13C.-3D.−1323.已知∈0,π,且3cos2−8cos=5,则sin2=()A.−459B.52C.−49D.−452724.若∈,sinπ+=45,则cos2=()A.−35B.−725C D.−2425 25.已知tan=2,则tan2=()A.−34B.3C.43D.−4326.已知sin=45,∈,则cos2的值为()A.725B.2425C.−2425D.−725 27.若sin(−p=35,则cos2=()A.1825B.−1825C.−725D.72528.函数=sin−3cos的值域是()A.0,1B.−1+3,1+3C.−2,2D.−1−3,1+3 29.23sin75∘cos75∘的值是()A B.12C D.3 30.该函数=sin+3cos的最大值是()A.1B.6C.2D.−231.为了得到函数=sin(+4)的图象,只需要=sin将的图象()A.向上平移4个单位B.向左平移4个单位C.向下平移4个单位D.向右平移4个单位32.为得到函数=14cos的图像,只需把余弦曲线上的所有的点()A.横坐标伸长到原来的4倍,纵坐标不变B.横坐标缩短到原来的14,纵坐标不变C.纵坐标伸长到原来的4倍,横坐标不变D.纵坐标缩短到原来的14,横坐标不变33.为了得到函数=sin2−只要将=sin∈R的图象上所有的点()A.向右平移π3个单位长度,再把所得图像各点的横坐标缩短到原来的12倍.B.向右平移π3个单位长度,再把所得图像各点的横坐标伸长到原来的2倍.C.向右平移π6个单位长度,再把所得图像各点的横坐标缩短到原来的12倍.D.向右平移π6个单位长度,再把所得图像各点的横坐标伸长到原来的2倍.34.函数=2sin2+)A.2,1,4B.2,12,4C.2,1,8D.2,12,−8二、解答题(共0分)35.已知函数op=cos(2+p(0<<p是奇函数.(1)求的值;(2)若将函数op的图象向右平移6个单位长度,再将所得图象上所有点的横坐标扩大到原来的4倍,得到函数op的图象,求op.36.已知函数op=2sin2+(1)求函数op的单调递减区间及其图象的对称中心;(2)已知函数op的图象经过先平移后伸缩得到=sin的图象,试写出其变换过程.37.求函数=sin+cos,∈−5π12x的值.38.已知函数op=Lin(B+p>0,>0,|U<.(1)求函数op的解析式;(2)将函数op的图象向右平移3个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数op的图象,当∈op的值域.39.(1)利用“五点法”画出函数op==sin(12+6)在长度为一个周期的闭区间的简图.列表:12+6xy作图:(2)并说明该函数图象可由=sino∈R)的图象经过怎么变换得到的.(3)求函数op图象的对称轴方程.40.已知函数=23sinBcosB+2cos2B且函数图像中相邻两条对称轴间的距离为π2.(1)求的值及函数的单调递增区间;(2)当∈−π2,0时,求函数的最值,并写出相应的自变量的取值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角函数》专题复习理解任意角的概念、弧度的意义. 能正确地进行弧度与角度的换算. 掌握终边相同角的表示方法. 掌握任意角的正弦、余弦、正切的意义.了解余切、正割、余割的定义. 掌握三角函数的符号法则.知识典例:1.角α的终边在第一、三象限的角平分线上,角α的集合可写成 .2.已知角α的余弦线是单位长度的有向线段,那么角α的终边 ( )A .在x 轴上B .在y 轴上C .在直线y=x 上D .在直线y=-x 上 .3.已知角α的终边过点p(-5,12),则cos α} ,tan α= .4. tan(-3)cot5cos8的符号为 . 5.若cos θtan θ>0,则θ是 ( )A .第一象限角B .第二象限角C .第一、二象限角D .第二、三象限角【讲练平台】例1 已知角的终边上一点P (- 3 ,m ),且sin θ= 2 4m ,求cos θ与tan θ的值.例2 已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},求集合E ∩F .例3 设θ是第二象限角,且满足|sin θ2|= -sin θ2 ,θ2是哪个象限的角? 【知能集成】注意运用终边相同的角的表示方法表示有关象限角等;已知角的终边上一点的坐标,求三角函数值往往运用定义法;注意运用三角函数线解决有关三角不等式.【训练反馈】1. 已知α是钝角,那么α2是 ( ) A .第一象限角 B .第二象限角C .第一与第二象限角D .不小于直角的正角2. 角α的终边过点P (-4k ,3k )(k <0},则cos α的值是 ( )A . 3 5B . 45C .- 35D .- 453.已知点P(sin α-cos α,tan α)在第一象限,则在[0,2π]内,α的取值范围是 ( )A .( π2, 3π4)∪(π, 5π4)B .( π4, π2)∪(π, 5π4) C .( π2 , 3π4 )∪(5π4,3π2) D .( π4, π2 )∪(3π4,π) 4.若sinx= - 35,cosx =45,则角2x 的终边位置在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.若4π<α<6π,且α与- 2π3终边相同,则α= .6. 角α终边在第三象限,则角2α终边在 象限.7.已知|tanx |=-tanx ,则角x 的集合为 .8.如果θ是第三象限角,则cos(sin θ)·sin(sin θ)的符号为什么?9.已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,求该扇形面积.第2课 同角三角函数的关系及诱导公式【考点指津】掌握同角三角函数的基本关系式:sin 2α+cos 2α=1, sin α cos α=tan α,tan αcot α=1, 掌握正弦、余弦的诱导公式.能运用化归思想(即将含有较多三角函数名称问题化成含有较少三角函数名称问题)解题 .【知识在线】1.sin 2150°+sin 2135°+2sin210°+cos 2225°的值是 ( )A . 14B . 34C . 114D . 942.已知sin(π+α)=-35,则 ( ) A .cos α= 45 B .tan α= 34 C .cos α= -45 D .sin(π-α)= 353.已tan α=3, 4sin α-2cos α5cos α+3sin α的值为 . 4.化简1+2sin(π-2)cos(π+2) = .5.已知θ是第三象限角,且sin 4θ+cos 4θ= 59,那么sin2θ等于 ( ) A . 2 2 3 B .-2 2 3 C .23 D .- 23【讲练平台】例1 化简 sin(2π-α)tan(π+α)cot(-α-π) cos(π-α)tan(3π-α).例2 若sin θcos θ= 18 ,θ∈(π4 ,π2),求cos θ-sin θ的值.变式1 条件同例, 求cos θ+sin θ的值.变式2 已知cos θ-sin θ= - 3 2, 求sin θcos θ,sin θ+cos θ的值.例3 已知tan θ=3.求cos 2θ+sin θcos θ的值.1.在三角式的化简,求值等三角恒等变换中,要注意将不同名的三角函数化成同名的三角函数.2.注意1的作用:如1=sin 2θ+cos 2θ.3.要注意观察式子特征,关于sin θ、cos θ的齐次式可转化成关于tan θ的式子.4.运用诱导公式,可将任意角的问题转化成锐角的问题 .【训练反馈】1.sin600°的值是 ( )A .12B .- 12C . 3 2D .- 3 22. sin(π4+α)sin (π4-α)的化简结果为 ( ) A .cos2α B .12cos2α C .sin2α D . 12sin2α 3.已知sinx+cosx=15,x ∈[0,π],则tanx 的值是 ( ) A .-34 B .- 43 C .±43 D .-34或-434.已知tan α=-13,则1 2sin αcos α+cos 2α = . 5. 1-2sin10°cos10° cos10°-1-cos 2170°的值为 . 6.证明1+2sin αcos α cos 2α-sin 2α =1+ tan α 1-tan α.7.已知2sin θ+cos θ sin θ-3cos θ=-5,求3cos2θ+4sin2θ的值.8.已知锐角α、β、γ满足sin α+sin γ=sin β,cos α-cos γ=cos β,求α-β的值.【知识在线】 1.cos105°的值为 ( )A . 6 + 2 4B . 6 - 2 4C . 2 - 6 4D . - 6 - 2 42.对于任何α、β∈(0,π2),sin(α+β)与sin α+sin β的大小关系是 ( ) A .sin(α+β)>sin α+sin β B .sin(α+β)<sin α+sin βC .sin(α+β)=sin α+sin βD .要以α、β的具体值而定3.已知π<θ<3π2,sin2θ=a ,则sin θ+cos θ等于 ( ) A . a+1 B .- a+1 C . a 2+1 D .±a 2+14.已知tan α=13,tan β=13,则cot(α+2β)= .5.已知tanx=12,则cos2x= . 【讲练平台】例1 已知sin α-sin β=- 13 ,cos α-cos β=12,求cos(α-β)的值 .例2 求 2cos10°-sin20° cos20°的值 . 分析 式中含有两个角,故需先化简.注意到10°=30°-20°,由于30°的三角函数值已知,则可将两个角化成一个角.例3 已知:sin(α+β)=-2sin β.求证:tan α=3tan(α+β).【知能集成】审题中,要善于观察已知式和欲求式的差异,注意角之间的关系;整体思想是三角变换中常用的思想.【训练反馈】1.已知0<α<π2<β<π,sin α=35,cos(α+β)=-45,则sin β等于 ( ) A .0 B .0或2425 C . 2425 D .0或-24252. sin7°+cos15°sin8° cos7°-sin15°sin8°的值等于 ( ) A .2+ 3 B . 2+ 3 2 C .2- 3 D . 2- 3 23. △ABC 中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C 的大小为 ( )A . π6B . 5π6C . π6或5π6D . π3或2π3 4.若α是锐角,且sin(α-π6)= 13,则cos α的值是 . 5.cos π7cos 2π7cos 3π7= . 6.已知tan θ=12,tan φ=13,且θ、φ都是锐角.求证:θ+φ=45°.7.已知cos(α-β)=-45,cos(α+β)= 45,且(α-β)∈(π2,π),α+β∈(3π2,2π),求cos2α、cos2β的值.8. 已知sin(α+β)= 12,且sin(π+α-β)= 13,求tan αtan β.【知识在线】求下列各式的值1.cos200°cos80°+cos110°cos10°= .2.12(cos15°+ 3 sin15°)= . 3.化简1+2cos 2θ-cos2θ= .4.cos(20°+x)cos(25°-x)-cos(70°-x)sin(25°-x)= .5.11-tan θ- 11+tan θ= . 【讲练平台】例1 求下列各式的值(1)tan10°+tan50°+ 3 tan10°tan50°; (2) ( 3 tan12°-3)csc12° 4cos 212°-2.例2 已知cos(π4+x)= 35,17π12<x < 7π4,求sin2x +sin2xtanx 1-tanx的值.1.cos75°+cos15°的值等于 ( )A .6 2 B - 6 2 C . - 2 2 D . 2 2 2.a= 2 2(sin17°+cos17°),b=2cos 213°-1,c= 2 2,则 ( ) A .c <a <b B . b <c <a C . a <b <c D . b <a <c3.化简1+sin2θ-cos2θ 1+sin2θ+cos2θ= . 4.化简sin(2α+β)-2sin αcos(α+β)= .5.在△ABC 中,已知A 、B 、C 成等差数列,则tan A 2+tan C 2+ 3 tan A 2tan C 2的值为 . 6.化简sin 2A+sin 2B+2sinAsinBcos(A+B).7 化简sin50°(1+ 3 tan10°).8 已知sin(α+β)=1,求证:sin(2α+β)+sin(2α+3β)=0.。