成都三诊数学文科试题及答案
成都七中 2019—2020 学年下期高三三诊模拟考试文科数学试题答案

2. 于是| F M | 1 2
t2 3t 3 1
t
2
t 3 3. t
因为 t 3 在[1, 3) 单调递减,在 ( 3, 3 2 2) 单调递增. t
又当 t 1时,| F M | 1 ;当 t 2
3 时用,| FM | 使
2 33 ; 2
当t 32
2
时, |
F M
|
2 2学1 八中2
成都七中 2020 届高中毕业班三诊模拟
数 学(文科)参考答案及评分意见
第Ⅰ卷 (选择题,共 60 分) 一、选择题(每小题 5 分,共 60 分) 1.B; 2.A; 3.C; 4.D; 5.A; 6.A; 7.B; 8.C; 9.D; 10.B; 11.C; 12.A.
第Ⅱ卷 (非选择题,共 90 分)
1. 2
所以| F M | 的取值范围三为十[ 第
2 33,2 2
2 1). 2
市
22.解:(1)消去都参数 得 (x 2)2 y2 3( y 0) 将 x cos , y sin 代入得
( cos 省2成)2 ( sin )2 3, 即 2 4 cos 1 0.
所以四曲线川C 供
6分
2
3
(2)因为 a 7,b 2, A π , 3
由余弦定理得 7 2 22 c2 2 2 c cos π , 即 c2 2c 3 0.又 c 0 ,所以 c 3. 3
故 ABC 的面积为 1 bc sin A 1 2 3 sin π 3 3 .
2
2
32
12 分
18.解:(1)得分[20, 40) 的频率为 0.005 20 0.1 ;得分[40, 60) 的频率为 0.010 20 0.2 ;
成都市15届高三文科数学三诊考试试题答案

1 e 1 x-1 均是 ( 内的增函数 , ′( x) =- 2 + . 而 y=- 2 和 y=e 0, +∞ ) g e x x ) 也是 ( 内的增函数. 当 x>1 时 , 则g ∴g ′( x) 0, +∞ ) ′( x) >g ′( 1 =0 .
x
) 令 g( x) =f ′( x) . 当 a≤2 时 , 1 =2a≥0 . g(
第 Ⅱ 卷 ( 非选择题 共 1 0 0 分)
( 二、 填空题 : 每小题 5 分 , 共2 5 分) 1 1 . 1 1; 1 2 . 4 8 0; 1 3 . [ -3, 0] ; 1 4 . 7; 1 5 .①③ . ( 三、 解答题 : 共7 5 分)
2 ( 由 f( 1 6 . 解: Ⅰ) x) =2 3 s i n x c o s x+2 c o s x+1= 3 s i n 2 x+ ( 1+ c o s 2 x) +1
又 EM ⊂ 平面 B D E, C1F ⊄ 平面 B D E, ∴C1F ∥ 平面 B D E .
数 学 “三 诊 ”考 试 题 (文 )答 案 第 1 页 (共 4 页 )
……6 分
9 ……1 ∴ 三棱锥 D -B E B1 的体积为 . 2分 2 ( “ 设“ 天府卡 ” 为 A, 熊猫卡 ” 为 C, 1 8 . 解: Ⅰ) B, D . ( , ( , ( , ( , ( , 不放回 抽 取 所 包 括 的 基 本 事 件 为 : A, B) A, C) A, D) B, C) B, D) ( 共 6 种. C, D) , 记“ 该参与者不放回抽 取 获 奖 ” 为 事 件 A1 , 则 事 件 A1 包 括 的 基 本 事 件 有 ( A, C)
四川省成都市2019届高三第三次诊断性考试数学(文)(含答案)

成都市2016级高中毕业班第三次诊断性检测数学(文科)第I卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U= {x∈Z|(x+l) (x-3)≤0),集合A={0,1,2},则=(A){一1,3} (B){一1,0)(C){0,3) (D){一1,0,3)2.复数z =i(3 -i)的共轭复数为(A) 1+3i (B) -1+3i (C) -1- 3i (D) 1- 3i3.已知函数f(x) =x3+ 3x.若f(-a)=2,则f(a)的值为(A)2 (B) -2 (C)1 (D) -14.函数f(x)=sinx+cosx的最小正周期为(A) (B) π(C) 2π(D) 4π5.如图,在正方体ABCD-A1B l C l D1中,已知E,F,G分别是线段A l C1上的点,且A1E =EF =FG =GC l.则下列直线与平面A1BD平行的是(A) CE (B) CF (C) CG (D) CC16.已知实数x,y满足,则z =2x +y的最大值为(A)1 (B)2 (C)3 (D)47.若非零实数a,b满足2a =3b,则下列式子一定正确的是(A)b>a (B)b<a (C)|b|<|a| (D)|b|>|a|8.设数列的前n项和为S n,则S10=(A) (B) (C) (D)9.执行如图所示的程序框图,则输出的n的值为(A)1 (B)2 (C)3 (D)410.“幻方’’最早记载于我国公元前500年的春秋时期《大戴礼》中.“n阶幻方(n≥3,n∈N*)”是由前,n2个正整数组成的—个n阶方阵,其各行各列及两条对角线所含的n个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为(A) 75 (B) 65 (C) 55 (D) 4511.已知双曲线C: =l(a>0,b>0)的左,右焦点分别为F1,F2,抛物线y2=2px(p>0)与双曲线C有相同的焦点.设P为抛物线与双曲线C的一个交点,且,则双曲线C的离心率为(A) 或(B) 或3 (C)2或(D)2或312.三棱柱ABC -A1BlCl中,棱AB,AC,AA1两两垂直,AB =AC,且三棱柱的侧面积为+1。
成都七中2020届三诊模拟文科数学试卷(含答案)

成都七中2020届三诊模拟数 学(文科)一、选择题:(本大题共12小题,每小题5分,共60分.) 1. 已知集合2{1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则AB =( )(A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数11iz =+,则||z =( )(B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2()2,f x x =-则((1))f f =( ) (A)1- (B)2- (C)1 (D)24. 已知单位向量12,e e 的夹角为2π3,则122e e -=( )(A)3 (B)7 (C)5. 已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为3y x =±,则双曲线的离心率是( )(C)10 (D)1096. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7. 如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )(A)6?i ≤ (B)5?i ≤ (C)4?i ≤ (D)3?i ≤8. 已知,a b 为两条不同直线,,,αβγ为三个不同平面,下列命题:①若///,,/ααγβ则//βγ;②若//,//,a a αβ则//αβ;③若,,αγγβ⊥⊥则αβ⊥;④若,,a b αα⊥⊥则//a b .其中正确命题序号为( ) (A)②③(B)②③④(C)①④(D)①②③9. 南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为( ) (A)99(B)131 (C)139 (D)14110. 已知2πlog e ,a =πln ,eb =2e ln ,πc =则( )得分(A)a b c << (B)b c a << (C)b a c << (D)c b a <<11. 已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为( ) (A)11π4 (B)11π2(C)11π (D)22π 12. 已知P 是椭圆2214x y +=上一动点,(2,1),(2,1)A B -,则cos ,PAPB 的最大值是( )(D)14二、填空题:(本大题共4小题,每小题5分,共20分.)13.已知数列{}n a 的前n 项和为,n S 且111,1(2),n n a a S n -==+≥则4a =14. 已知实数,x y 满足线性约束条件117x y x y ≥⎧⎪≥-⎨⎪+≤⎩,则目标函数2z x y =+的最大值是15. 如图是一种圆内接六边形ABCDEF ,其中BC CD DE EF FA ====且.AB BC ⊥则在圆内随机取一点,则此点取自六边形ABCDEF 内的概率是16. 若指数函数xy a =(0a >且1)a ≠与一次函数y x =的图象恰好有两个不同的交点,则实数a 的取值范围是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 已知2.tan sin a bA B= (1)求角A 的大小; (2)若2,a b ==求ABC ∆的面积.18.(本小题满分12分) 成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.(本小题满分12分) 如图,在四棱锥M ABCD -中,2,,AB AM AD MB MD AB AD =====⊥(1)证明:AB ⊥平面ADM ;(2)若//CD AB 且23CD AB =,E 为线段BM 上一点,且 2BE EM =,求三棱锥A CEM -的体积.20.(本小题满分12分)已知函数22e (),(e,).ln x xf x x x x ++=∈+∞ (1)证明:当(e,)x ∈+∞时,3eln ex x x ->+;(2)证明:()f x 在1[2e ,)2++∞单调递增.(其中e 2.71828=是自然对数的底数).21.(本小题满分12分)已知点P 是抛物线21:2C y x =上的一点,其焦点为点,F 且抛物线C 在点P 处的切线l 交圆:O 221x y +=于不同的两点,A B .(1)若点(2,2),P 求||AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为,F '求||F M '的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上将所选题目对应的标号涂黑.22.(本小题满分10分)选修44-:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为233x y αα⎧=+⎪⎨=⎪⎩(α为参数,0πα≤≤).在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,射线l 的极坐标方程是π6θ=.(1)求曲线C 的极坐标方程;(2)若射线l 与曲线C 相交于,A B 两点,求||||OA OB ⋅的值.23.(本小题满分10分)选修45-:不等式选讲已知0,0,a b >>且24,a b +=函数()2f x x a x b =++-在R 上的最小值为.m (1)求m 的值;(2)若22a mb tab +≥恒成立,求实数t 的最大值.参考答案一、选择题(每小题5分,共60分)1.B ;2.A ;3.C ;4.D ;5.A ;6.A ;7.B ;8.C ;9.D ; 10.B ; 11.C ; 12.A.二、填空题(每小题5分,共20分)13.8; 14.15; ; 16.1e (1,e ).三、解答题(共70分) 17. 解:(1)由正弦定理知sin sin a b A B =,又2,tan sin a b A B =所以2.sin tan a aA A= 于是1cos ,2A =因为0π,A <<所以π.3A =6分(2)因为π2,,3a b A ===22π222cos ,3c c =+-⨯⨯即2230.c c --=又0c >,所以 3.c =故ABC ∆的面积为11πsin 23sin223bc A =⨯⨯⨯= 12分18.解:(1)得分[20,40)的频率为0.005200.1⨯=;得分[40,60)的频率为0.010200.2⨯=; 得分[80,100]的频率为0.015200.3⨯=;所以得分[60,80)的频率为1(0.10.20.3)0.4.-++=设班级得分的中位数为x 分,于是600.10.20.40.520x -++⨯=,解得70.x = 所以班级卫生量化打分检查得分的中位数为70分. 6分(2)由(1)知题意 “良”、“中”的频率分别为0.4,0.2.又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的 “良”、“中”的班级个数分别为4,2. 因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为.A 则A 为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4. 2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点(,)i j 表示,其中16i j ≤<≤.这些点恰好为66⨯方格格点上半部分(不含i j =对角线上的点),于是有366152-=种. 事件A 仅有(5,6)一个基本事件. 所以114()1()1.1515P A P A =-=-= 所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为14.1512分19.解:(1)因为2AB AM ==,MB =所以222.AM AB MB +=于是.AB AM ⊥ 又,AB AD ⊥且,AMAD A AM =⊂平面ABD ,AD ⊂平面ADM ,所以AB ⊥平面.ADM 5分(2)因为2,AM AD MD ===所以ADM S ∆=因为2BE EM =,所以1.3C AEM C ABM V V --=又//,CD AB AB ⊥平面.ADM 所以111333A CEM C AEM C ABM D ABMB ADM V V V V V -----====111123333ADM S AB =⨯⋅⋅=⨯=所以三棱锥A CEM -的体积为912分20.解:(1)令3e ()ln ,(e,).e x g x x x x -=-∈+∞+则22214e (e)()0.(e)(e)x g x x x x x -'=-=>++于是()g x 在(e,)+∞单调递增,所以()(e)0,g x g >= 即3eln ,(e,).ex x x x ->∈+∞+ 5分(2)22222222(21)ln (e )(ln 1)(e )ln (e )().(ln )(ln )x x x x x x x x x x f x x x x x +-+++--++'== 令2222()(e )ln (e ),(e,).h x x x x x x =--++∈+∞ 当(e,)x ∈+∞时,由(1)知3eln .e x x x ->+则222223e 1()(e )(e )2(4e 1)2[(2e )],e 2x h x x x x x x x x x ->--++=-+=-++ 当1[2e ,)2x ∈++∞时,()0h x >,从而()0.f x '> 故()f x 在1[2e ,)2++∞严格单调递增. 12分21.解:设点00(,)P x y ,其中2001.2y x =因为,y x '=所以切线l 的斜率为0,x 于是切线2001:.2l y x x x =-(1)因为(2,2),P 于是切线:2 2.l y x =-故圆心O 到切线l 的距离为d =于是||AB===5分(2)联立22200112x yy x x x⎧+=⎪⎨=-⎪⎩得22340001(1)10.4x x x x x+-+-=设1122(,),(,),(,).A x yB x y M x y则3122,1xx xx+=+32240001()4(1)(1)0.4x x x∆=--+->又20,x≥于是202x≤<+于是32200120022001,.22(1)22(1)x xx xx y x x xx x+===-=-++又C的焦点1(0,),2F于是1(0,).2F'-故||F M'===9分令21,t x=+则13t≤<+于是||F M'==因为3tt+在单调递减,在+单调递增.又当1t=时,1||2F M'=;当t=时,||F M'=;当3t=+时,11||.22F M'=>所以||F M'的取值范围为1).212分22.解:(1)消去参数α得22(2)3(0)x y y-+=≥将cos,sinx yρθρθ==代入得22(cos2)(sin)3,ρθρθ-+=即24cos10.ρρθ-+=所以曲线C的极坐标方程为2π4cos10(0).3ρρθθ-+=≤≤5分(2)法1:将π6θ=代入2π4cos10(0)3ρρθθ-+=≤≤得210ρ-+=,设12ππ(,),(,),66A Bρρ则121.ρρ=于是12|||| 1.OA OBρρ⋅==10分法2:π3θ=与曲线C相切于点,Mπ||2sin1,3OM==由切割线定理知2|||||| 1.OA OB OM⋅==10分23.解:(1)3, (,),2()2, [,],23, (,).a x a b x a f x x a x b x a b x b x a b x b ⎧--+∈-∞-⎪⎪⎪=++-=++∈-⎨⎪+-∈+∞⎪⎪⎩.当(,)2a x ∈-∞-时,函数()f x 单调递减;当(,)xb ∈+∞时,函数()f x 单调递增. 所以m 只能在[,]2a b -上取到.当[,]2ax b ∈-时,函数()f x 单调递增. 所以2() 2.222a a a bm f a b +=-=-++==5分(2)因为22a mb tab +≥恒成立,且0,0a b >>,所以22a mb t ab +≤恒成立即mina b mb t a ⎛⎫≤+ ⎪⎝⎭.由(1)知2m =,于是a b a mb +≥== 当且仅当2a b ab =时等号成立即1)0,2(20.a b =>=>所以t ≤,故实数t的最大值为10分。
成都七中2020届三诊模拟试卷(文科数学)答案

得分[80,100] 的频率为 0.015 20 0.3 ;
所以得分[60,80) 的频率为1 (0得分的中位数为 x 分,于是 0.1 0.2 x 60 0.4 0.5 ,解得 x 70. 20
所以班级卫生量化打分检查得分的中位数为 70 分.
1 x
4e (x e)2
(x e)2 x(x e)2
0.
于是 g(x) 在 (e, ) 单调递增,所以 g(x) g(e) 0,
即 ln x 3x e , x (e, ).
5分
xe
(2) f (x) (2x 1)x ln x (x2 x e2 )(ln x 1) (x2 e2 ) ln x (x2 x e2 ) .
6分
(2)由(1)知题意 “良”、“中”的频率分别为 0.4, 0.2. 又班级总数为 40.
于是“良”、“中”的班级个数分别为16,8 .
分层抽样的方法抽取的 “良”、“中”的班级个数分别为 4, 2.
因为评定为“良”,奖励 2 面小红旗,评定为“中”,奖励 1 面小红旗.
所以抽取的 2 个班级获得的奖励小红旗面数和不少于 3 为两个评定为“良”的班级或一个评
所以 AM 2 AB2 MB2. 于是 AB AM .
又 AB AD, 且 AM AD A, AM 平面 ABD , AD 平面 ADM ,
所以 AB 平面 ADM .
(2)因为 AM AD 2, MD 2 3 ,所以 SADM 3.
因为 BE
2EM
,所以VC AEM
1 3
6分
2
3
(2)因为 a 7,b 2, A π , 3
由余弦定理得
2
7
22
c2
2 2 c cos
2020年四川省成都七中高考数学三诊试卷(文科)(含答案解析)

2020年四川省成都七中高考数学三诊试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知集合0,1,2,3,,,则A. 1,B. 1,C. 0,1,D. 0,1,2.已知复数,则A. B. 1 C. D. 23.设函数为奇函数,当时,,则A. B. C. 1 D. 24.已知单位向量,的夹角为,则A. 3B. 7C.D.5.已知双曲线的渐近线方程为,则双曲线的离心率是A. B. C. D.6.在等比数列中,,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是A. B. C. D.8.已知a,b为两条不同直线,,,为三个不同平面,下列命题:若,,则若,,则若,,则若,,则其中正确命题序号为A. B. C. D.9.南宋数学家杨辉在详解九章算法和算法通变本末中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为A. 99B. 131C. 139D. 14110.已知,,,则A. B. C. D.11.已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为A. B. C. D.12.已知P是椭圆上一动点,,,则的最大值是A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知数列的前n项和为,且,,则______.14.已知实数x,y满足线性约束条件,则目标函数的最大值是______.15.如图是一种圆内接六边形ABCDEF,其中且则在圆内随机取一点,则此点取自六边形ABCDEF内的概率是______.16.若指数函数且与一次函数的图象恰好有两个不同的交点,则实数a的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.在中,内角A,B,C的对边分别为a,b,已知.求角A的大小;若,,求的面积.18.成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查满分100分,最低分20分根据检查结果:得分在评定为“优”,奖励3面小红旗;得分在评定为“良”,奖励2面小红旗;得分在评定为“中”,奖励1面小红旗;得分在评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如图:依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.如图,在四棱锥中,,,,.证明:平面ADM;若且,E为线段BM上一点,且,求三棱锥的体积.20.已知函数,.证明:当时,;证明:在单调递增.其中是自然对数的底数.21.已知点P是抛物线C:上的一点,其焦点为点F,且抛物线C在点P处的切线l交圆O:于不同的两点A,B.若点,求的值;设点M为弦AB的中点,焦点F关于圆心O的对称点为,求的取值范围.22.在平面直角坐标系xOy中,曲线C的参数方程为为参数,在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,射线l的极坐标方程是.求曲线C的极坐标方程;若射线l与曲线C相交于A,B两点,求的值.23.已知,,且,函数在R上的最小值为m.求m的值;若恒成立,求实数t的最大值.-------- 答案与解析 --------1.答案:B解析:解:0,1,2,3,,1,4,9,,1,.故选:B.可以求出集合B,然后进行交集的运算即可.本题考查了列举法、描述法的定义,交集的运算,考查了计算能力,属于基础题.2.答案:A解析:解:,则.故选:A.利用复数模的运算性质即可得出.本题考查了复数模的运算性质,考查了推理能力与计算能力,属于基础题.3.答案:C解析:解:根据题意,当时,,则,又由为奇函数,则,则;故选:C.根据题意,由函数的解析式可得,由函数的奇偶性可得的值,据此可得,即可得答案.本题考查函数的奇偶性的性质以及应用,涉及函数值的计算,属于基础题.4.答案:D解析:解:根据题意,单位向量,的夹角为,则,则,故;故选:D.根据题意,求出的值,由数量积的运算性质可得,代入数据计算可得的值,变形可得答案.本题考查向量数量积的计算,涉及向量模的计算,属于基础题.5.答案:A解析:解:由双曲线的方程可得渐近线为:,所以由题意可得:,所以离心率,故选:A.由双曲线的方程可得渐近线的方程,再由椭圆可得a,b的关系,由a,b,c之间的关系进而求出离心率.考查双曲线的性质,属于基础题.6.答案:A解析:【分析】本题主要考查充分条件和必要条件的判断,结合等比数列的性质是解决本题的关键.根据充分条件和必要条件的定义结合等比数列的性质进行判断即可.【解答】解:在等比数列中,若,即,,,即,则,即成立,若等比数列1,,4,,16,满足,但不成立,故“”是“”的充分不必要条件,故选:A7.答案:C解析:【分析】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律,属于基础题.按照程序框图的流程,写出前几次循环的结果判断出当i为何值时输出,得到判断框中的条件.【解答】解:初始值,模拟执行程序框图,可得,不满足条件,继续循环;,不满足条件,继续循环;,不满足条件,继续循环;,,此时,由题意,应该满足条件,退出循环,输出S的值为31.故判断框中应填入的关于i的条件是?故选C.8.答案:C解析:解:若,,则,故正确;若,,则或与相交,故错误;若,,则或与相交,故错误;若,,则,故正确.正确命题序号为.由空间中直线与直线、直线与平面位置关系的判定逐一核对四个命题得答案.本题考查空间中直线与直线、直线与平面位置关系的判定,考查空间想象能力与思维能力,是中档题.9.答案:D解析:解:由题意可知:1,5,11,21,37,61,95,的差的数列为:4,6,10,16,24,34,这个数列的差组成的数列为:2,4,6,8,10,是等差数列,所以前7项分别为1,5,11,21,37,61,95,则该数列的第8项为:.故选:D.利用已知条件,推出数列的差数列的差组成的数列是等差数列,转化求解即可.本题考查数列的递推关系式的应用,等差数列的定义的应用,是中档题.10.答案:C解析:解:,,..又..故选:C.利用对数函数的单调性即可得出.本题考查了对数函数的单调性,考查了推理能力与计算能力,属于基础题.11.答案:C解析:解:设长方体的长宽高分别是a,b,c,其四个顶点就构成一个四面体满足每个面的边长为3,3,2,则,,,则,即长方体的外接球直径,故外接球的表面积,故选:C.考虑一个长方体,其四个顶点就构成一个四面体恰好就是每个三角形边长为3,3,2,则四面体的外接球即为长方体的外接球,进而计算出其外接球的直径,可得外接本题考查求一个几何体的外接球表面积,关键是求出外接球的半径,将几何体补成一个长方体是解题的关键,考查数形结合思想,属于中档题.12.答案:A解析:解:过点P作,垂足为H,设,则,,令,当时,,,;当时,,当且仅当,即时取等号,此时最大,且.故选:A.过点P作,垂足为H,设,可得,由正切的和角公式可得,通过换元令,结合基本不等式可得当时最大,由此得解.本题考查圆锥曲线中的最值求解,涉及了正切的和角公式,基本不等式的运用等基础知识点,考查转化思想,换元思想,数形结合思想等,考查运算求解能力,属于较难题目.13.答案:8解析:解:数列的前n项和为,且,,可得,,,故答案为:8.利用数列的递推关系式,逐步求解即可.本题考查数列的递推关系式的应用,数列项的求法,是基本知识的考查.14.答案:15解析:解:先根据实数x,y满足线性约束条件,画出可行域,然后平移直线,当直线过点时,目标函数的纵焦距取得最大值,此时z取得最大值,z 最大值为.故答案为:15.先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线过点时,z 最大值即可.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.答案:解析:解:因为且.所以该图形是该圆的内接正六边形AMNBCDEF的一部分.易知,以O为顶点,正八边形的各边为底边的八个等腰三角形全等.且它们的腰长为圆的半径r,顶角为.故每个小等腰三角形的面积为.内接六边形ABCDEF的面积为,由正八边形的性质知:四边形ABCF是矩形,且,所以.又,故所求概率为:.故答案为:.易知,题中所给的多边形是该圆的内接正八边形的一部分,并且整个正八边形是由八个全等的等腰三角形组合而成.结合正八边形的对称性,可知内接六边形ABCDEF部分,其面积是六个等腰三角形的面积,由此可求出结果.本题考查几何概型概率的计算,以及圆的内接正八边形的性质.属于中档题.16.答案:解析:解:当时,函数且的图象与一次函数的图象没有交点,设当时,指数函数且与一次函数的图象恰好有两个不同的交点,,且与相切于,,则有,故,,即,,,实数a的取值范围是:.故答案为:.判断,利用函数的导数,转化求解a的最大值,从而求出a的取值范围.本题考查了指数函数的性质,函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题.17.答案:解:由正弦定理知,又,所以.于是,因为,所以.因为,由余弦定理得,即.又,所以.故的面积为.解析:由正弦定理,同角三角函数基本关系式化简已知等式可得,结合范围,可求A的值.由已知利用余弦定理得,结合,可求c的值,进而根据三角形的面积公式即可求解.本题主要考查了正弦定理,同角三角函数基本关系式,余弦定理,三角形的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.18.答案:解:得分的频率为;得分的频率为;得分的频率为;所以得分的频率为.设班级得分的中位数为x分,于是,解得.所以班级卫生量化打分检查得分的中位数为70分.由知题意“良”、“中”的频率分别为,又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的“良”、“中”的班级个数分别为4,2.因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为A.则为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4,2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点表示,其中.这些点恰好为方格格点上半部分不含对角线上的点,于是有种.事件仅有一个基本事件.所以.所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为.解析:利用频率分布直方图,能求出班级卫生量化打分检查得分的中位数.“良”、“中”的频率分别为,又班级总数为从而“良”、“中”的班级个数分别为16,分层抽样的方法抽取的“良”、“中”的班级个数分别为4,由此利用对立事件概率计算公式能求出抽取的2个班级获得的奖励小红旗面数和不少于3的概率.本题考查中位数、概率的求法,考查分层抽样、频率分布直方图、古典概型等基础知识,考查运算求解能力,是基础题.19.答案:解:因为,,所以于是.又,且,平面ABD,平面ADM,所以平面ADM.因为,所以.因为,所以.又,平面ADM.所以.所以三棱锥的体积为.解析:推导出,由此能证明平面ADM.推导出,,由此能求出三棱锥的体积.本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.答案:证明:令,则.于是在单调递增,,即;.令,.当时,由知.则,当时,,从而.故在上单调递增.解析:令,求其导函数,可得导函数大于0,由得结论;求出原函数的导函数,再令,结合中,把导函数缩小,再由缩小后的解析式在上大于0恒成立,可得在单调递增.本题考查利用导数研究函数的单调性,正确求导是解答该题的关键,考查计算能力,是中档题.21.答案:解:设点,其中.因为,所以切线l的斜率为,于是切线.因为,于是切线l:故圆心O到切线l的距离为.于是.联立得.设,,则,.又,于是.于是.又C的焦点,于是.故.令,则于是.因为在单调递减,在单调递增.又当时,;当时,;当时,.所以的取值范围为.解析:设点,其中利用函数的导数求出切线的斜率,得到切线方程,通过圆心O到切线l的距离为转化求解即可.联立得设,,利用韦达定理,求出中点坐标,求出的表达式,令,则于是利用函数的单调性求解范围即可.本题考查直线与抛物线的位置关系的综合应用,圆的方程的应用,考查转化思想以及计算能力,是中档题.22.答案:解:消去参数得将,代入得,即.所以曲线C的极坐标方程为.法1:将代入,得,设,则.于是.法2:与曲线C相切于点M,,由切割线定理知.解析:直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.利用极径的应用和一元二次方程根和系数关系式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:解:,当时,函数单调递减;当时,函数单调递增,所以m只能在上取到.当时,函数单调递增.所以;因为恒成立,且,,所以恒成立即.由知,于是.当且仅当时等号成立即.所以,故实数t的最大值为.解析:由绝对值的意义,去绝对值,可得的分段函数式,由一次函数的单调性,可得的最小值,进而得到m的值;由参数分离可得恒成立即,运用基本不等式可得此不等式右边的最小值,进而得到所求t的最大值.本题考查含绝对值的函数的最值求法,注意结合一次函数的单调性,考查不等式恒成立问题解法,注意运用转化思想和基本不等式,考查运算能力和推理能力,属于中档题.。
四川省成都市2023届高三三诊文科数学试题

一、单选题1.已知集合,则中元素的个数为( )A .9B .8C .5D .42. 已知抛物线的焦点为,点在抛物线上,以为边作一个等边三角形,若点在抛物线的准线上,则=A.B.C.D.3. 已知命题,“为真”是“为假”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 如图所示,设正方体的棱长为,点是棱上一点,且,过,,的平面交平面于,在直线上,则()A.B.C.D.5.设向量与向量的夹角为,定义与的向量积:是一个向量,它的模.若,,则( )A .-1B .1C.D.6.若集合,则( )A.B.C.D.7.设函数的定义域为,满足.当时,.若对任意,都有,则实数的取值范围是( )A.B.C.D.8. 定义域为的函数,若关于的方程恰有3个不同的实数解,,,则( )A .1B .2C.D.9. 已知为递增的等比数列,且满足,,则( )A.B .1C .16D .3210. 函数在单调递增,求a 的取值范围( )A.B.C.D.四川省成都市2023届高三三诊文科数学试题二、多选题11. 已知随机变量ξ满足P (ξ=0)=,P (ξ=1)=x ,P (ξ=2)=-x ,则当在内增大时,( )A .E (ξ)增大,D (ξ)增大B .E (ξ)减小,D (ξ)增大C .E (ξ)减小,D (ξ)减小D .E (ξ)增大,D (ξ)减小12.设等差数列的前项和为,且,若,则等于( )A.B.C .0D .213.已知函数若数列满足,且是递减数列,则实数a 的取值范围是 ( )A.B.C.D.14.已知,随机变量的分布列是11则随着的增大,( )A .一直增大B .一直减小C .先增大后减小D .先减小后增大15. 已知函数,若,使得成立,则的取值范围为( )A.B.C.D.16. 复数满足,则(为的共轭复数)( )A.B.C.D .17. 如图,在等腰梯形ABCD 中,,E 是BC 的中点,连接AE ,BD 相交于点F ,连接CF ,则下列说法正确的是()A.B.C.D.18.已知直角中有一个内角为,如果双曲线以为焦点,并经过点C ,则该双曲线的离心率可能是( )A.B .2C.D.19. 已知四边形和四边形为正方形,,则下列说法正确的是( )三、填空题A.B.C.D.20. 函数,若,有,则( )A .的图象与轴有两个交点B.C.D .若,则21. 有两个书架,第一个书架上有4本语文书,6本数学书,第二个书架上有6本语文书,4本数学书.先从第一个书架上随机取出一本书放到第二个书架上,分别以和表示从第一个书架上取出的书是语文书和数学书的事件;再从第二个书架上随机取出一本书,以表示第二个书架上取出的书是语文书的事件,则( )A .事件与事件相互独立B.C.D.22. 设双曲线的右焦点为,若直线与的右支交于两点,且为的重心,则( )A .的离心率的取值范围为B.的离心率的取值范围为C .直线斜率的取值范围为D .直线斜率的取值范围为23.在正方体中,点P满足,则( )A .若,则AP 与BD所成角为B .若,则C.平面D.24.已知数列满足,,则下列关于的判断正确的是( )A .,,B .,,C.,,D .,,25. 若圆:上总存在两个点到原点的距离为2,则实数的取值范围是___________.26. 已知双曲线的左、右焦点分别为,且为抛物线的焦点.设点为两曲线的一个公共点,且,,为钝角,则双曲线的方程为__________.27. 钝角的面积是,,,角的平分线交于点,则________.28. 在正方体内有一个球,该球与正方体的六个面均相切.记正方体的体积为,球O 体积为,则的值是____________.四、解答题29. 在平面直角坐标系中,已知过点的圆M与圆相切于原点,则圆M 的半径是__.30. 杭州亚运会举办在即,主办方开始对志愿者进行分配.已知射箭场馆共需要6名志愿者,其中3名会说韩语,3名会说日语.目前可供选择的志愿者中有4人只会韩语,5人只会日语,另外还有1人既会韩语又会日语,则不同的选人方案共有_________种.(用数字作答).31. 写一个焦点在轴上且离心率为的双曲线方程________.32._______.33.已知(1)化简.(2)若为第三象限角,且,求的值.34.如图,在多面体中,四边形为菱形,且∠ABC =60°,AE ⊥平面 ABCD ,AB =AE =2DF ,AE DF.(1)证明:平面AEC ⊥平面 CEF ;(2)求平面ABE 与平面CEF 夹角的余弦值.35. (1)求值:;(2)已知,求的值.36. 随着寒冷冬季的到来,羽绒服进入了销售旺季,某调查机构随机调查了400人,询问他们选购羽绒服时更关注保暖性能还是更关注款式设计,得到以下的列联表:更关注保暖性能更关注款式设计合计女性16080240男性12040160合计280120400附:.0.100.050.0102.7063.8416.635(1)是否有95%的把握认为男性和女性在选购羽绒服时的关注点有差异?(2)若从被调查的更关注保暖性能的人中按男女比例用分层抽样的方法抽取7人进行采访,再从这7人中任选2人赠送羽绒服,求这2人都是女性的概率.37. (1)化简;五、解答题(2)计算.38. 如图,两射线、均与直线l 垂直,垂足分别为D 、E 且.点A 在直线l 上,点B 、C 在射线上.(1)若F 为线段BC 的中点(未画出),求的最小值;(2)若为等边三角形,求面积的范围.39.三棱锥中,,,,平面,,为中点,点在棱上(端点除外).过直线的平面与平面垂直,平面与此三棱锥的面相交,交线围成一个四边形.(1)在图中画出这个四边形,并写出作法(不要求证明);(2)若.求直线与平面所成角的正弦值.40. 某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等制划分标准为:85分及以上,记为等;分数在内,记为等;分数在内,记为等;60分以下,记为等.同时认定为合格,为不合格.已知甲,乙两所学校学生的原始成绩均分布在内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为的所有数据茎叶图如图2所示.(1)求图1中的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲,乙两校等级的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中甲校的学生人数,求随机变量的分布列和数学期望.41. 已知函数的最小正周期是,且当时,取得最大值.(1)求的解析式;(2)作出在上的图象(要列表).六、解答题42. 已知函数.(1)在所给的坐标纸上作出函数的图像(不要求写出作图过程);(2)令,求函数的定义域及不等式的解集.43. 2023年空军航空开放活动·长春航空展于7月26日至30日在长春举行.航展组织者为了了解网民对本届航展的关注度,对网民进行关注度的问卷调查,并从中随机抽取80份对其得分(得分均在内)情况进行统计,得到如下表格:得分频数814182416(1)根据频数分布表作出频率分布直方图;(2)利用分层抽样的方法从得分在和的样本中随机抽取6个样本,再从这6个样本中随机抽取2个样本,求这2个样本的得分均在的概率.44. 某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关).年份年份代号年利润(单位:亿元)(Ⅰ)求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润;(Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将(Ⅰ)中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.参考公式:,.45. 已知函数.(1)求曲线在点处的切线方程(2)若,求证:当时,.46. 如图,在三棱锥中,,,,,直线与平面成角,为的中点,,.(Ⅰ)若,求证:平面平面;(Ⅱ)若,求直线与平面所成角的正弦值的取值范围.47. 已知数列的前n项和为,且.(1)求数列的通项公式;(2)若数列的前n项和为,求证:.48. 如图,圆柱的轴截面是正方形,、分别是上、下底面的圆心,是弧的中点,、分别是与中点.(1)求证:平面;(2)求二面角的余弦值.49. 如图,直线和直线均垂直于平面,且,,为线段上一动点.(1)求证平面;(2)求面积的最小值.50. 如图,平行六面体的所有棱长均为,底面为正方形,,点为的中点,点为的中点,动点在平面内.七、解答题(1)若为中点,求证:;(2)若平面,求线段长度的最小值.51. 随着科技的发展,手机的功能已经非常强大,各类APP 让用户的生活质量得到极大的提升,但是大量的青少年却沉迷于手机游戏,极大地毒害了青少年的身心健康.为了引导青少年抵制不良游戏,适度参与益脑游戏,某游戏公司开发了一款益脑游戏APP ,在内测时收集了玩家对每一关的平均过关时间,如下表:关卡x 123456平均过关时间y (单位:秒)5078124121137352(1)通过散点图分析,可用模型拟合y 与x 的关系,试求y 与x 的经验回归方程;(2)甲和乙约定举行对战赛,每局比赛通关用时少的人获胜(假设甲、乙都能通关),两人约定先胜4局者赢得比赛.已知甲每局获胜的概率为,乙每局获胜的概率为,若前3局中甲已胜2局,乙胜1局,求甲最终赢得比赛的概率.参考公式:对于一组数据(x i ,y i )(i =1,2,3,…,n ),其经验回归直线ŷ=x +的斜率和截距的最小二乘估计公式分别为.参考数据:,其中.52. 某学校最近考试频繁,为了减轻同学们的学习压力,班上决定进行一次减压游戏.班主任把8个小球(只是颜色不同)放入一个袋子里,其中白色球与黄色球各3个,红色球与绿色球各1个.现甲、乙两位同学进行摸球得分比赛,摸到白球每个记1分,黄球每个记2分,红球每个记3分,绿球每个记4分,规定摸球人得分不低于8分为获胜,否则为负. 并规定如下:①一个人摸球,另一人不摸球;②摸球的人摸出的球后不放回;③摸球的人先从袋子中摸出1球;若摸出的是绿色球,则再从袋子里摸出2个球;若摸出的不是绿色球,则再从袋子里摸出3个球,摸球人的得分为两次摸出的球的记分之和 .(1)若由甲摸球,如果甲先摸出了绿色球,求该局甲获胜的概率;(2)若由乙摸球,如果乙先摸出了红色球,求该局乙得分ξ的分布列和数学期望;53. 某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.(1)求甲、乙两位同学总共正确作答3个题目的概率(两人同时答对同一个题目视为答对两个);(2)若甲、乙两位同学答对题目个数分别是,,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和的期望.54. 鲁班锁是中国一种古老的益智玩具,它与九连环、华容道、七巧板被称为中国民间的四大传统益智玩具.鲁班锁看似简单,却凝结着不平凡的智慧,是榫卯结构的集中展现,一般由六根木条组成,三维拼插,内部榫卯咬合,外观严丝合缝,十字立体,易拆难装,十分巧妙.某玩具公司新开发了两款鲁班锁玩具,记两款鲁班锁玩具所获利润分别为万元、万元,根据销售部市场调研分析,得到相关数据如下表:(成本利润率利润成本)款鲁班锁玩具:成本利润率概率0.30.60.1款鲁班锁玩具:成本利润率概率0.20.30.5(1)若两款鲁班锁玩具的投资成本均为20万元,试求投资这两款鲁班锁玩具所获利润的方差;(2)若两款鲁班锁玩具的投资成本共为20万元,试求投资这两款鲁班锁玩具所获利润的方差之和的最小值.55. 大学生小王自主创业,在乡下承包了一块耕地种植某种水果,每季投入万元,根据以往的经验,每季收获的此种水果能全部售完,且水果的市场价格和这块地上的产量具有随机性,互不影响,具体情况如表:表1水果产量概率表2水果市场价格(元)概率(1)设表示在这块地种植此水果一季的利润,求的分布列及期望;(2)在销售收入超过万元的情况下,利润超过万元的概率.56. 年月日新中国成立以来第一部以“法典”命名的法律《中华人民共和国民法典》颁布施行,我国将正式迈入“民法典”时代.为深入了解《民法典》,大力营造学法守法用法的良好氛围,高三年级从文科班和理科班的学生中随机抽取了名同学参加学校举办的“民法典与你同行”知识竞赛,将他们的比赛成绩分为组:、、、、、,得到如图所示的频率分布直方图.(1)求的值;(2)估计这名学生比赛成绩的中位数(同一组中的数据用该组区间的中点值为代表);(3)在抽取的名学生中,规定:比赛成绩不低于分为“优秀”,比赛成绩低于分为“非优秀”,请将下面的列联表补充完整,并判断是否有的把握认为“比赛成绩是否优秀与文理科别有关”?优秀非优秀合计文科生理科生合计参考公式及数据:,.八、解答题57. 在ABC中,记角A,B,C的对边为a,b,c,角A为锐角,设向量,,且.(1)求角A的大小及向量与的夹角;(2)若,求ABC面积的最大值.58. 如图,已知点,抛物线的焦点是,A,B是抛物线上两点,四边形是矩形.(1)求抛物线的方程;(2)求矩形的面积.59. 在中,内角所对的边分别为,.(1)求的值;(2)若的面积为,求的值.60. 已知,,、、是的内角;(1)当时,求的值;(2)若,,当取最大值时,求的大小及边的长.61. 春节期间,由于高速公路继续实行小型车免费,因此高速公路上车辆较多,某调查公司在某城市从七座以下小型汽车中按进入服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速()分成六段:后得到如图的频率分布直方图.(1)此调查公司在采样中,用到的是什么抽样方法?(2)求这40辆小型车辆车速的众数、中位数以及平均数的估计值;(3)若从车速在[60,70)的车辆中任抽取2辆,求至少有一辆车的车速在的概率.62. 设,函数,函数.(1)当时,求函数的零点个数;(2)若函数与函数的图象分别位于直线的两侧,求的取值集合;(3)对于,,求的最小值.。
2020届四川省成都市高中毕业班第三次诊断性检测数学(文)试题(解析版)

2020届四川省成都市高中毕业班第三次诊断性检测数学(文)试题一、单选题1.已知集合{}0,A x =,{}0,2,4B =.若A B ⊆,则实数x 的值为( ) A .0或2 B .0或4C .2或4D .0或2或4【答案】C【解析】利用子集的概念即可求解. 【详解】集合{}0,A x =,{}0,2,4B =若A B ⊆,则集合A 中的元素在集合B 中均存在, 则0,2x =或4,由集合元素的互异性可知2x =或4, 故选:C 【点睛】本题考查了子集的概念,理解子集的概念是解题的关键,属于基础题.2.若复数z 满足25zi i =+(i 为虚数单位),则z 在复平面上对应的点的坐标为( ) A .()2,5 B .()2,5-C .()5,2-D .()5,2-【答案】D【解析】根据题意两边同时除以i 可求出复数z ,然后即可求出z 在复平面上对应的点的坐标. 【详解】解:因为25zi i =+,所以2552iz i i+==-,故z 在复平面上对应的点的坐标为()5,2-.故选:D. 【点睛】本题考查复数与复平面上点的坐标一一对应的关系,考查复数除法的四则运算,属于基础题.3.命题“0x R ∃∈,20010x x -+≤”的否定是( )A .0x R ∃∈,20010x x -+> B .x R ∀∈,210x x -+≤ C .0x R ∃∈,20010x x -+≥D .x R ∀∈,210x x -+>【答案】D【解析】含有全称量词和特称量词的否定是:否量词,否结论,不否范围. 【详解】解:命题“0x R ∃∈,20010x x -+≤”的否定是x R ∀∈,210x x -+>.故选:D. 【点睛】本题考查含有全称量词和特称量词的命题的否定,熟练掌握否定的规则是解题的关键,本题属于基础题.4.如图是某几何体的正视图和侧视图,则该几何体的俯视图不可能是( )A .B .C .D .【答案】A【解析】直接利用三视图和直观图的转换的应用求出结果. 【详解】解:根据几何体的三视图可知该几何体为三棱柱,当选A 时,正视的中间的竖线应为虚线,选项BCD 均可能, 故选:A 【点睛】此题考查三视图与几何体之间的转换,考查学生的转换能力和空间想象能力,属于基础题.5.已知函数()22x x f x -=-,则()2log 3f =( ) A .2B .83C .3D .103【答案】B【解析】根据函数解析式及指数对数恒等式计算可得; 【详解】解:因为()22x x f x -=- 所以()22log 3log 3218log 322333f -=-=-=故选:B 【点睛】本题考查函数值的计算,对数恒等式的应用,属于基础题.6.已知实数,x y 满足102050x y x y -≥⎧⎪-≥⎨⎪+-≤⎩,则2z x y =+的最大值为( )A .4B .6C .8D .10【答案】C 【解析】作出题中不等式组表示的平面区域,得如图的ABC 及其内部,再将目标函数2z x y =+对应的直线进行平移,可得当3x =,2y =时,2z x y =+取得最大值8.【详解】作出实数x ,y 满足10,20,50x y x y -⎧⎪-⎨⎪+-⎩表示的平面区域,得到如图的ABC 及其内部,其中(3,2)A ,(1,2)B ,(1,4)C设(,)2z F x y x y ==+,将直线:2l z x y =+进行平移, 当l 经过点A 时,目标函数z 达到最大值()3,22328max z F ∴==⨯+=.故选:C . 【点睛】本题给出二元一次不等式组,求目标函数2z x y =+的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.7.为迎接大运会的到来,学校决定在半径为202m 的半圆形空地O 的内部修建一矩形观赛场地ABCD ,如图所示,则观赛场地的面积最大值为( )A .4002mB . 24002mC .6002mD .8002m【答案】D【解析】连接OD ,设COD θ∠=,则sin CD OD θ=,cos OC OD θ=,2ABCD S OC CD =⋅根据三角函数的性质求出面积最值;【详解】如图连接OD ,设COD θ∠=,0,2πθ⎛⎫∈ ⎪⎝⎭则sin 202sin CD OD θθ==,cos 202OC OD θθ==所以22202202800sin 2ABCD S OC CD θθθ=⋅=⨯⨯=因为0,2πθ⎛⎫∈ ⎪⎝⎭,所以()20,θπ∈,所以(]sin 20,1θ∈,所以(]0,800ABCD S ∈,当4πθ∈时()max 800ABCD S =故选:D 【点睛】本题考查三角函数的应用,属于基础题.8.在等比数列{}n a 中,已知19nn n a a +=,则该数列的公比是( )A .-3B .3C .3±D .9【答案】B【解析】由已知结合等比数列的性质即可求解公比. 【详解】解:因为190nn n a a +=>,所以11111999nn n n n n n n a a a a a a ++---===, 所以29q =,所以3q =或3q =-,当3q =-时,109nn n a a +=<不合题意,故选:B 【点睛】此题考查了等比数列的性质的简单应用,属于基础题.9.已知函数()33f x x x =-,则“1a >”是“()()1f a f >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】对函数()33f x x x =-进行求导可得到:()()()2()31311f x x x x '=-=-+从而可得出函数()33f x x x =-在(),1x ∈-∞-上递增,在()1,1x ∈-递减,在()1,x ∈+∞递增,根据函数的单调性可知:当1a >时,有()()1f a f >成立,即充分性成立;当()()1f a f >时,a 的范围不一定是1a >,可能11a -<<,即必要性不成立,所以“1a >”是“()()1f a f >”的充分不必要条件. 【详解】由题意可得:()()()2()31311f x x x x '=-=-+,令()0f x '>解得1x >或1x <-,即函数()33f x x x =-在(),1x ∈-∞-上递增,在()1,1x ∈-递减,在()1,x ∈+∞递增,根据函数的单调性:当1a >时,有()()1f a f >成立,即充分性成立;当()()1f a f >时,a 的范围不一定是1a >,可能11a -<<,即必要性不成立, 所以“1a >”是“()()1f a f >”的充分不必要条件. 故选:A 【点睛】本题考查了函数的单调性及充分条件,必要条件的判断,属于一般题.10.已知1F ,2F 是双曲线()222210,0x y ab a b-=>>的左,右焦点,经过点2F 且与x 轴垂直的直线与双曲线的一条渐近线相交于点A ,且1264F AF ππ≤∠≤.则该双曲线离心率的取值范围是( )A .5,7⎡⎤⎣⎦B .5,13⎡⎤⎣⎦C .3,13⎡⎤⎣⎦D .7,3⎡⎤⎣⎦【答案】B【解析】由题意画出图形,求得122tan a F AF b ∠=,再由1264F AF ππ∠求得b a的范围,结合双曲线的离心率公式得答案. 【详解】 如图,由题意,(,)bcA c a,12||2F F c =, 则12122||22tan ||F F c aF AF bc AF b a∠===.由1264F AF ππ∠,得321ab, 即223ba. 21()[5,13]c be a a∴=+. 故选:B .【点睛】本题主要考查双曲线的简单几何性质,考查双曲线的离心率的取值范围的求法,意在考查学生对这些知识的理解掌握水平.11.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等; ②PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π;④若AB BC =,E 是线段PC 上一动点,则DE BE + 其中所有正确结论的编号是( ) A .①② B .②③C .①②④D .①③④【答案】C 【解析】根据三角形全等判断①,根据sin PAB ∠的值和三角形的内角和得出PAB ∠的范围,计算外接球半径判断③,将棱锥侧面展开计算最短距离判断④. 【详解】解:如图1,AB BC ⊥,D 是AC 的中点,DA DB DC ∴==,又PD ⊥平面ABC ,Rt PDA RtPDB RTPDC ∴∆≅≅,PA PB PC ∴==,故①正确;PA PB =,PAB PBA ∴∠=∠,又PAB PBA APB π∠+∠+∠=,2PAB π∴∠<,过P 作PM AB ⊥,M 为垂足,如图2,则1PM PD >=,又PA sin2PM PAB PA ∴∠=>=,4PAB π∴∠>,故②正确;AB BC ⊥,D ∴为平面ABC 截三棱锥外接球的截面圆心,设外接球球心为O ,则O 在直线DP 上,如图3,设DO h =,则(1)h ±=0h =,故D 为外接球的球心.∴外接球的体积为344133ππ⨯⨯=,故③错误.若AB BC =,则2BC =,又2PB PC ==,故PBC ∆是等边三角形,将平面PCD 沿PC 翻折到平面PBC 上,如图4,图5. 则DE BE +的最短距离为线段BD 的长.6045105BCD ∠=︒+︒=︒,2BC =1CD =,6221221cos10523BD +∴=+-⨯⨯⨯︒=+④正确. 故选:C . 【点睛】本题考查了棱锥的结构特征,棱锥与外接球的位置关系,属于中档题.12.已知函数()sin 1(0,01)4f x A x A πωω⎛⎫=+-><< ⎪⎝⎭的图象经过点20,2⎛⎫ ⎪ ⎪⎝⎭,且将图象向左平移3π个长度单位后恰与原图象重合.若对任意的[]12,0,x x t ∈,都有()()122f x f x ≥成立,则实数t 的最大值是( )A .34π B .23π C .712π D .2π 【答案】A【解析】将点20,2⎛⎫⎪ ⎪⎝⎭代入解析式,求出A ,然后再利用三角函数的平移变换求出ω,再由()()12min max 2f x f x ≥,结合正弦函数的性质即可求解. 【详解】函数()sin 1(0,01)4f x A x A πωω⎛⎫=+-><< ⎪⎝⎭的图象经过点20,2⎛⎫ ⎪ ⎪⎝⎭,可得sin142A π-=,解得1A =+ 函数()sin 1(0,01)4f x A x A πωω⎛⎫=+-><< ⎪⎝⎭的图象向左平移3π个长度单位可得()(1sin 314g x x πωπω⎛⎫=++- ⎪⎝⎭,根据两函数的图象重合,可知32,k k Z πωπ=∈, 解得2,3kk Z ω=∈, 又因为01ω<<,所以23ω=, 对任意的[]12,0,x x t ∈,都有()()122f x f x ≥成立, 则()()12min max 2f x f x ≥, 由[]12,0,x x t ∈,则12222,,3434434x x t ππππ⎡⎤++∈+⎢⎥⎣⎦, 若要实数t 取最大值,由()()2max1min2f x f x ≥,只需()min 1122f x ≥=, 所以23344t ππ+≤,解得34t π≤, 所以实数t 的最大值是34π. 故选:A 【点睛】本题考查了三角函数的平移变换求解析式、三角不等式恒成立问题、正弦函数的性质,属于中档题.二、填空题13.已知向量()1,a λ=,()2,3b =,且a b ⊥,则实数λ的值为______. 【答案】23-【解析】由a b ⊥,故1230a b λ=⨯+=,即可解得;【详解】解:因为()1,a λ=,()2,3b =,且a b ⊥, 所以1230a b λ=⨯+=,解得23λ=- 故答案为:23- 【点睛】本题考查平面向量数量积的坐标表示,属于基础题.14.某实验室对小白鼠体内x ,y 两项指标进行研究,连续五次实验所测得的这两项指标数据如下表:已知y 与x 具有线性相关关系,利用上表中的五组数据求得回归直线方程为y bx a =+.若下一次实验中170x =,利用该回归直线方程预测得117y =,则b 的值为______. 【答案】0.54【解析】由已知表格中的数据,求得x 和y ,代入回归方程,再把点()170,117代入y bx a =+,联立方程组即可求解b 的值.【详解】解:由已知表格中的数据,求得:1201101251301151205x ++++==,9283909689905y ++++==,则12090b a +=,①又因为下一次实验中170x =,利用该回归直线方程预测得117y =, 则170117b a +=,② 联立①②,解得:0.54b =. 故答案为:0.54. 【点睛】本题考查线性回归方程的求法,明确线性回归方程恒过样本中心点是关键,属于基础题.15.设数列{}n a 的前n 项和为n S ,若15a =,510S =,且n S n ⎧⎫⎨⎬⎩⎭是等差数列.则12310a a a a ++++的值为______.【答案】792【解析】首先求出n S n ⎧⎫⎨⎬⎩⎭的通项公式,即可得到232344n S n n =-+,再利用作差法求出31322n a n =-+,最后利用分组求和计算可得; 【详解】解:因为15a =,510S =,且n S n ⎧⎫⎨⎬⎩⎭是等差数列,设公差为d ,所以15S =,525S =,所以513544S S d -==-, 所以32344n S n n =-+,所以232344n S n n =-+①; 当2n ≥时,()()213231144n S n n -=--+-②;①减②得31322n a n =-+,显然15a =符号故31322n a n =-+,当14n ≤≤时0n a ≥,5n ≥时0n a <所以12310a a a a ++++41102356789a a a a a a a a a a -----+-=++()4104S S S --=4102S S =-2232332344101044442⨯+⨯-⎪=⨯⨯⎛⎫⎛⎫-- ⎪ ⎝⎭⎝⎭+357911222⎛=⎫⨯--= ⎪⎝⎭故答案为:792【点睛】本题考查等差数列的通项公式及求和公式的应用,属于中档题.16.已知点F 为抛物线()220y px p =>的焦点,经过点F 且倾斜角为4π的直线与抛物线相交于A ,B 点,线段AB 的垂直平分线与x 轴相交于点M .则4pFM的值为______. 【答案】2【解析】先写出过点F 且倾斜角为4π的直线方程,然后与抛物线方程联立成方程组,消元后利用根与系数的关系得到线段AB 的中点坐标,从而可得到线段AB 的垂直平分线方程,进而可求出点M 的坐标,于是就得到FM 的值,即可得结果. 【详解】解:抛物线()220y px p =>的焦点(,0)2pF ,则经过点F 且倾斜角为4π的直线为2py x =-,设1122(,),(,)A x y B x y ,线段AB 为00(,)N x y , 由222p y x y px⎧=-⎪⎨⎪=⎩,得22304p x px -+=,所以12003,22x x px y p +===, 所以线段AB 的垂直平分线方程为3()2py p x -=--, 令0y =,得52p x =,所以5(,0)2pM , 所以5222p p FM p =-=,所以4422p p FM p ==, 故答案为:2 【点睛】此题考查抛物线方程和性质,考查直线和抛物线的位置关系,运用了根与系的关系,考查化简运算能力,属于中档题.三、解答题17.某公司为加强对销售员的考核与管理,从销售部门随机抽取了2019年度某一销售小组的月均销售额,该小组各组员2019年度的月均销售额(单位:万元)分别为:3.35,3.35,3.38,3.41,3.43,3.44,3.46,3.48,3.51,3.54,3.56,3.56,3.57,3.59,3.60,3.64,3.64,3.67,3.70,3.70.(Ⅰ)根据公司人力资源部门的要求,若月均销售额超过3.52万元的组员不低于全组人数的65%,则对该销售小组给予奖励,否则不予奖励.试判断该公司是否需要对抽取的销售小组发放奖励;(Ⅱ)从该销售小组月均销售额超过3.60万元的销售员中随机抽取2名组员,求选取的2名组员中至少有1名月均销售额超过3.68万元的概率. 【答案】(Ⅰ)不需要对该销售小组发放奖励;(Ⅱ)710. 【解析】(Ⅰ)求出月均销售额超过3.52万元的销售员占该小组的比例,与65%比较判断即可;(Ⅱ)由题可知,月均销售额超过3.60万元的销售员有5名,其中超过3.68万元的销售员有2名,记为1A ,2A ,其余的记为1a ,2a ,3a ,利用列举法,列举出5名销售员中随机抽取2名的所有结果和至少有1名销售员月均销售额超过3.68万元的结果,最后根据古典概型求概率,即可得出结果. 【详解】解:(Ⅰ)该小组共有11名销售员2019年度月均销售额超过3.52万元, 分别是:3.54,3.56,3.56,3.57,3.59,3.60,3.64,3.64,3.67,3.70,3.70, ∴月均销售额超过3.52万元的销售员占该小组的比例为1155%20=, ∵55%65%<,故不需要对该销售小组发放奖励.(Ⅱ)由题可知,月均销售额超过3.60万元的销售员有5名,其中超过3.68万元的销售员有2名,记为1A ,2A ,其余的记为1a ,2a ,3a , 从上述5名销售员中随机抽取2名的所有结果为:()12,A A ,()11,A a ,()12,A a ,()13,A a ,()21,A a ,()22,A a ,()23,A a ,()12,a a ,()13,a a ,()23,a a ,共有10种,其中至少有1名销售员月均销售额超过3.68万元的结果为:()12,A A ,()11,A a ,()12,A a ,()13,A a ,()21,A a ,()22,A a ,()23,A a ,共有7种, 故选取的2名组员中至少有1名月均销售额超过3.68万元的概率为710P =. 【点睛】本题考查利用列举法写出基本事件和古典概率求概率,以及利用概率对实际问题进行评估,属于基础题.18.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且()sin()()(sin sin )a c A B a b A B -+=-+.(Ⅰ)求角B 的大小;(Ⅱ)若4b =,求a c +的最大值. 【答案】(Ⅰ)3B π=;(Ⅱ)8.【解析】(Ⅰ)利用三角形的内角和定理可得()sin ()(sin sin )a c C a b A B -=-+,再根据正弦定理的边角互化以及余弦定理即可求解.(Ⅱ)由(Ⅰ)可得2216a c ac +-=,再利用基本不等式即可求解. 【详解】解:(Ⅰ)在ABC 中,∵sin()sin()sin A B C C π+=-=, ∴()sin ()(sin sin )a c C a b A B -=-+. 由正弦定理,得()()()a c c a b a b -=-+. 整理,得222c a b ac +-=.∴222122c a b ac +-=.∴1cos 2B =. 又0B π<<,∴3B π=.(Ⅱ)∵4b =,∴2216a c ac +-=, 即2()163a c ac +-=,∵22a c ac +⎛⎫≤ ⎪⎝⎭,∴22()1632a c a c +⎛⎫+-≤ ⎪⎝⎭. ∴21()164a c ≤+. ∴8a c +≤,当且仅当a c =时等号成立. ∴a c +的最大值为8. 【点睛】本题考查了正弦定理、余弦定理、基本不等式,需熟记定理的内容,属于基础题. 19.如图,在多面体ABCDEF 中,ADEF 为矩形,ABCD 为等腰梯形,//BC AD ,2BC =,4=AD ,且AB BD ⊥,平面ADEF ⊥平面ABCD ,M ,N 分别为EF ,CD 的中点.(Ⅰ)求证://MN 平面ACF ;(Ⅱ)若2DE =,求多面体ABCDEF 的体积. 【答案】(Ⅰ)证明见解析;103. 【解析】(Ⅰ)取AD 的中点O .连接OM ,ON ,可证//OM AF ,//ON AC ,然后利用平面//MON 平面ACF ,可证//MN 平面ACF .(Ⅱ)将多面体分为四棱锥B ADEF -和三棱锥B CDE -两部分,将B CDE V -转化为V E BCD -,然后利用四棱锥和三棱锥的体积公式分别求出然后求和即可. 【详解】解:(Ⅰ)如图,取AD 的中点O .连接OM ,ON .在矩形ADEF 中,∵O ,M 分别为线段AD ,EF 的中点, ∴//OM AF .又OM ⊄平面ACF ,AF ⊂平面ACF , ∴//OM 平面ACF .在ACD 中,∵O ,N 分别为线段AD ,CD 的中点, ∴//ON AC .又ON ⊄平面ACF ,AC ⊂平面ACF , ∴//ON 平面ACF . 又OMON O =,,OM ON ⊂平面MON ,∴平面//MON 平面ACF又MN ⊂平面MON ,∴//MN 平面ACF . (Ⅱ)如图,过点C 作CH AD ⊥于H . ∵平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,CH ⊂平面ABCD ,∴CH ⊥平面ADEF .同理DE ⊥平面ABCD .连接OB ,OC .在ABD △中,∵AB BD ⊥,4=AD , ∴122OB AD ==. 同理2OC=.∵2BC =,∴等边OBC 的高为3,即3CH =. 连接BE .∴ABCDEF B ADEF B CDE B ADEF E BCD V V V V V ----=+=+1111124323233332ADEF BCD S CH S DE =⋅+⋅=⨯⨯⨯+⨯⨯⨯⨯△ 103=.【点睛】本题考查利用线线平行,线面平行和面面平行的判定定理和性质定理,考查分割法求多面体的体积,考查四棱锥和三棱锥的体积公式,考查学生的转化能力和计算能力,属于中档题.20.已知函数()ln xm e f x x e=-,其中m R ∈.(Ⅰ)当1m =时,求函数()f x 的单调区间; (Ⅱ)当2m =时,证明:()0f x >.【答案】(Ⅰ)单调递减区间为0,1,单调递增区间为1,;(Ⅱ)证明见解析.【解析】(Ⅰ)利用导数求函数()f x 的单调区间;(Ⅱ)先证明存在唯一的()01,2x ∈,使得()0'0f x =,再利用导数求出()000201ln 2x e x x f x x e =-=+-最小值,再利用基本不等式证明不等式. 【详解】解:(Ⅰ)当1m =时,()ln x e f x x e =-.则()1'x e f x e x=-.∵()'f x 在0,上单调递增(增函数+增函数=增函数),且()'10f =,∴当()0,1x ∈时,()'0f x <;当()1,x ∈+∞时,()'0f x >. ∴()f x 的单调递减区间为0,1,单调递增区间为1,.(Ⅱ)当2m =时,()2ln x e f x x e =-.则()21'x e f x e x=-.∵()'f x 在0,上单调递增,且()1'110f e =-<,()1'2102f =->, ∴存在唯一的()01,2x ∈,使得()0'0f x =.∴当()00,x x ∈时,()'0f x <,即()f x 在()00,x 上单调递减; 当()0,x x ∈+∞时,()'0f x >,即()f x 在()0,x +∞上单调递增, ∴()()0002ln x e f x ef x x ==-最小值.又0201x e e x =,即0201ln ln x ex -=.化简,得002ln x x -=-. ∴()000201ln 2x e x x f x x e =-=+-最小值. ∵()01,2x ∈,∴()001220x x f x =+->=最小值. ∴当2m =时,()0f x >. 【点睛】本题主要考查利用导数研究函数的单调区间和最值,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.已知椭圆C :()222210x y a b a b +=>>的左焦点()1F,点2Q ⎛⎫ ⎪ ⎪⎝⎭在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆O :225x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点.(i )当直线PA ,PB 的斜率都存在时,记直线PA ,PB 的斜率分别为1k ,2k .求证:121k k =-;(ii )求ABMN的取值范围.【答案】(Ⅰ)2214x y +=;(Ⅱ)(i )证明见解析;(ii )14,55⎡⎤⎢⎥⎣⎦.【解析】(Ⅰ)把点Q ⎛ ⎝⎭代入椭圆方程,结合222a b c =+,c =,即可求得椭圆的标准方程.(Ⅱ)(i )设点()00,P x y ,写出切线方程()00y k x x y =-+,联立方程组()0022440y k x x y x y ⎧=-+⎨+-=⎩,再由0∆=,结合韦达定理,写出12k k 的表达式,化简得出结果; (ii )设点()11,A x y ,()22,B x y ,进而求得直线PA 和PB 的直线方程,结合两条直线的形式,可写出直线AB 的方程,运用弦长公式求得ABMN,结合0y 的范围,可求得ABMN的取值范围. 【详解】(Ⅰ)∵椭圆C 的左焦点()1F ,∴c =将Q ⎛ ⎝⎭代入22221x y a b +=,得221314a b +=. 又223a b -=,∴24a =,21b =.∴椭圆C 的标准方程为2214x y +=.(Ⅱ)(i )设点()00,P x y ,设过点P 与椭圆C 相切的直线方程为()00y k x x y =-+. 由()0022440y k x x y x y ⎧=-+⎨+-=⎩,消去y ,得()()()2220000148440k x k y kx x y kx ++-+--=.()()()222200006444144k y kx k y kx ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()22200004210x k x y k y -++-=.由已知,则212214y k k x -=-. 又22005x y +=,∴()220012220154144x x k k x x ---===---. (ii )设点()11,A x y ,()22,B x y .当直线PA 的斜率存在时,设直线PA 的方程为()111y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y ,得()()()22211111111148440k xk y k x x y k x ++-+--=.()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=. 则11111122111444x y x y x k x y y =-=-=--. ∴直线PA 的方程为()11114x y x x y y =--+. 化简,可得22111144x x y y y x +=+,即1114x xy y +=. 经验证,当直线PA 的斜率不存在时,直线PA 的方程为2x =或2x =-,也满足1114x xy y +=. 同理,可得直线PB 的方程为2214x xy y +=. ∵()00,P x y 在直线PA ,PB 上,∴101014x x y y +=,202014x xy y +=.∴直线AB 的方程为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y ,得()22200035816160y x x x y +-+-=.∴01220835x x x y +=+,21220161635y x x y -=+.∴12x AB =-=)20203135y y +==+. 又由(i )可知当直线PA ,PB 的斜率都存在时,PM PN ⊥;易知当直线PA 或PB 斜率不存在时,也有PM PN ⊥.∴MN 为圆O 的直径,即MN =∴)2022022003131413535y y y y ABMN++===-++. 又[]200,5y ∈,∴204141,3555y ⎡⎤-∈⎢⎥+⎣⎦. ∴AB MN 的取值范围为14,55⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查直线与椭圆相交时的有关知识,考查学生分析问题解决问题的能力.采用了设而不求的方法,运用韦达定理和弦长公式求得AB MN,结合椭圆纵坐标的有界性可求得范围,属于中档题.22.在平面直角坐标系xOy 中,直线l的参数方程为832432x t y t ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为26cos a ρρθ+=,其中0a >.(Ⅰ)写出直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)在平面直角坐标系xOy 中,设直线l 与曲线C 相交于A ,B 两点.若点84,33P ⎛⎫- ⎪⎝⎭恰为线段AB 的三等分点,求a 的值.【答案】(Ⅰ)40x y -+=;2260x y x a ++-=;(Ⅱ)4a =.【解析】(Ⅰ)利用消参法消去参数t ,即可将直线l 的参数方程转化为普通方程,利用互化公式222x y ρ=+,cos x ρθ=,将曲线C 的极坐标方程转化为直角坐标方程; (Ⅱ)把直线l 的参数方程代入曲线C 的直角坐标方程,得出关于t 的一元二次方程,根据韦达定理得出12t t +和12t t ,再利用直线参数方程中的参数t 的几何意义,即可求出a 的值.【详解】解:(Ⅰ)由于直线l的参数方程为83243x y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数t ,得直线l 的普通方程为40x y -+=,由222x y ρ=+,cos x ρθ=,得曲线C 的直角坐标方程为2260x y x a ++-=.(Ⅱ)将直线l 的参数方程代入曲线C 的直角坐标方程,并整理,得26409t a +--=,(*) 设1t ,2t 是方程(*)的两个根,则有>0∆,得12t t +=,12649t t a ⎛⎫=-+ ⎪⎝⎭, 由于点84,33P ⎛⎫- ⎪⎝⎭恰为线段AB 的三等分点, 所以不妨设122t t =-, ∴223250929a t =+=, 解得:4a =,符合条件0a >和>0∆,.∴a 的值为4.【点睛】本题考查利用消参法将参数方程转化为普通方程,以及利用互化公式将极坐标方程转化为直角坐标方程,考查利用直线参数方程中的参数t 的几何意义求参数值,考查化简运算能力.23.已知函数()12f x x x =--+.(Ⅰ)求不等式()f x x <的解集;(Ⅱ)记函数()f x 的最大值为M .若正实数a ,b ,c 满足1493a b c M ++=,求193c a c ab ac--+的最小值. 【答案】(Ⅰ)1|3x x ⎧⎫>-⎨⎬⎩⎭;(Ⅱ)36. 【解析】(Ⅰ)根据零点分段去掉绝对值,分别求出x 的取值范围,可得不等式的解集; (Ⅱ)由绝对值三角不等式求出()f x 的最大值为M ,将其代入化简,根据柯西不等式求出最值,并写出取等条件.【详解】解:(Ⅰ)不等式()f x x <即12x x x --+<.①当1x ≥时,化简得3x -<.解得1x ≥;②当21x -<<时,化简得21x x --<.解得113-<<x ; ③当2x -≤时,化简得3x <.此时无解. 综上,所求不等式的解集为1|3x x ⎧⎫>-⎨⎬⎩⎭. (Ⅱ)∵()()12123x x x x --+≤--+=,当且仅当2x -≤时等号成立. ∴3M =,即491a b c ++=. ∵193413111c a c a b ab ac ab c a a b c--++=+-=++, 又,,0a b c >, ∴111111(49)a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭2≥ ()212336=++=. 当且仅当11149a b c a b c==,即16a =,112b =,118c =时取等号, ∴193c a c ab ac--+的最小值为36. 【点睛】本题考查绝对值不等式的解法,以及柯西不等式在求最值中的应用,属于中档题.。